
Midterm 1 Math 2200 Spring 2023

Directions:

• You may cite results proved during lecture or in the book without repeating the proof.

• If you wish to use a result from lecture or from the book, you must write out the
complete statement which you are citing.

Question Points Score

1 10

2 10

3 10

4 10

5 10

Total: 50



1. (10 points) For each part, circle either true or false. You do not have to justify your
answer. In each part a, b, and c are integers.

(A) {1, 2} ∈ {1, {2, 3} , 2} TRUE FALSE

(B) {2, 3} ∈ {1, {2, 3} , 2} TRUE FALSE

(C) {1, 2} ⊆ {1, {2, 3} , 2} TRUE FALSE

(D) If ab|c then a|c. TRUE FALSE

(E) If a|bc then a|b and a|c. TRUE FALSE
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2. Give examples of each of the following. You do not have to justify your answers at all.

(a) (3 points) An infinite set of irrational numbers.

Solution:
{
n+

√
2|n ∈ Z

}

(b) (3 points) Irrational numbers x, y ∈ R such that x+ y and xy are both rational.

Solution: x =
√
2, y = −

√
2

(c) (4 points) Integers a, b, and c such that a|bc but a ∤ b and a ∤ c. (Here, “x ∤ y”
means “x does not divide y”).

Solution: a = 6, b = 2, c = 3
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3. (10 points) Using induction, prove that for every n ≥ 1 we have

1 · 21 + 2 · 22 + 3 · 23 + 4 · 24 + · · ·+ n · 2n = (n− 1)2n+1 + 2.

(Expressed in terms of Σ–notation, the left hand side is
∑n

k=1 k2
k)

Solution:

Base case (n = 1):
1 · 21 = (1− 1)21+1 + 2

Induction step: Assume that the formula holds for some n ≥ 1. In other words, assume
that

1 · 21 + 2 · 22 + 3 · 23 + 4 · 24 + · · ·+ n · 2n = (n− 1)2n+1 + 2.

Add (n+ 1) · 2n+1 to both sides to get

1 · 21 + 2 · 22 + · · ·+ n · 2n + (n+ 1) · 2n+1 = (n− 1)2n+1 + 2 + (n+ 1)2n+1.

We compute

(n− 1)2n+1 + 2 + (n+ 1)2n+1 = 2n · 2n+1 + 2

= n2n+2 + 2

Therefore
1 · 21 + 2 · 22 + · · ·+ n · 2n + (n+ 1) · 2n+1 = n2n+2 + 2

so the formula holds for n+ 1. By induction, the formula holds for all n ≥ 1.
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4. (10 points) Prove that 3
√
2 is irrational.

Solution 1: Suppose, for the sake of contradiction, that 3
√
2 = a

b
for two integers a, b

with b ̸= 0. We may assume that both a and b are positive. Rearranging this equation
and cubing, this implies

2b3 = a3.

By the fundamental theorem of arithmetic, there are integers a′ and b′ which are not
divisible by 2 such that a = 2ma′ and b = 2nb′ for some n,m ≥ 0. The above equation
implies

23n+1b
′3 = 23ma

′3.

Both a
′3 and b

′3 are not divisible by 2. Therefore the prime factorization of the left hand
side contains 2 to the power 3n+ 1 and the prime factorization of the right hand side
contains 2 to the power 3m. The fundamental theorem of arithmetic says that these
powers have to be equal. But it can never be the case that 3n+ 1 = 3m for two integers
m and n. This is a contradiction. We conclude that 3

√
2 is irrational.

Solution 2: Here is another way that a lot of you did this. Suppose, for the sake of
contradiction, that 3

√
2 = a

b
for two integers a, b with b ̸= 0. We may assume that both a

and b are positive. We may further assume that a and b are not both even, because if
they were we could keep cancelling 2’s. Rearranging this equation and cubing, we get

2b3 = a3.

This implies that a3 is even. As 2 is prime, 2|a3 implies 2|a, so a is also even. This means
that a = 2k for some integer k. Substituting this in, we get

2b3 = (2k)3 = 8k3

and therefore
b3 = 4k3

This means that 4|b3. Therefore b3 is even, so as before b is even. But this is a
contradiction, because we assumed that a and b were not both even. We conclude that
3
√
2 is irrational.
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5. (10 points) Let a, b, and n be integers. Prove that

hcf(na, nb) = n · hcf(a, b)

Solution 1: Set
d = hcf(a, b) and e = hcf(na, nb)

We want to show that nd = e.
On the one hand, as d is a common factor of a and b, we have d|a and d|b, so nd|na and
nd|nb. It follows that nd|hcf(na, nb) = e.
On the other hand, let e = hcf(na, nb). By a result proved in lecture, every common
factor of na and nb has to divide e, so in particular n divides e. Therefore we can write
e = nf for some integer f . We know that nf |na and nf |nb, so f |a and f |b. Therefore
f |hcf(a, b) = d and so e = nf |nd.
We have shown that nd|e and e|nd. As they are both positive, we conclude that nd = e.

Solution 2: The idea here is to use the fundamental theorem of arithmetic. Say

a = pα1
1 · · · pαm

m

b = pβ1

1 · · · pβm
m

n = pγ11 · · · pγmm

where p1 < · · · < pm are prime numbers and αi ≥ 0, βi ≥ 0, and γi ≥ 0. By a result
proved in lecture, we have

hcf(a, b) = p
min(α1,β1)
1 · · · pmin(αm,βm)

m

We have

na = pα1+γ1
1 · · · pαm+γm

m

nb = pβ1+γ1
1 · · · pβm+γm

m

so by the same result we have

hcf(na, nb) = p
min(α1+γ1,β1+γ1)
1 · · · pmin(αm+γm,βm+γm)

m

We have that min(αi + γi, βi + γi) = min(αi, βi) + γi, so

hcf(na, nb) = p
min(α1,β1)+γ1
1 · · · pmin(αm,βm)+γm

m

= (pγ11 · · · pγmm )
(
p
min(α1,β1)
1 · · · pmin(αm,βm)

m

)
= n hcf(a, b)
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Solution 3: The idea here is to apply the Euclidean algorithm to find the highest
common factors of (a, b) and (na, nb), and compare the steps. We can assume that a < b.
First, let’s say we apply the Euclidean algorithm to (a, b), getting

b = q1a+ r1

a = q2r1 + r2

r1 = q3r2 + r3
...

rm−3 = qm−1rm−2 + rm−1

rm−2 = qmrm−1 + rm

rm−1 = qm+1rm + 0

Then rm = hcf(a, b). Now let’s apply the Euclidean algorithm to (na, nb), getting

nb = q′1(na) + r′1
na = q′2r

′
1 + r′2

r′1 = q′3r
′
2 + r′3

...

r′s−3 = q′s−1r
′
s−2 + r′s−1

r′s−2 = q′sr
′
s−1 + r′s

r′s−1 = q′s+1r
′
s + 0

We get r′s = hcf(na, nb). Here, I’ve used r′ and q′ because we don’t know yet that these
have anything to do with the previous r and q. I’ve also used s as the step at which we
stop, because we don’t know yet that s is equal to m.
Now let’s compare the two. Dividing the first equation in the second list by n and
comparing with the first equation in the first list, we get

q1a+ r1 = b = q′1a+
r′1
n

This shows that n|r′1, so r′1/n is an integer. Furthermore, we have 0 ≤ r′1 < na, so
0 ≤ r′1/n < a. By the uniqueness of the remainder, we get r1 = r′1/n. Continuing in
this way, we get r2 = r′2/n, . . . , rm = r′m/n, and rm+1 = r′m+1/n. As rm+1 = 0, we get
that m = s, and the final nonzero remainders are rm and r′m. We know rm = r′m/n, so
hcf(a, b) = hcf(na, nb)/n, and therefore n · hcf(a, b) = hcf(na, nb).
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