Midterm 2 Math 2200 Spring 2023

Directions:

- You may cite results proved during lecture or in the book without repeating the proof.
- If you wish to use a result from lecture or from the book, you must write out the complete statement which you are citing.

Question	Points	Score
1	10	
2	10	
3	10	
4	10	
5	10	
Total:	50	

1. (10 points) For each part, circle either true or false. You do not have to justify your answer. In each part, m is a positive integer and x, y, z, n, k are integers.

(A)If $xy \equiv 0 \pmod{m}$, then either $x \equiv 0 \pmod{m}$ or $y \equiv 0 \pmod{m}$. TRUE FALSE If $x + z \equiv y + z \pmod{m}$, then $x \equiv y \pmod{m}$. (B)TRUE FALSE If $m \nmid z$ and $xz \equiv yz \pmod{m}$, then $x \equiv y \pmod{m}$. (C)TRUE FALSE If x is not divisible by m, then $x^{m-1} \equiv 1 \pmod{m}$. (D)TRUE FALSE

(E) If $0 \le k \le n$ then $\binom{n}{k-1} \le \binom{n}{k}$ TRUE FALSE

2. (10 points) Let p be a prime number. If x is an integer such that $x^2 \equiv 1 \pmod{p}$, show that $x \equiv 1 \pmod{p}$ or $x \equiv -1 \pmod{p}$.

Solution: Suppose that $x^2 \equiv 1 \pmod{p}$. Subtracting, this means that $x^2 - 1 \equiv 0 \pmod{p}$, or equivalently that $(x - 1)(x + 1) \equiv 0 \pmod{p}$. This is equivalent to the statement that p divides (x - 1)(x + 1). As p is prime, this implies that either p divides x - 1 or p divides x + 1. In the first case, we have $x - 1 \equiv 0 \pmod{p}$, so $x \equiv 1 \pmod{p}$, and in the second case we have $x + 1 \equiv 0 \pmod{p}$, so $x \equiv -1 \pmod{p}$.

Comment: You really need the assumption that p is prime for this result to be true. For instance, say m = 15. Then x = 1, 4, 11, 14 all satisfy $x^2 \equiv 1 \pmod{15}$. (note that $14 \equiv -1 \pmod{15}$, but 4 and 11 are not congruent to either 1 or -1 modulo 15). 3. (10 points) Find a solution to the congruence equation $7x^5 \equiv 3 \pmod{23}$. You do **not** have to simplify your answer (ie. you can leave it as a sum/product of integers). You may find it helpful to use the equalities

$$10 \cdot 7 - 3 \cdot 23 = 1$$
 and $9 \cdot 5 - 2 \cdot 22 = 1$.

Solution: The first equation above implies that $10 \cdot 7 \equiv 1 \pmod{23}$. Thus, multiplying both sides of the equation $7x^5 \equiv 3 \pmod{23}$ by 10 yields the equivalent equation $10 \cdot 7x^5 \equiv 10 \cdot 3 \pmod{23}$, which simplifies to

$$x^5 \equiv 7 \pmod{23}.$$

To solve this for x, we use the method from class. The second equation above implies that $9 \cdot 5 \equiv 1 \pmod{22}$, and therefore a solution to the equation is 7^9 . This is a fine answer to the question. If we want a smaller solution, we can take this modulo 23, which turns out to be x = 15.

4. (10 points) Find the coefficient of x in the expansion of $(2\sqrt{x} + \frac{3}{x^2})^{12}$.

Solution: By the binomial theorem, the terms of the expansion look like

$$\binom{12}{a}(2\sqrt{x})^{12-a}(\frac{3}{x^2})^a$$

where a ranges over the integers 0, 1, 2, ..., 12. The power of x in the above term is $x^{\frac{12-a}{2}-2a} = x^{\frac{12-5a}{2}}$. So, to get $x = x^1$, we need

$$\frac{12-5a}{2} = 1$$

Solving this we get a = 2. In particular, only one of the above terms in the expansion contributes. Plugging in a = 2, we get that the x term of the expansion is

$$\binom{12}{2}(2\sqrt{x})^{12-2}(\frac{3}{x^2})^2 = \binom{12}{2}2^{10}3^2x.$$

So the answer to the question is

$$\binom{12}{2}2^{10}3^2 = 66 \cdot 1024 \cdot 9 = 608256.$$

(any of these forms is fine!)

- 5. In this question we will consider words with letters coming from the set $\{a, b, c, d, e\}$. In each part, you can give your answer as a sum/product of integers and binomial coefficients/factorials (you do not need to simplify at all).
 - (a) (3 points) How many words are there with exactly eight letters? For example, here are three of them:

bbcbeeeb, abecdabc, bbcbbeee

Solution: There are 5 choices for each of the eight letters in a word, so by the multiplication principle there are $5^8 = 390625$ words.

(b) (3 points) How many words are there with exactly eight letters which use the letter b exactly twice?

Solution: There are $\binom{8}{2}$ possible choices of locations for the two *b*'s. After making this choice, each of the remaining six letters can be any of *a*, *c*, *d*, *e*. So, the total number of possible words is

$$\binom{8}{2} \cdot 4^6 = 28 \cdot 4096 = 114688$$

(c) (4 points) How many words are there with exactly eight letters which use each of the letters a, b, c exactly once?

Solution: There are $\binom{8}{3}$ choices of three locations to put a, b, c, and for each of these choices, there are 3! = 6 ways of placing a, b, c. For the remaining five letters in the word, we can put in the remaining letters d, e however we like. So, the answer is

$$\binom{8}{3} \cdot 6 \cdot 2^5 = 56 \cdot 6 \cdot 32 = 10752.$$