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Problem 0.1 (Chapter 11, problem 3). Suppose n ≥ 2 is an integer with the property that whenever
a prime p divides n, p2 also divides n (i.e., all primes in the prime factorization of n appear at least to
the power 2). Prove that n can be written as the product of a square and a cube.

Proof. By the fundamental theorem of arithmetic, we can write

n = pα1
1 · · · pαm

m

for some primes p1 < · · · < pm and integers αi ≥ 1. In our case, we are assuming that in fact αi ≥ 2
for all 1 ≤ i ≤ m.

I claim that if a is an integer and a ≥ 2, then we can write a = 2s + 3t for some non–negative
integers s, t. Here is one way to prove this. It is definitely true if a is even, because then a = 2k for
some k ≥ 1. If a is odd, then a = 2k + 1 for some k ≥ 1, and so a = 2k + 1 = 2(k − 1) + 3 (and
k − 1 ≥ 0!). (2 points)

Now, for each i, write αi = 2si + 3ti for some non–negative integers si, ti. We have

n = pα1
1 · · · pαm

m = p2s1+3t1
1 · · · p2sm+3tm

m

=
(
p2s11 · · · p2smm

) (
p3t11 · · · p3tmm

)
= (ps11 · · · psmm )

2 (
pt11 · · · ptmm

)3
Therefore n is the product of a square and a cube.

Problem 0.2 (Chapter 12, problem 4). Prove that there are infinitely many primes of the form 4k+3
(where k is an integer).

Proof. We claim that, for every k ≥ 1, the number 4k + 3 has a prime factor which is of the form
4l+3. We will prove this by total induction on k. It is definitely true if k = 1 (base case). Suppose we
know it is true for 4 · 1 + 3, 4 · 2 + 3, . . . , 4 · k + 3. Consider the number 4(k + 1) + 3. This number is
odd, so we can write it as the product of two odd numbers, say x and y.

4(k + 1) + 3 = xy

Furthermore, we must have that one of x and y is of the form 4a + 1 and the other is of the form
4a + 3. This is because the product of two numbers of the form 4a + 1 is again of the form 4a + 1,
and the product of two numbers of the form 4a+ 3 is of the form 4a+ 1 (because 32 = 9 = 4 · 2 + 1).
Therefore we have

4(k + 1) + 3 = (4a+ 1)(4b+ 3)

By our induction hypothesis, 4b+ 3 has a prime factor of the form 4c+ 1. Hence so does 4(k + 1)
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Now we prove the statement of the problem. Let p1, . . . , pm be a collection of distinct prime numbers.
We might as well assume that p1 = 3. Suppose that pi = 4ki + 3 for some integer ki. Consider the
product

N = 3 +

m∏
i=1

pi = 3 +

m∏
i=1

(4ki + 3)

Let q be a prime factor of N such that q > 3. If q were equal to any of the pi, then q would divide 3, a
contradiction. So q is not equal to any of the pi. Furthermore, by the claim we proved above, we can
find a prime factor q of N such that q is of the form q = 4k+3. Therefore there is a prime of this form
which is not on our list. We conclude that there are infinitely many primes of the form 4k + 3.

Problem 0.3 (Chapter 13, problem 4a). Prove the “rule of 9”: an integer is divisible by 9 if and only
if the sum of its digits is divisible by 9.

Proof. We observe that
10 ≡ 1 (mod 9)

Therefore
10k ≡ 1 (mod 9)

for every integer k ≥ 1. (2 points)
Now suppose n is an integer, and let

n = ar . . . a1a0

be its digit expansion. We have
n = 10rar + · · ·+ 101a1 + a0

Reduce modulo 9 to get

n ≡ 10rar + · · ·+ 101a1 + a0 (mod 9)

≡ 1 · ar + · · ·+ 1 · a1 + a0 (mod 9)

≡ ar + · · ·+ a1 + a0 (mod 9)

(3 points)
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