
HW 13

Problem 0.1 (Chapter 20, problem 3).

(a) List the numbers that occur as the orders of elements of S4, and calculate how many elements there
are in S4 of each of these orders.

(b) List all possible cycle–shapes of even permutations in S6.

(c) Calculate the largest possible order of any permutation in S10.

(d) Calculate the largest possible order of any even permutation in S10.

(e) Find a value of n such that Sn has an element of order greater than n2.

Proof.
(a) : During lecture I worked out a table of possible cycle types of elements of S4, together with the
numbers of elements of each type and the orders. Here it is:

cycle type example how many order
(1, 1, 1, 1) (1)(2)(3)(4) 1 1
(2, 1, 1) (1 2)(3)(4) 6 2
(2, 2) (1 2)(3 4) 3 2
(3, 1) (1 2 3)(4) 8 3
(4) (1 2 3 4) 6 4

Adding up the ones with a given order we get that there is 1 element with order 1, 9 with order 2, 8
with order 3, and 6 with order 4.

(b) : By Proposition 20.7, a permutation is even if and only if it has an even number of cycles of even
length. Working through the possibilities, I get the following list:

(1, 1, 1, 1, 1, 1)

(2, 2, 1, 1)

(3, 1, 1, 1)

(3, 3)

(4, 2)

(5, 1)

(c) : The order of a permutation is the least common multiple of the lengths of the cycles. So, we
need to find the maximum value of lcm(a1, . . . , an) where a1, . . . , an are positive integers such that
a1 + · · ·+ an = 10. I claim that the maximum we can get is the partition 5 + 3+ 2 = 10, for which we
have lcm(5, 3, 2) = 30. For instance, the permutation

(1 2 3 4 5)(6 7 8)(9 10)
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has order 30. To see that this really is the biggest we can get, we could write down every possible cycle
type for an element of S10, work out the order for each cycle type, and then check if 30 is the biggest.
It turns out there are 42 different possible cycle types for elements of S10 (ie. there are 42 partitions of
10). This isn’t too crazy big to work out by hand. We can cut down our work a bit though by noticing
that if f ∈ S10 has all cycles of length ≤ 4, then the order of f is the least common multiple of a bunch
of integers which are ≤ 4. But we have lcm(1, 2, 3, 4) = 12, so the order of f is ≤ 12, and therefore we
can ignore these cycle types. For the rest, I’ll just write them all down. Here are the possibilities when
f has a cycle of length 5:

cycle type order
(5,1,1,1,1,1) 5
(5,2,1,1,1) 10
(5,2,2,1) 10
(5,3,1,1) 15
(5,3,2) 30
(5,4,1) 20
(5,5) 5

Here are the possibilities if f has a cycle of length 6:

cycle type order
(6,1,1,1,1) 6
(6,2,1,1) 6
(6,3,1) 6
(6,2,2) 6
(6,4) 12

Finally, here are all the possibilities if f has a cycle of length 7, 8, 9, or 10.

cycle type order
(7,1,1,1) 7
(7,2,1) 14
(7,3) 21
(8,1,1) 8
(8,2) 8
(9,1) 9
(10) 10

We conclude that 30 is the largest possible order of an element of S10. Note that we have also shown
that any such element has to have cycle type (5, 3, 2).

(d) : I’ll use my tables above of all cycle types with a cycle of length ≥ 5. As before, a permutation is
even if and only if it has an even number of cycles of even length. Including only these cycle types, we
get the following list:
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cycle type order
(5,1,1,1,1,1) 5
(5,2,2,1) 10
(5,3,1,1) 15
(5,5) 5

(6,2,1,1) 6
(6,4) 12

(7,1,1,1) 7
(7,3) 21
(8,2) 8
(9,1) 9

The biggest order which shows up in the above table is 21, for cycle type (7, 3). For example,

(1 2 3 4 5 6 7)(8 9 10)

is an even permutation in S10 and has order 21. Note that, as before, any cycle type with all cycles of
length ≤ 4 has order ≤ 12 so 21 is the maximum order of an even permutation in S10.

(e) : Here is my idea for this: to get an element in Sn of really big order, we should consider a cycle
type which looks like (p1, . . . , pm) for distinct prime numbers pi. For example, in part (c) above, we
looked at n = 10 and the cycle type (2, 3, 5), which had order 2 · 3 · 5 = 30. In general, the order of an
element f of cycle type (p1, . . . , pm) where p1, . . . , pm are distinct primes is p1 · . . . · pm. On the other
hand, we have f ∈ Sn where n = p1 + · · · + pm. The product grows a lot faster than the sum, so by
taking enough primes we should get something that works. So, I tried taking p1, . . . , pm to be the first
m prime numbers, and computed the following table.

cycle type element of order
(2) S2 2
(2,3) S5 6
(2,3,5) S10 30
(2,3,5,7) S17 210

(2,3,5,7,11) S28 2310

We have that 282 = 784 < 2310. So, any permutation in S28 with cycle type (2, 3, 5, 7, 11) will have
order 2310, and hence have order > 282. Thus, n = 28 is one possible answer to the question.

Problem 0.2 (Chapter 20, problem 7ab). Let S be a set of size m and T a set of size n. Assume
that m ≥ n.

(a) What is the number of onto functions from S to T if m = n?

(b) Show that if m = n+ 1, the number of onto functions from S to T is(
n+ 1

2

)
· n!

Proof.
(a) : If m = n, then any onto function f : S → T is automatically 1-1. To see this, say S =
{s1, . . . , sm}. As f is onto, we have T = {f(s1), . . . , f(sm)}. But T has exactly m elements, so the
elements f(s1), . . . , f(sm) ∈ T must all be distinct. Thus f is 1-1. This shows that if m = n then the
number of onto functions from S to T is the same as the number of bijective functions from S to T .
We can count these using the multiplication principle. To define a function f : S → T , we need to
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pick f(s1), . . . , f(sm). There are m possibilities for f(s1). We want f to be 1-1, so we can’t send s2 to
f(s1), and there are therefore m − 1 possible choices for f(s2). Similarly, there are m − 2 choices for
f(s3), and so on. We conclude that there are

m · (m− 1) · (m− 2) · . . . · 1 = m!

onto functions from S to T .

(b) : For a function f : S → T to be onto, there must be exactly two elements of S which get sent to
the same element of T , and all the other elements of S must be sent to distinct elements of T . Thus,
f must look like this:

S = {a, . . . b, x, y, c, . . . d}

T = {t1, . . . tk−1, tk, tk+1, . . . tn}

f

(in this picture, the elements of S are listed in some arbitrary order. I’m not saying that the first
element of S has to go to the first element of T , or anything like that). So, we can determine every onto
function f : S → T as follows: first choose two elements of S, say x, y ∈ S, and one element of T , say
tk ∈ T , and declare that f(x) = tk and f(y) = tk. Then choose a bijection g : S − {x, y} → T − {tk},
and declare that f(s) = g(s) for any s ∈ S − {x, y}. Let’s count up these choices. We have that
|S − {x, y} | = |T − {tk} | = n− 1, and we know that the number of bijections between two sets with
size n− 1 is equal to (n− 1)!. Thus, the total number of onto functions f : S → T is equal to(

n+ 1

2

)
· n · (n− 1)! =

(
n+ 1

2

)
· n!
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