HW 13

Problem 0.1 (Chapter 20, problem 3).

- (a) List the numbers that occur as the orders of elements of S_4 , and calculate how many elements there are in S_4 of each of these orders.
- (b) List all possible cycle-shapes of even permutations in S_6 .
- (c) Calculate the largest possible order of any permutation in S_{10} .
- (d) Calculate the largest possible order of any even permutation in S_{10} .
- (e) Find a value of n such that S_n has an element of order greater than n^2 .

Proof.

(a): During lecture I worked out a table of possible cycle types of elements of S_4 , together with the numbers of elements of each type and the orders. Here it is:

cycle type	example	how many	order
(1, 1, 1, 1)	(1)(2)(3)(4)	1	1
(2, 1, 1)	(12)(3)(4)	6	2
(2,2)	(12)(34)	3	2
(3, 1)	(123)(4)	8	3
(4)	(1234)	6	4

Adding up the ones with a given order we get that there is 1 element with order 1, 9 with order 2, 8 with order 3, and 6 with order 4.

(b): By Proposition 20.7, a permutation is even if and only if it has an even number of cycles of even length. Working through the possibilities, I get the following list:

(1, 1, 1, 1, 1, 1)(2, 2, 1, 1)(3, 1, 1, 1)(3, 3)(4, 2)(5, 1)

(c): The order of a permutation is the least common multiple of the lengths of the cycles. So, we need to find the maximum value of $lcm(a_1, \ldots, a_n)$ where a_1, \ldots, a_n are positive integers such that $a_1 + \cdots + a_n = 10$. I claim that the maximum we can get is the partition 5 + 3 + 2 = 10, for which we have lcm(5, 3, 2) = 30. For instance, the permutation

$$(1\,2\,3\,4\,5)(6\,7\,8)(9\,10)$$

has order 30. To see that this really is the biggest we can get, we could write down every possible cycle type for an element of S_{10} , work out the order for each cycle type, and then check if 30 is the biggest. It turns out there are 42 different possible cycle types for elements of S_{10} (ie. there are 42 partitions of 10). This isn't too crazy big to work out by hand. We can cut down our work a bit though by noticing that if $f \in S_{10}$ has all cycles of length ≤ 4 , then the order of f is the least common multiple of a bunch of integers which are ≤ 4 . But we have lcm(1, 2, 3, 4) = 12, so the order of f is ≤ 12 , and therefore we can ignore these cycle types. For the rest, I'll just write them all down. Here are the possibilities when f has a cycle of length 5:

cycle type	order
(5,1,1,1,1,1)	5
(5,2,1,1,1)	10
(5,2,2,1)	10
(5,3,1,1)	15
(5,3,2)	30
(5,4,1)	20
(5,5)	5

Here are the possibilities if f has a cycle of length 6:

cycle type	order
(6,1,1,1,1)	6
(6,2,1,1)	6
(6,3,1)	6
(6,2,2)	6
(6,4)	12

Finally, here are all the possibilities if f has a cycle of length 7, 8, 9, or 10.

cycle type	order
(7,1,1,1)	7
(7,2,1)	14
(7,3)	21
(8,1,1)	8
(8,2)	8
(9,1)	9
(10)	10

We conclude that 30 is the largest possible order of an element of S_{10} . Note that we have also shown that any such element has to have cycle type (5, 3, 2).

(d): I'll use my tables above of all cycle types with a cycle of length ≥ 5 . As before, a permutation is even if and only if it has an even number of cycles of even length. Including only these cycle types, we get the following list:

$\begin{array}{c c} \text{cycle type} & \text{order} \\ \hline (5,1,1,1,1,1) & 5 \\ (5,2,2,1) & 10 \\ (5,3,1,1) & 15 \\ (5,5) & 5 \\ (6,2,1,1) & 6 \\ (6,4) & 12 \\ (7,1,1,1) & 7 \\ (7,3) & 21 \\ \end{array}$		
$\begin{array}{c cccc} (5,2,2,1) & 10 \\ (5,3,1,1) & 15 \\ (5,5) & 5 \\ (6,2,1,1) & 6 \\ (6,4) & 12 \\ (7,1,1,1) & 7 \\ (7,3) & 21 \end{array}$	cycle type	order
$\begin{array}{c cccc} (5,3,1,1) & 15 \\ (5,5) & 5 \\ (6,2,1,1) & 6 \\ (6,4) & 12 \\ (7,1,1,1) & 7 \\ (7,3) & 21 \end{array}$	(5,1,1,1,1,1)	5
$\begin{array}{c c} (5,5) & 5 \\ (6,2,1,1) & 6 \\ (6,4) & 12 \\ (7,1,1,1) & 7 \\ (7,3) & 21 \end{array}$	(5,2,2,1)	10
$\begin{array}{c ccc} (6,2,1,1) & 6 \\ (6,4) & 12 \\ (7,1,1,1) & 7 \\ (7,3) & 21 \end{array}$	(5,3,1,1)	15
$\begin{array}{c ccc} (6,4) & 12 \\ (7,1,1,1) & 7 \\ (7,3) & 21 \end{array}$	(5,5)	5
$\begin{array}{c c} (7,1,1,1) & 7 \\ (7,3) & 21 \end{array}$	(6,2,1,1)	6
(7,3) 21	(6,4)	12
	(7, 1, 1, 1)	7
	(7,3)	21
(8,2) 8	(8,2)	8
(9,1) 9	(9,1)	9

The biggest order which shows up in the above table is 21, for cycle type (7,3). For example,

(1234567)(8910)

is an even permutation in S_{10} and has order 21. Note that, as before, any cycle type with all cycles of length ≤ 4 has order ≤ 12 so 21 is the maximum order of an even permutation in S_{10} .

(e): Here is my idea for this: to get an element in S_n of really big order, we should consider a cycle type which looks like (p_1, \ldots, p_m) for distinct prime numbers p_i . For example, in part (c) above, we looked at n = 10 and the cycle type (2, 3, 5), which had order $2 \cdot 3 \cdot 5 = 30$. In general, the order of an element f of cycle type (p_1, \ldots, p_m) where p_1, \ldots, p_m are distinct primes is $p_1 \cdot \ldots \cdot p_m$. On the other hand, we have $f \in S_n$ where $n = p_1 + \cdots + p_m$. The product grows a lot faster than the sum, so by taking enough primes we should get something that works. So, I tried taking p_1, \ldots, p_m to be the first m prime numbers, and computed the following table.

cycle type	element of	order
(2)	S_2	2
(2,3)	S_5	6
(2,3,5)	S_{10}	30
(2,3,5,7)	S_{17}	210
(2,3,5,7,11)	S_{28}	2310

We have that $28^2 = 784 < 2310$. So, any permutation in S_{28} with cycle type (2, 3, 5, 7, 11) will have order 2310, and hence have order $> 28^2$. Thus, n = 28 is one possible answer to the question.

Problem 0.2 (Chapter 20, problem 7ab). Let S be a set of size m and T a set of size n. Assume that $m \ge n$.

- (a) What is the number of onto functions from S to T if m = n?
- (b) Show that if m = n + 1, the number of onto functions from S to T is

$$\binom{n+1}{2} \cdot n!$$

Proof.

(a) : If m = n, then any onto function $f : S \to T$ is automatically 1-1. To see this, say $S = \{s_1, \ldots, s_m\}$. As f is onto, we have $T = \{f(s_1), \ldots, f(s_m)\}$. But T has exactly m elements, so the elements $f(s_1), \ldots, f(s_m) \in T$ must all be distinct. Thus f is 1-1. This shows that if m = n then the number of onto functions from S to T is the same as the number of bijective functions from S to T. We can count these using the multiplication principle. To define a function $f : S \to T$, we need to

pick $f(s_1), \ldots, f(s_m)$. There are *m* possibilities for $f(s_1)$. We want *f* to be 1-1, so we can't send s_2 to $f(s_1)$, and there are therefore m-1 possible choices for $f(s_2)$. Similarly, there are m-2 choices for $f(s_3)$, and so on. We conclude that there are

$$m \cdot (m-1) \cdot (m-2) \cdot \ldots \cdot 1 = m!$$

onto functions from S to T.

(b): For a function $f: S \to T$ to be onto, there must be exactly two elements of S which get sent to the same element of T, and all the other elements of S must be sent to distinct elements of T. Thus, f must look like this:

$$S = \{a, \dots, b, x, y, c, \dots, d\}$$

$$f \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow$$

$$T = \{t_1, \dots, t_{k-1}, t_k, t_{k+1}, \dots, t_n\}$$

(in this picture, the elements of S are listed in some arbitrary order. I'm not saying that the first element of S has to go to the first element of T, or anything like that). So, we can determine every onto function $f: S \to T$ as follows: first choose two elements of S, say $x, y \in S$, and one element of T, say $t_k \in T$, and declare that $f(x) = t_k$ and $f(y) = t_k$. Then choose a bijection $g: S - \{x, y\} \to T - \{t_k\}$, and declare that f(s) = g(s) for any $s \in S - \{x, y\}$. Let's count up these choices. We have that $|S - \{x, y\}| = |T - \{t_k\}| = n - 1$, and we know that the number of bijections between two sets with size n - 1 is equal to (n - 1)!. Thus, the total number of onto functions $f: S \to T$ is equal to

$$\binom{n+1}{2} \cdot n \cdot (n-1)! = \binom{n+1}{2} \cdot n!$$