HW 11

Problem 0.1 (Chapter 18, problem 1). Which of the following relations are equivalence relations on the given set *S*?

- (i) $S = \mathbb{R}$ and $a \sim b \iff a = b$ or -b.
- (ii) $S = \mathbb{Z}$ and $a \sim b \iff ab = 0$.
- (iii) $S = \mathbb{R}$ and $a \sim b \iff a^2 + a = b^2 + b$.

(iv) S is the set of all people in the world, and $a \sim b$ means a lives within 100 miles of b.

Proof.

(i) This is an equivalence relation.

(*ii*) This is not an equivalence relation. It fails reflexivity, because for instance $1 \cdot 1 \neq 0$, so $1 \approx 1$. It does satisfy symmetry. It also fails transitivity. For instance, we have $1 \cdot 0 = 0$, so $1 \sim 0$, and we have $0 \cdot 2 = 0$, so $0 \sim 2$, but $1 \cdot 2 \neq 0$, so $1 \approx 2$.

(*iii*) This is an equivalence relation.

(*iv*) This is not an equivalence relation. It satisfies reflexivity and symmetry. But, it fails transitivity. This is because we can have three people a, b, c such that a lives within 100 miles of b, and b lives within 100 miles of c, but a doesn't live within 100 miles of c (imagine the case when they are spaced out along a straight line).

Problem 0.2 (Chapter 18, problem 5).

- 1. How many relations are there on the set $\{1, 2\}$?
- 2. How many relations are there on the set $\{1, 2, 3\}$ that are both reflexive and symmetric?
- 3. How many relations are there on the set $\{1, 2, \ldots, n\}$?

Proof. (1) A relation on a set S is (by definition) a subset of $S \times S$. In our case, $\{1, 2\} \times \{1, 2\}$ has four elements, so there are $2^4 = 16$ possible relations.

(2) Let \sim be a relation which is reflexive and symmetric. There are $3^2 = 9$ total pairs of elements of $\{1, 2, 3\}$ which could be in the relation. To be reflexive means that $1 \sim 1$, $2 \sim 2$, and $3 \sim 3$. Of the six remaining pairs, the symmetry condition implies that

$$1 \sim 2 \iff 2 \sim 1$$
$$1 \sim 3 \iff 3 \sim 1$$
$$2 \sim 3 \iff 3 \sim 2$$

Given any subset of the left hand pairs $1 \sim 2$, $1 \sim 3$, and $2 \sim 3$, we get a reflexive and symmetric relation by including the mirror image pairs and all the identity pairs $1 \sim 1$, $2 \sim 2$, and $3 \sim 3$. So, the number of such relations is equal to the number of subsets of a set with 3 elements, which is $2^3 = 8$. (3) As in part (1), a relation on $\{1, 2, ..., n\}$ is a subset of the product $\{1, 2, ..., n\} \times \{1, 2, ..., n\}$. This has n^2 elements, so there are $2^{(n^2)}$ relations. **Problem 0.3** (Chapter 18, problem 6). Let $S = \{1, 2, 3, 4\}$ and suppose that \sim is an equivalence relation on S. You are given the information that $1 \sim 2$ and $2 \sim 3$. Show that there are exactly two possibilities for the relation \sim , and describe both.

Proof. By Proposition 18.1 (plus a little), given an equivalence relation on a set S, the set of equivalence classes gives a partition of S. Furthermore, this partition completely determines the equivalence relation, because we have $a \sim b$ if and only if a and b are in the same set in the partition. Thus, this problem can be rephrased as the problem of describing all partitions of $\{1, 2, 3, 4\}$ such that 1 and 2 are in the same subset and 2 and 3 are in the same subset. These two combined shows that 1, 2, and 3 are all in the same subset. There are only two ways to complete this to a partition: we can either include 4 in the same subset as well, giving the partition

$$S_1 = \{1, 2, 3, 4\}$$

or we can put 4 into its own subset, giving the partition

$$S_1 = \{1, 2, 3\}$$
 $S_2 = \{4\}$

The corresponding equivalence relations on $\{1, 2, 3, 4\}$ are as described above: we have $a \sim b$ if and only if a and b are in the same subset of the partition.