Midterm 1 Math 2200 Spring 2023

Directions:

e You may cite results proved during lecture or in the book without repeating the proof.

e If you wish to use a result from lecture or from the book, you must write out the
complete statement which you are citing.

Question | Points | Score
1 10
2 10
3 10
4 10
5 10
Total: 50




1. (10 points) For each part, circle either true or false. You do not have to justify your
answer. In each part a,b, and ¢ are integers.

(A) {1,2} € {1,{2,3},2} TRUE FALSE
(B) {2,3} € {1,{2,3},2} TRUE FALSE
(C) {1,2} € {1,{2,3},2} TRUE FALSE
(D) If ablc then alc. TRUE FALSE
(E) If a|be then alb and alc. TRUE FALSE
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2. Give examples of each of the following. You do not have to justify your answers at all.

(a) (3 points) An infinite set of irrational numbers.

Solution: {n + \/§|n € Z}

(b) (3 points) Irrational numbers z,y € R such that z + y and zy are both rational.

Solution: x = \/5, Yy = —2

7

(c) (4 points) Integers a,b, and ¢ such that albc but a t b and a { ¢. (Here, “x 1y
means “z does not divide y”).

‘Solution: a=6,b=2,c=3
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3. (10 points) Using induction, prove that for every n > 1 we have
1-21+2-22—|—3-23+4.24_|_...+n,2n:(n_1)2n+1+2‘

(Expressed in terms of X-notation, the left hand side is Y _,_, k2F)

Solution:
Base case (n = 1):
1-28=(1-1)2" 42

Induction step: Assume that the formula holds for some n > 1. In other words, assume

that
1-21+2-22+3-23+4.24+..._|_n.2n:(n_1)2n+1+2‘

Add (n+ 1) - 2"*! to both sides to get
12842224+ 402"+ (n+1)- 2" = (n —1)2"" 42+ (n 4+ 1)2".
We compute

(n—1)2"" +2+ (n+1)2"" =2p. 2" 42
=n2""? 42

Therefore
1-2' 2224 ... 4 n-2" + (n4+1)-2"" = p2"t2 42

so the formula holds for n + 1. By induction, the formula holds for all n > 1.
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4. (10 points) Prove that /2 is irrational.

Solution 1: Suppose, for the sake of contradiction, that /2 = 7 for two integers a, b
with b # 0. We may assume that both a and b are positive. Rearranging this equation
and cubing, this implies

20° = a®.

By the fundamental theorem of arithmetic, there are integers @’ and ¢’ which are not
divisible by 2 such that a = 2™a’ and b = 2" for some n, m > 0. The above equation
implies

23n+1b’3 — 23ma’3

Both @' and b are not divisible by 2. Therefore the prime factorization of the left hand
side contains 2 to the power 3n 4+ 1 and the prime factorization of the right hand side
contains 2 to the power 3m. The fundamental theorem of arithmetic says that these

powers have to be equal. But it can never be the case that 3n + 1 = 3m for two integers
m and n. This is a contradiction. We conclude that /2 is irrational.

Solution 2: Here is another way that a lot of you did this. Suppose, for the sake of
contradiction, that /2 = ¢ for two integers a,b with b # 0. We may assume that both a
and b are positive. We may further assume that a and b are not both even, because if
they were we could keep cancelling 2’s. Rearranging this equation and cubing, we get

20 = a®.

This implies that a® is even. As 2 is prime, 2|a® implies 2|a, so a is also even. This means
that a = 2k for some integer k. Substituting this in, we get

20° = (2k)® = 8k*
and therefore
b = 4k3

This means that 4|b®. Therefore b* is even, so as before b is even. But this is a
contradiction, because we assumed that a and b were not both even. We conclude that
/2 is irrational.
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. (10 points) Let a,b, and n be integers. Prove that

hef(na,nb) = n - hef(a, b)

Solution 1: Set
d = hcf(a, b) and e = hef(na, nb)

We want to show that nd = e.

On the one hand, as d is a common factor of a and b, we have d|a and d|b, so nd|na and
nd|nb. It follows that nd|hcf(na, nb) = e.

On the other hand, let e = hef(na,nb). By a result proved in lecture, every common
factor of na and nb has to divide e, so in particular n divides e. Therefore we can write
e = nf for some integer f. We know that nf|na and nf|nb, so fla and f|b. Therefore
flhef(a,b) = d and so e = nf|nd.

We have shown that nd|e and e|nd. As they are both positive, we conclude that nd = e.

Solution 2: The idea here is to use the fundamental theorem of arithmetic. Say

a:p?l...pg{n
b:pfl...pfn’m

__ Y

where p; < --- < p,, are prime numbers and «; > 0, 5; > 0, and v; > 0. By a result
proved in lecture, we have

hef (a, b) = pm@nP) L pmin(am,fim)

We have
na = p ..  plmtam
_ . Bitm Bm~+vm
nb — pl . .pm 8l

so by the same result we have

hef(na, nb) = prlnin(a1+’71ﬂl+’71) .. .pzin(aer»ym,/jmJﬂm)

We have that min(o; + 7;, 8; + ;) = min(as, 3;) + 74, so

min(a1,61)+7 . pmin(am,ﬁm)"r’Ym

hef(na, nb) = p; m

_ (p¥1 . ‘p;y?;n) (pllnin(m,ﬁl) . _pﬁlin(am,,@m)>
= nhef(a,b)
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Solution 3: The idea here is to apply the Euclidean algorithm to find the highest
common factors of (a,b) and (na,nb), and compare the steps. We can assume that a < b.
First, let’s say we apply the Euclidean algorithm to (a,b), getting

b=qa+nr
a = qor1 + 172

L =(q3T2 + 73

Tm—3 = Gm-1Tm-2 T Tm—1
Tm—2 = @mTm—1 + Tm

T"'m—1 = gm+1Tm +0
Then 7, = hef(a,b). Now let’s apply the Euclidean algorithm to (na,nb), getting

nb = qy(na) + r}
na = qéri + 7"2

A, /
Ty = (3ry + T3

Tog = Qu1Tho + 754
Tog = Qe 7%
Too1 = qoy7y +0
We get . = hef(na, nb). Here, I've used 7’ and ¢’ because we don’t know yet that these
have anything to do with the previous r and ¢. I've also used s as the step at which we
stop, because we don’t know yet that s is equal to m.
Now let’s compare the two. Dividing the first equation in the second list by n and
comparing with the first equation in the first list, we get

7,,/

qa+r =b=qa+—=

n
This shows that n|r}, so r/n is an integer. Furthermore, we have 0 < 7| < na, so
0 < r}/n < a. By the uniqueness of the remainder, we get r = 7} /n. Continuing in
this way, we get ro = r5/n, ..., = 11 /n, and rpyq = 1,1 /n. As 7p1 = 0, we get
that m = s, and the final nonzero remainders are r,, and 7/ .. We know r,, = r/ /n, so
hef(a, b) = hef(na, nb) /n, and therefore n - hef(a, b) = hef(na, nb).
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