Problem 0.1 (Chapter 14, problem 1b). Show that $n^7 - n$ is divisible by 42 for all integers n.

Proof. We note that $42 = 2 \cdot 3 \cdot 7$. Let n be an integer. If n is even, then n^7 is also even, and if n is odd, then n^7 is also odd. Therefore

$$n^7 \equiv n \pmod{2}$$

Now let's look modulo 3. Applying Fermat's little theorem we get

$$n^3 \equiv n \pmod{3}$$

Therefore

$$n^7 \equiv \cdot n \cdot n^3 \cdot n^3 \equiv n \cdot n \cdot n \equiv n \pmod{3}$$

Finally let's look modulo 7. Applying Fermat's little theorem we have

$$n^7 \equiv n \pmod{7}$$

We have shown that n^7 is congruent to n modulo 2, 3, and 7. Thus, $n^7 - n$ is divisible by 2, 3, and 7. As these numbers are all coprime, this implies $n^7 - n$ is divisible by $2 \cdot 3 \cdot 7 = 42$. Therefore $n^7 \equiv n \pmod{42}$.

Problem 0.2 (Chapter 14, problem 3). Let $N = 561 = 3 \cdot 11 \cdot 17$. Prove that, for every integer *a* which is coprime to *N*, we have

$$a^{N-1} \equiv 1 \pmod{N}$$

Proof. Suppose that a is coprime to N. By Fermat's little theorem, we have

$$a^2 \equiv 1 \pmod{3}$$

 $a^{10} \equiv 1 \pmod{11}$
 $a^{16} \equiv 1 \pmod{17}$

We notice that N - 1 = 560 is divisible by 2, 10, and 16 (the first two are pretty clear, and for the last one we have $560 = 16 \cdot 35$). It follows that

$$a^{560} \equiv (a^2)^{280} \equiv 1 \pmod{3}$$

Similarly,

$$a^{560} \equiv (a^{10})^{56} \equiv 1 \pmod{11}$$

and

$$a^{560} \equiv (a^{16})^{35} \equiv 1 \pmod{17}$$

Thus $a^{560} - 1$ is divisible by 3, 11, and 17. These are all distinct prime numbers, so $a^{560} - 1$ is divisible by $3 \cdot 11 \cdot 17 = 561$, and therefore

$$a^{560} \equiv 1 \pmod{561}$$

Problem 0.3 (Chapter 14, problem 6). Calculate $(p-1)! \pmod{p}$.

Proof. We will show that

$$(p-1)! \equiv p-1 \pmod{p}$$

To prove this, we expand out (p-1)! to get

$$(p-1)! = (p-1) \cdot (p-2) \cdots 2 \cdot 1$$

We proved in class that every integer 0 < a < p has a multiplicative inverse modulo p. Thus, for each of the numbers in the above product, its multiplicative inverse also appears somewhere in the product. As long as a is not its own multiplicative inverse, we can therefore pair up a and its inverse in the above product, and they will cancel each other out. Let's work out when it is that a number is its own multiplicative inverse. Suppose that 0 < a < p and

$$a \cdot a \equiv a^2 \equiv 1 \pmod{p}$$

Then p divides $a^2 - 1 = (a + 1)(a - 1)$. This means p divides either a + 1 or a - 1, so either $a \equiv -1 \pmod{p}$ or $a \equiv 1 \pmod{p}$. Thus we have a = 1 or a = p - 1. Going back to the product, we see that for all the numbers besides 1 and p - 1, we can pair them with their multiplicative inverse. Thus we have

$$(p-1)! \equiv (p-1) \cdot (p-2) \cdots 2 \cdot 1 \equiv (p-1) \cdot 1 \equiv p-1 \pmod{p}$$

which is what we claimed.