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Submitted 24 October 2002; accepted in final form 16 December 2002

Richardson, Magnus J. E., Nicolas Brunel, and Vincent Hakim.
From subthreshold to firing-rate resonance. J Neurophysiol89: 2538–
2554, 2003. First published December 27, 2002; 10.1152/jn.00955.
2002. Many types of neurons exhibit subthreshold resonance. How-
ever, little is known about whether this frequency preference influ-
ences spike emission. Here, the link between subthreshold resonance
and firing rate is examined in the framework of conductance-based
models. A classification of the subthreshold properties of a general
class of neurons is first provided. In particular, a class of neurons is
identified in which the input impedance exhibits a suppression at a
nonzero low frequency as well as a peak at higher frequency. The
analysis is then extended to the effect of subthreshold resonance on
the dynamics of the firing rate. The considered input current com-
prises a background noise term, mimicking the massive synaptic
bombardment in vivo. Of interest is the modulatory effect an addi-
tional weak oscillating current has on the instantaneous firing rate.
When the noise is weak and firing regular, the frequency most
preferentially modulated is the firing rate itself. Conversely, when the
noise is strong and firing irregular, the modulation is strongest at the
subthreshold resonance frequency. These results are demonstrated for
two specific conductance-based models and for a generalization of the
integrate-and-fire model that captures subthreshold resonance. They
suggest that resonant neurons are able to communicate their frequency
preference to postsynaptic targets when the level of noise is compa-
rable to that prevailing in vivo.

I N T R O D U C T I O N

Oscillations have long been observed in neuronal structures
(Adrian and Matthews 1934) but their role, mechanisms, and
interplay with single neuron biophysical characteristics have
only recently been submitted to detailed scrutiny. Experiments
have tested the response of neurons to oscillating current
injection. Subthreshold resonance, in which the response of the
induced oscillating voltage peaks at a preferred input fre-
quency, has been found in inferior olive neurons (De Zeeuw et
al. 1998; Lampl and Yarom 1993, 1997; Llinas and Yarom
1986), trigeminal root ganglion neurons (Puil et al. 1986),
thalamic neurons (Hutcheon et al. 1994; Jahnsen and Karnup
1994; Puil et al. 1994), cortical neurons (Dickson et al. 2000;
Gutfreund et al. 1995; Hutcheon et al. 1996b; Llinas et al.
1991), and both hippocampal CA1 pyramidal cells (Leung and
Yu 1998; Pike et al. 2000) and interneurons (Pike et al. 2000).
Many of these structures are known to support oscillations in
vivo, suggesting an interplay between single-cell frequency

preference and oscillations at the network level. Most of the
recorded neurons show a single peak at a finite frequency in
their voltage response. However, some interneurons of the
hippocampus show a more complex response with a trough at
low frequency followed by a peak at higher frequencies (Pike
et al. 2000). Although a great deal of effort has been directed
at understanding the input properties of resonant neurons,
surprisingly little attention has been addressed to the effect of
subthreshold resonance on the temporal properties of the firing
rate. This is despite the common assumption that the presence
of resonant neurons might provide a stabilizing influence on
oscillations at the level of the network.

It is known from Hodgkin and Huxley (1952) and many
studies since (see e.g., Gutfreund et al. 1995; Hutcheon et al.
1996a, 1994; Koch 1984; Mauro et al. 1970; Rinzel and
Ermentrout 1989; White et al. 1995) that the resonance prop-
erties of neurons can be related to their ionic channel charac-
teristics through a mathematical linearization of the corre-
sponding conductance-based description. Several scenarios in-
volving voltage-gated ionic currents have been shown to
generate resonant behavior (for a review, see Hutcheon and
Yarom 2000). Reduced two-variable descriptions have proven
useful as a mathematical tool to study these and other neuronal
properties (Gutfreund et al. 1995; Hutcheon et al. 1996a;
Rinzel and Ermentrout 1989; White et al. 1995).

In the first part of this paper, a systematic classification of
two-variable models is provided. The analysis highlights the
possible types of subthreshold behavior associated with differ-
ent neuronal characteristics. The results can be summarized in
a graphical description. The change of membrane properties as
the neuron is depolarized toward threshold is represented by
trajectories crossing boundaries separating different types of
behavior (e.g., passive from resonant). This description is
illustrated with two conductance-based model neurons. More
complex types of resonance cannot be described by a two-
variable model. For this reason, a three-variable model, which
exhibits a richer repertoire of behaviors, is also analyzed. A
parameter region is identified with a suppression as well as a
resonance in the impedance curve, a feature recently observed
experimentally in hippocampal fast-spiking interneurons (Pike
et al. 2000).

In the second part of the paper, the circumstances are ex-
amined in which a resonant neuron can communicate its sub-
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threshold frequency preference through the dynamics of its
firing rate. This property of resonant neurons manifests itself as
a preferential amplification of input signals that are at the
resonant frequency and requires an analysis of how the firing
rate is modulated by an oscillatory current. To this end, the
two-variable approach is extended to include spike emission,
providing a generalized integrate-and-fire or GIF model. The
model captures a wide range of subthreshold dynamics with a
simplified firing and reset mechanism. The firing-rate dynam-
ics of this model, as well as two specific conductance-based
models which exhibit a subthreshold resonance, are studied in
detail. The crucial role that noise plays in shaping the response
is highlighted.

M E T H O D S

Glossary

v deviation of the membrane potential from the holding
potential (mV).

C or CM membrane capacity (nF).
g effective leak conductance (�S).
w or w1 auxiliary variable characterizing the membrane

dynamics (mV).
�1 time scale of the dynamics of the w variable (ms).
g1 conductance measuring the membrane potential

variation resulting from a change of w (�S).
� dimensionless parameter proportional to leak

conductance g.
� dimensionless parameter proportional to conductance

g1.
w2 second auxiliary variable (mV).
g2 analogous to g1 for the second variable w2 (�S).
Iapp total applied external current (nA).
Isyn synaptic current (nA).
geo and gio average excitatory and inhibitory total synaptic

conductances (�S).
�e and �i magnitude of excitatory and inhibitory synaptic noise

(�S).
�e and �i correlation timescales of the excitatory and inhibitory

synaptic noise (ms).
IN magnitude of the fluctuations of synaptic current (nA).
I0 constant (DC) current (nA).
I1 magnitude of oscillatory current (nA).
f frequency of injected current (Hz).
�V strength of the synaptic noise as measured by the

resulting amplitude of membrane potential
fluctuations (mV).

Z(f ) cell impedance for an injected current of frequency f
(M�).

fR resonant frequency corresponding to a maximum of
the amplitude of Z(f ) (Hz).

f0 natural frequency of the membrane potential damped
oscillations (Hz).

Q strength of the resonance peak (dimensionless).
r0 average spike rate (Hz).
r1(f ) magnitude of oscillatory component in spike rate

induced by injected oscillatory current (Hz).
�A(f )� signal gain (Hz/nA).
�(f ) phase of oscillatory component in spike rate with

respect to oscillatory current (deg).
v� threshold for spike emission for the GIF model

(defined in METHODS; mV)
vr membrane potential reset after spike emission for the

GIF model (defined in METHODS; mV)

Linearization of conductance-based models

The starting point for the analysis in this paper is the conductance-
based Hodgkin-Huxley formalism. The state of a neuron is described
by a potential difference V across a membrane with a capacitance CM,
a set of trans-membrane currents Imem (comprising the leak and
various active ionic currents), a synaptic current Isyn (to be described
in the following text) and an applied current Iapp

CM

dV

dt
� �Imem 	 Isyn 
 Iapp (1)

The active ionic currents comprise both activation and inactivation
variables xk where k � 1, . . ., N counts over all the variables that obey
equations of the form

�k�V�
dxk

dt
� xk,��V� 	 xk (2)

where both the relaxation times �k(V) and the steady-state values
xk,�(V) are functions of the membrane voltage.

Below threshold for action potential generation, Eqs. 1 and 2 can be
linearized around a holding voltage V* (see e.g., Koch 1999, chapter
10, and refs therein). For the sake of simplicity, the notation X* will
be used to denote the quantity X evaluated at V � V*. Linearization
of the Eq. set 1 and 2 allows for a direct categorization of the range
of behavior that a neuron exhibits in its response to small input
currents, for example, the response to an oscillating or square-pulse
current considered here. The linearized equations will also provide the
basis for a generalization of the IF model, to be described at the end
of this section. The linear equations can be written in the following
form

CM

dv

dt
� �gMv 	 �

k�1

N

gKwK 	 Isyn 
 Iapp

�k

dwk

dt
� v 	 wk where k � 1, . . . , N (3)

with v � V � V* being the deviation of the voltage from its
steady-state value and gM � (�Imem/�V)* is the slope of the instan-
taneous I-V curve. The time-dependent variables

wk � �xk 	 x*k ���dxk,�

dV
�*

for k � 1, . . . , N (4)

are proportional to the deviation of the activation or inactivation
variables xk from their steady-state values x*k � xk,� (V*) and are
expressed in units of millivolts. The time constants �k correspond to
those of the activation and inactivation variables evaluated at V* and
the parameters

gk � ��Imem

�xk
�*�dxk,�

dV
�*

(5)

written in units of conductance, measure the strength of the effect that
the variable xk has on the voltage. Note that in the linear approxima-
tion, the dynamical variables wk are no longer multiplied by a voltage-
dependent term as they were in the original conductance-based de-
scription.

Activation or inactivation variables can be classified according to
the sign of their corresponding parameter gk. Examples of variables
with gk � 0 are the activation variables of Na� and Ca2� currents and
inactivation variables of K� currents. Examples of variables with
gk 	 0 include inactivation variables of Na�, Ca2� currents, activa-
tion variables of K� currents, and the activation variable of the H
current. For gk 	 0, the corresponding variable opposes voltage
change (negative feedback), whereas gk � 0 indicates that the variable
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amplifies voltage change (positive feedback). Previous modeling stud-
ies (reviewed in Hutcheon and Yarom 2000) have shown that a
variable with gk 	 0 can create a subthreshold resonance (a resonant
variable), whereas a variable with gk � 0 can amplify an existing
resonance (an amplifying variable).

Conductance-based models generally comprise many active ionic
currents and are therefore described by a large number of activation or
inactivation variables. Despite the simplification of linearity, such
systems of equations can still be hard to handle analytically. However,
it is often possible to reduce the number of variables to two or three,
while still accurately modeling the behavior near the holding voltage.
This can be achieved by considering that very fast variables (such as
the activation variable of fast sodium channels) are instantaneous, by
merging together variables with similar time constants, and by noting
that very slow variables average over the voltage to provide a steady
current. The resulting equations have the same form as Eq. 3 but with
effective values C and g for the capacitance and leak respectively. The
effective leak g can be zero or even negative, while the resting
potential remains stable. Examples of the linearization method are
given in the APPENDIX for two conductance-based models together with
the further approximations leading to reductions in the number of
variables to two or three.

TWO-VARIABLE SUBTHRESHOLD DYNAMICS. For the case of two
variables, the neuron is described by the two equations

C
dv

dt
� �gv 	 g1w 
 Iapp�t�

�1

dw

dt
� v 	 w (6)

with four parameters, C, g, g1, and �1. However, expressing time in
units of �1, and dividing the voltage Eq. 6 by C makes it apparent that
the model only depends on two dimensionless parameters � � g�1/C
and � � g1�1/C. The quantities � and � parameterize the behavior of
the neuron near V* and can be considered as representing a point on
a plane. � represents an effective leak, whereas � represents an
effective coupling between the two variables. � measures the influ-
ence of the w variable on the membrane potential.

THREE-VARIABLE SUBTHRESHOLD DYNAMICS. The analysis is also
extended to include a third variable. The subthreshold dynamics is
then described by

C
dv

dt
� �gv 	 g1w1 	 g2w2 
 Iapp�t�

�1

dw1

dt
� v 	 w1

�2

dw2

dt
� v 	 w2 (7)

where in this paper a restriction is made to g 	 0. Four independent
and dimensionless parameters g1/g, g2/g, �1g/C, and �2g/C are now
needed to fully describe the model.

Models of spiking neurons

One of the major goals of the present paper is to investigate the
effect of subthreshold resonance on the dynamics of spike emission.
To this end, a simple spiking neuron model that exhibits subthreshold
resonance, the generalized IF neuron, is introduced. To demonstrate
that the general results derived for this simplified model carry over to
more realistic neurons, two representative conductance-based models
that are known from the literature to produce subthreshold resonance
are also examined (Models I and II). In an attempt to cover the range

of possible behaviors, the models are chosen to have different reso-
nance mechanisms (hyperpolarization or depolarization activated cur-
rents) and also different resonant frequencies (near 10 and 50 Hz,
respectively).

GENERALIZED IF NEURON. The IF model neuron provides a pow-
erful tool for the understanding of neurons with passive membrane
properties and is the standard component of large numerical simula-
tions of recurrent networks. However, its passive subthreshold behav-
ior cannot capture the phenomenon of resonance. An extension of the
IF model, which captures the subthreshold behavior of the two-
variable model with a simple spike mechanism, is therefore the first
spiking neuron model to be introduced here. The generalized IF (GIF)
neuron is obtained by supplementing Eq. 3 with a threshold for spike
generation at v � v�, followed by a reset of the membrane voltage at
v � vr (the auxiliary variables wk considered here have a slower
dynamics than the spike, and therefore it is not appropriate to reset
them also). In the case gk � 0 for all k, the voltage equation reduces
to the IF model. With two variables, this model is similar to a model
recently proposed by Izhikevich (2001). The two-variable GIF model
subject to an applied current is described by Eq. 6 where the param-
eters C, g, g1, and �1 are kept fixed for the whole of the subthreshold
regime. Isyn is the modeled synaptic current and Iapp(t) represents the
applied current, to be described in the following text. In this paper, the
threshold is chosen to be at �50 mV, the rest (in absence of any input
currents) at �70 mV, and the reset at �56 mV. Because v measures
the deviation from rest v � V � Vrest, this corresponds to v� � 20 mV
and vr � 14 mV.

Conductance-based neurons

MODEL I. A NEURON WITH INA, IK, AND IH CURRENTS. The first
model comprises a hyperpolarization-activated mixed cation current
IH and the Hodgkin-Huxley spike-generating currents. The form of the
IH current is taken from Spain et al. (1987) and comprises both fast f
and slow s activation variables. The time scales of the two compo-
nents are �f � 38 ms and �s � 319 ms and, as in Spain et al. (1987),
taken to be voltage independent. The fast component has the greater
contribution and determines the resonant frequency fR, which is near
10 Hz at physiological temperatures. A detailed model description can
be found in the APPENDIX.

MODEL II. A NEURON WITH INA, IK, INAP, AND IKS CURRENTS. In
contrast to the IH model defined in the preceding section, the second
model neuron features two depolarization-activated currents: the slow
potassium current IKs and the persistent sodium current INaP. In the
language of Hutcheon and Yarom (2000), the IKs current generates the
resonance and the INaP current amplifies its effect. A noninactivating
form (Gutfreund et al. 1995) is used for the IKs with an activation time
scale of �q � 6 ms (Wang 1993), giving a subthreshold resonance that
is strongest at resonant frequencies 
35–55 Hz. Neurons with a
resonance frequency or subthreshold oscillations at 
40 Hz are wide-
spread (Pike et al. 2000; Puil et al. 1986), and the underlying mech-
anism is thought to sometimes involve the IKs and INaP currents
(Llinas et al. 1991). Again, full details of this model are given in the
APPENDIX.

Modeling the noisy synaptic input

The massive synaptic bombardment received by neurons in vivo
represents a strong source of noise. Destexhe et al. (2001) provided
evidence that an appropriate model of such a synaptic input is given
by a fluctuating conductance with short correlation times related to the
shapes of typical excitatory and inhibitory postsynaptic potentials.
Hence, for the analysis of the firing rates of the two conductance-
based models I and II, the noise is modeled as in Destexhe et al.
(2001) by the equations

2540 M.J.E. RICHARDSON, N. BRUNEL, AND V. HAKIM

J Neurophysiol • VOL 89 • MAY 2003 • www.jn.org



Isyn � ge�t��V 	 Ee� 
 gi�t��V 	 Ei�

�e

dge

dt
� geo 	 ge 
 �e�2�e �e�t�

�i

dgi

dt
� gio 	 gi 
 �i�2�i �i�t� (8)

where �e, �i are delta-correlated Gaussian white-noise terms. Repre-
sentative values of the correlation times �e � 3 ms and �i � 10 ms are
used here. The reversal potentials are taken to be Ee � 0 mV and Ei �
�75 mV. The average conductances geo, gio and the noise amplitudes
�e and �i can be varied to explore a range of input conditions.

MODELING NOISE FOR THE GIF NEURON. To have a simple model
with a membrane-potential-independent subthreshold resonance, the
synaptic inputs are modeled by a current comprising a direct drive I0

and a white-noise source

Isyn � I0 
 IN��N ��t� (9)

where �(t) is the delta-correlated Gaussian white-noise term with unit
variance and IN is the measure of the noise strength in nanoAmpere.
The factor �N is introduced to preserve units, and throughout this
paper, it is arbitrarily fixed at �N � 1 ms without affecting the
generality of the results. The noise strength IN can be related to a more
intuitive measure: the SD of the membrane voltage (in the absence of
the spiking mechanism). In the two-variable GIF model, the SD of the
voltage �V takes the form

�V � IN� �C 
 g�1 
 g1�1��N

2C�g 
 g1��g�1 
 C�
(10)

Response of the neuron to an oscillatory drive
SUBTHRESHOLD RESPONSE. To characterize the subthreshold re-
sponse, an oscillating current of frequency f is used. The applied
current and resulting voltage response to this current are given by

Iapp � I0 
 I1 sin �2f t�

V � V* 
 V1�f � sin �2f t 
 ��f �� (11)

where both the phase difference �(f ) and the magnitude of the im-
pedance

�Z�f �� � V1�f �/I1 (12)

are functions of the driving frequency f. The existence of a peak in the
�Z(f )� versus frequency curve provides the definition of subthreshold
resonance. The impedance Z(f ) can also be measured experimentally
using a ZAP current (Puil et al. 1986).

FIRING-RATE RESPONSE. In the context of examining the interac-
tions between membrane frequency preference (resonance) and net-
work oscillations, it is of interest to examine how the instantaneous
firing rate of a neuron responds to a sine-wave modulation in the
background of a noisy synaptic current

Iapp � I1 sin �2f t�

A regime is considered where the noisy synaptic drive is suffi-
ciently strong to cause the neuron to fire stochastically, at an average
rate r0. The weak sinusoidal component then causes a weak modula-
tion of the firing rate that will be apparent over many trials, see Fig.
1. This quantity can also be thought of as the firing rate, averaged over
a population of neurons each individually receiving a noisy drive but
responding collectively to the same weak oscillatory component
present in the firing rates of presynaptic neurons. The form of this
population, or trial-averaged instantaneous rate is

r � r0 
 r1�f � sin �2f t 
 ��f �� (13)

The analogy with the subthreshold voltage form in Eq. 11 is clear.
Similarly, the response r1(f ) is proportional to the strength of the
modulatory current, leading to the introduction of the following quan-
tity that measures the ability of a neuron to amplify a particular
frequency

�A�f �� � r1�f �/I1 (14)

called the signal gain, see for example (Gerstner 2000). In the same
way that a peak in the impedance �Z(f )� quantifies subthreshold reso-
nance, the existence and position of the peak in the quantity �A(f )� will
be the corresponding firing-rate measure of resonance.

Experimental studies have used either large amplitude sine-wave
currents (Hutcheon et al. 1996b) or small-amplitude sine-wave
currents when the voltage is very close to threshold (Pike et al.
2000). In both of these studies, a strong effect was measured in the
time-averaged rate itself and not in its modulation. The situation
considered here is of weak oscillatory input leading to a linear
response of the firing rate (higher-order harmonics are negligibly
small). In this case, the signal gain is a more sensitive measure of
the frequency dependence of spike emission than the time-aver-
aged firing rate.

ANALYTICAL METHODS. The firing-rate response of the GIF neuron
can be computed analytically in the limit of large �1. Methods are
sketched in the APPENDIX (see also Brunel et al. 2003).

NUMERICAL METHODS. The numerical analysis of the firing-rate
response of the GIF and conductance-based models was performed
using a stochastic second-order Runge-Kutta algorithm (Honeycutt
1992) with a time step of 10 and 20 �s, respectively. The amplitude
of the modulatory current I1 used in numerical measurements of the
signal gain was varied until it was sufficiently small such that higher
order nonlinear effects were negligible. The length of simulation time
needed to get accurate measurements for each frequency point varied
between 1,000 and 50,000 s, depending on the firing rate and the
particular level of noise chosen in the input current. To estimate the
firing rate modulation at a given frequency, the instantaneous firing
rate is computed in bins of 1 ms. The resulting histogram, sketched in
Fig. 1, is then fitted by a sinusoid with a frequency equal to that of the
oscillatory input current.

FIG. 1. The response of the instantaneous firing rate to a weak sinusoidal
input. The oscillatory current is applied on top of a noisy input that itself elicits
firing at an average rate r0 (see top). By averaging over many realizations
(shown in the raster plot), the modulation of the instantaneous firing rate can
be computed, and the characteristics (amplitude and phase) of the induced
sinusoidal component of the firing rate obtained (bottom). A bin width of 8 ms
was used for illustrative purposes in this figure.
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R E S U L T S

Subthreshold properties of the membrane potential

The different classes of behavior in the subthreshold regime
are examined first. Two- and three-variable models, with pa-
rameters directly related to measurable membrane properties,
are used to classify the different types of response to standard
test currents. It is shown that the types of behavior that the
neuron can exhibit at different holding voltages can be conve-
niently presented in graphical form for both the two- and
three-variable descriptions. The results are illustrated by two
conductance-based models of spiking resonant neurons.

Subthreshold behavior of the two-variable model

The subthreshold behavior of the two-variable model is first
classified with respect to stability and the response to standard
test currents. Because the two-variable model is related to an
underlying conductance-based description near a holding volt-
age V*, it is parameterized by an effective leak � � g�1/C and
an effective coupling between the two variables � � g1�1/C.
The parameters � and � can be used to represent the behavior
of the neuron by a string of points on a plane, as the neuron is
depolarized or hyperpolarized by an injected current. The
borders separating different types of behavior are obtained
through the analysis of Eq. 6, presented in detail in the APPEN-
DIX.

STABILITY. The classification of the subthreshold regime
starts with the determination of the parameter region where the
neuron remains stable at the holding potential (without e.g.,
subthreshold oscillations or spike emission). Analysis of the
stability of the membrane potential of the two-variable model
determines an unstable region shown in brown in Fig. 2. The
region is bounded on one side by the vertical dashed line that
signals the onset of spontaneous oscillations. On the other side,
it is bounded by a diagonal line that corresponds to the total
input conductance becoming zero, which can lead to spike
emission. The rest of the analysis will focus on the stable
region to the right of these two lines.

RESPONSE TO OSCILLATING CURRENT. The first experimental
measure of subthreshold properties considered here is the volt-
age response to an oscillating input current. The magnitude and
phase of this response measure the impedance of the neuronal
membrane. A subthreshold resonance, signaled by the exis-
tence of peak in �Z(f )� at some nonzero frequency fR, occurs in
the whole of the green region of Fig. 2A (Hutcheon et al.
1996a). The line that bounds the region of the phase diagram in
which resonance occurs starts at the point � � �1, � � 1 (the
intersection between the two instability lines), and for large �,
it tends toward the axis � � 0. Thus in most of the stable
region with � 	 0 resonant behavior occurs. Positivity of �
implies that the associated activation or inactivation variable is
a resonant variable (Hutcheon and Yarom 2000).

PHASE RESPONSE TO OSCILLATING CURRENT. Another quantity
of interest is the existence of a zero phase-lag in the membrane
potential response at nonzero frequency, seen in cortical neu-
rons (Gutfreund et al. 1995). Analysis of the phase difference
�(f ) between the oscillating current and the voltage response,
defined in Eq. 11, shows that a zero phase-lag exists for � 	
1. This quantity also coincides with the existence of a maxi-

mum in the phase and a phase advance from the driving
current. A second line � � 0 signifies the existence of a
minimum in the phase, implying that at some frequencies the
phase lag is greater than 90°. Taken together, these criteria
divide the phase diagram into four regions, plotted in Fig. 2B.
It should be noted that none of the lines separating the different
qualitative responses of the phase correspond exactly to the
presence of a resonance in the amplitude of the impedance.

RESPONSE TO A SQUARE-PULSE CURRENT. The application of a
small step change in applied current provides a different as-
sessment of subthreshold membrane properties. The response
of the neuron to such a current can be obtained explicitly (see
APPENDIX for details). At the level of the two-variable descrip-
tion the neuron can exhibit three different types of response to
the square-pulse current shown, the voltage-time profiles of
which are shown in the insets of Fig. 2C:

 

 

 

 

 

A B

DC

FIG. 2. The subthreshold behavior of two-variable models. Brown marks
the unstable region. Insets: the qualitative response to the relevant test current
in regions in the space of parameters � � g�1/C (the effective leak) and � �
g1�1/C (the effective coupling between the two variables). A: oscillating
current injection, amplitude of the impedance. B: phase of the impedance. C:
response to a square-pulse current. D: trajectories of the two conductance-
based model neurons in parameter space as their holding potential is increased.
Model I (full line): g1 � gf (see text and APPENDIX) parameterizes the effect of
the fast component of the current IH on the voltage. The trajectory covers the
range from �100 to �56.5 mV at which point the resting state is unstable and
spikes are emitted. Model II (dotted line): g1 � gq (see text and APPENDIX)
parameterizes the effect of the slow-potassium current IKs on the voltage. The
trajectory covers the range �100 to �57 mV at which point spontaneous
oscillations occur. In both cases, the black points are at 5-mV intervals with the
last point plotted before destabilization occurring at �60 mV, and the arrows
represent the direction of depolarizing membrane potential.
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Damped oscillations. The neuron exhibits damped oscilla-
tions at frequency f0 as it approaches its new holding mem-
brane potential, when � is sufficiently large compared with �
(the red region shown in Fig. 2C).

Overshoot or sag. When � 	 1 and � 	 0, but below the red
region, the voltage time course has a single overshoot (or sag
if the current pulse is hyperpolarizing). This corresponds to the
yellow region of Fig. 2C.

Passive decay. In all other areas of parameter space (the
white region), the voltage changes monotonically from its
initial to final resting voltage.

It is clear from Fig. 2, A and C, that subthreshold resonance
and damped oscillations are not equivalent. This fact, which
was implicit in experimental measures of the resonant and
natural frequencies (Puil et al. 1986), is often overlooked. An
examination of Fig. 2 shows that neurons can have damped
oscillations but no resonance and vice versa. In fact none of the
other measurements (the phase or response to a square-pulse
current) of the neuron examined here give complete informa-
tion about the existence of a resonance. However, close to the
instability line, where the neuron is almost spontaneously
oscillating, both resonance and damped oscillations are guar-
anteed to occur together.

Subthreshold behavior of the two conductance-based models

The diagram introduced in Fig. 2 allows a visualization of
the trajectory of the neuron through the space of parameters
�(V*) and �(V*) as the holding voltage V* is varied. This is
shown for the two model neurons defined in METHODS and
detailed in the APPENDIX. As the trajectory crosses different
boundaries, so the neuronal response to input current will
change qualitatively. The trajectories of the two model neu-
rons, as parameterized by the changing effective leak g and
coupling variable g1 � gf or g1 � gq, are plotted in Fig. 2D.
MODEL I. A NEURON WITH INA, IK, AND IH CURRENTS. The
resonance curve of the neuron is plotted in Fig. 3A for a

holding potential of �65 mV. The spike-generating currents
are much faster than other time scales in the system and can be
taken as instantaneous, reducing the full model to a three-
variable description: the membrane potential and the two ac-
tivation variables of the H current (see APPENDIX for details).
The impedance curve of the reduced three-variable description
is also shown in Fig. 3A. Comparison with the full model
shows that this reduction is extremely accurate. A further
approximation, that the slow variable of the IH current averages
to a steady value, provides the two-variable description. The
behavior of the neuron is therefore classified by its leak con-
ductance g and the effect of the IH fast variable f, through the
two dimensionless parameters � � g�f /C and � � gf�f /C. This
two-variable description provides an excellent approximation
of the original model for driving frequencies greater than 2 Hz
as shown in Fig. 3A. At frequencies greater than 2 Hz, the
dynamics of the slow variable of the H current is too slow to
follow the voltage changes and therefore to affect the reso-
nance curve.

The effective leak � and effective coupling between voltage
and H current � are calculated for a subthreshold voltage range
of �100 to �56.5 mV using the linearization procedure. The
corresponding trajectory is shown in Fig. 2D, and the reso-
nance and damped oscillation frequencies are shown in Fig.
4A. As can be seen, model I exhibits a strong resonance at
hyperpolarized values in the absence of damped oscillations
(except in a narrow range between �58.5 and �56.6 mV near
the firing threshold). This illustrates again that resonance and
damped oscillations are distinct phenomena: oscillating and
step currents probe different membrane properties. The Q
value, defined as �Z(fR)�/�Z(0)� (Hutcheon et al. 1996b), gives a
measure of the strength of the resonance. As can be seen in Fig.
4A, the IH current provides the strongest resonance of 
10 Hz
at a holding voltage of �80 mV. The trajectory also shows that
the neuron responds with a sag/rebound to a step-current pulse:
a well-known characteristic of the IH current (Dickson et al.

FIG. 3. The frequency-dependent input impedance for the two model neurons held at �65 mV, showing the level of
approximation between the full (F and E), three-variable (—) and two-variable (- - -) descriptions. A: model I. The three-variable
model is obtained by taking the spike-generating currents to be instantaneous. The full and three-variable models agree closely for
all frequencies plotted. The two-variable approximation is obtained by noting that the slow variable of the IH current averages to
a steady value for frequencies greater than 
2 Hz. B: model II. The full noninactivating IKs model (F) and its two-variable
approximation, obtained by taking the spike-generating currents to be fast. If an inactivation variable is included in the definition
of the IKs current, an impedance profile (E) with a trough at 3 Hz as well as a resonance at 30 Hz is seen (see Three-variable model
and the APPENDIX for details). The corresponding three-variable model obtained by taking the spike-generating currents to be fast,
but retaining the activation and inactivation variables of the IKs current, provides a good approximation of the full model.
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2000). As the holding voltage is increased to more depolarized
values the IH current weakens until the resonance vanishes at
around �57 mV.

MODEL II. A NEURON WITH INA, IK, IKS, AND INAP CURRENTS. In a
similar way to the previous case, the full conductance-based
model can be reduced to a two-variable description by noting
that the spike-generating currents are fast. This approximation
is very accurate, as can be seen in Fig. 3B (the noninactivating
IKs and two-variable profiles). The behavior of this neuron is
classified by its leak g, the IKs coupling variable gq, and its time
constant �q through the dimensionless parameters � � g�q/C
and � � gq�q/C. These quantities are calculated for a sub-
threshold voltage range of �100 to �57 mV, and the corre-
sponding trajectory is plotted in Fig. 2D. In distinction to
model I, the resonance here is driven by depolarization-acti-
vated currents. This can be seen in the vertical-moving trajec-
tory and the increasing Q value as the line of onset of sponta-
neous oscillations is approached. This neuron features both a
resonant current in the activation of IKs as well as an amplify-
ing current INaP. The amplification effect is clearly seen in a
comparison of the Q values of the resonance of model II with
model I (which lacks an amplifying mechanism). An exami-
nation of Fig. 4B shows that the resonant frequency steadily
increases as the line of onset of spontaneous oscillations is
approached, a feature reminiscent of the “broad-frequency
cells” in Llinas et al. (1991) that were also shown to feature a
TTX-sensitive persistent sodium current as well as a delayed
rectifier. The amplification is due to the fact that the INaP
current decreases the effective leak (because the current am-
plifies voltage changes). Hence, the parameter � decreases as
an effect of the activation of this current, and correspondingly
the model moves toward the left in the diagram of Fig. 2D, in
the direction of the line where spontaneous oscillations occur.
On this line, the Q value diverges.

Subthreshold behavior of the three-variable model

Although two-variable models capture the properties of a
broad class of neurons, Fig. 2A shows that they only provide
two classes of impedance curves, either monotonously decreas-
ing with increasing frequency (nonresonant case shown in
white) or with a single peak at a preferred frequency (reso-
nance case shown in green). Therefore more complex imped-

ance curves cannot be described with only two variables. For
this reason, the same classification described in the preceding
text was performed for a model with three variables defined in
Eq. 7. The model is now specified by four parameters: the
conductance ratios g1/g and g2/g and the time constants �1 and
�2 of the variables w1 and w2. Without loss of generality, the
time constant of w2 was chosen to be the faster variable, thus
�2 � �1. When the faster variable is taken to be instantaneous,
�2 � 0, the model becomes equivalent to the two-variable
model with � � (g � g2)�1/C and � � g1�1/C.

The classification of the three-variable model was done in
terms of the presence or absence of damped oscillatory behav-
ior in response to transient inputs and presence or absence of
resonant behavior as defined by the peaks of the impedance
profile. Figure 5 shows the different regions of interest in the
(g1/g) versus (g2/g) plane for several values of the times
constants �1 and �2 relative to the time constant � � C/g.

STABILITY. As in the two-variable case, the equilibrium volt-
age may destabilize in two different ways: either the total
conductance g1 � g2 � g becomes negative (Fig. 5, —), or
spontaneous oscillations appear (Fig. 5, - - -). These two lines
intersect at the point where the frequency of the spontaneous
oscillations becomes zero. When the time constants are such
that �2 �� �1, the line where spontaneous oscillations arise
becomes vertical. Thus as stated in the preceding text, in the
limit �2 � 0, the behavior of the two-variable model is recov-
ered (compare Fig. 5B with Fig. 2).

RESONANCE AND DAMPED OSCILLATIONS. Again, similar but
distinct regions are observed in which damped oscillations and
resonant behavior occur. In the upper-left quadrant of each
panel (where the slower variable is “resonant,” g1 	 0, while
the faster variable is “amplifying,” g2 � 0), both damped
oscillations and resonant behavior are present in most of the
stable region. In the upper-right quadrant where both variables
are “resonant,” damped oscillations and resonant behavior are
found almost throughout. In the lower-left quadrant, both vari-
ables are amplifying: the neuron exhibits neither damped os-
cillations nor resonance and destabilizes exclusively by the
total conductance becoming zero.

APPEARANCE OF A TROUGH. In the bottom-right quadrant
(where the slower variable is now amplifying g1 � 0 and the
faster variable is resonant g2 	 0), a qualitatively new phe-

FIG. 4. The resonance frequency fR (—)
and frequency of damped-oscillations f0 (- - -)
of the 2 model neurons as a function of holding
voltage. The corresponding Q values are also
given that, following convention, measure the
relative strength of the resonant peak Q �
�Z(fR)�/�Z(0)�. A: model I. A resonance exists for
most of the subthreshold regime, whereas
damped oscillations occur only in a narrow
voltage range near the firing threshold (at
�56.4 mV). The resonance is strongest at �80
mV with fR � 10 Hz. B: model II. In this case,
both resonance and damped oscillations exist
above �72.5mV. The resonance strength in-
creases as the membrane potential approaches
the onset of spontaneous oscillations (indicated
by F at �57.2 mV), above which the neuron
fires periodically. The regions in which
damped oscillations and resonance exist
shown in these graphs can be compared with
the trajectories in Fig. 2D.
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nomenon is observed, depending on the values of the time
constants. When the two variables �1 and �2 are slower than the
time constant � � C/g, the amplitude of the impedance has a
local minimum or trough at a finite frequency (indicating a
suppression of the membrane response at that frequency) fol-
lowed by a resonant peak at higher frequency. One example of
such subthreshold dynamics is a neuron with an inactivating
potassium current with a relatively large activation time con-
stant �2 and a much larger inactivation time constant �1 with
overlapping steady-state activation and inactivation functions
(a window current). In fact, a model of the IKs current that also
includes an inactivation variable (see APPENDIX for details)
gives exactly this effect. The frequency-impedance curve for
such a neuron is plotted in Fig. 3B and shows a close similarity
to the experimentally measured impedance curve of the fast-
spiking interneurons measured in Pike et al. (2000). A two- and
three-variable reduction of this full conductance-based model
are also plotted for comparison. Another possibility would be
to have the two variables implemented in two active persistent
currents: a potassium current with activation time constant �2
and a sodium or a calcium current with slower activation time
constant �1.

As expected, increasing the complexity of the model in
terms of the number of descriptive variables also increases the
range of neuronal behavior that can be modeled. In summary,

a one-variable model (like the subthreshold dynamics of the
leaky IF neuron) can have only a monotonously decaying
impedance; a two-variable model can have either a monoto-
nously decaying impedance, or an impedance with a resonant
peak, whereas a three-variable model can describe the two
above-mentioned behaviors, and in addition, an impedance
with a trough at low frequency followed by a peak at higher
frequency.

Firing-rate resonance

In this section, the effect of the subthreshold resonance on
the dynamics of the firing rate is investigated. The aim of the
analysis is to determine when a small oscillatory component in
the synaptic inputs of a given neuron will be amplified in its
output and how this depends on the subthreshold properties of
the considered neuron.

The current used to model the synaptic bombardment such a
neuron would experience in vivo comprises a noisy hyperpo-
larizing or depolarizing drive as well as a weak sinusoidal
component of frequency f. The signal gain A(f ) defined in Eq.
14 and illustrated in Fig. 1 measures the strength of the tem-
poral modulation of the instantaneous firing rate induced by the
oscillating current. It is the firing-rate analog of the impedance
Z(f ), and it is the existence of a peak in the signal gain that
categorizes the amplification of frequencies in the outgoing
spike train of resonant neurons. As will be shown, the noise
inherent in biological networks is an important factor in deter-
mining the frequency that is maximally amplified.

The range of behavior is first examined by the use of a GIF
model neuron. These results are then illustrated by two con-
ductance-based models with spike generating currents and also
an IH current or INaP and IKs currents.

Firing-rate resonance in the GIF model neuron

In the previous section, the subthreshold behavior of a
general two-variable model was analyzed in detail. As de-
scribed in METHODS, a simple spike mechanism (threshold and
reset) can be added to the two-variable description to produce
a generalization of the IF neuron. This provides the simplest
mathematical description of a spiking neuron with resonant
subthreshold dynamics and allows a direct link to be made
between the subthreshold characteristics and the statistical
properties of the outgoing spike train. In spite of its simplicity,
the GIF model provides a good approximation to more com-
plete descriptions of neurons as will be seen in the next section.

The model examined here is parameterized by C � 0.5 nF,
g � 0.025 �S, g1 � 0.025 �S, and �1 � 100 ms, giving a
subthreshold resonance frequency fR near 5 Hz. The signal gain
A(f ) was examined as a function of frequency for different
respective strengths of the constant I0 and noisy IN components
of the injected current, defined in Eq. 9. It should be noted that
the sinusoidal component I1 is always taken to be weak in the
present work.

The fact that the neuron is induced to fire at a frequency r0
by the applied current implies that there are now two distinct
and independent frequency scales: the subthreshold resonant
frequency fR, controlled by the subthreshold dynamics of the
membrane potential, and the background firing frequency r0,

FIG. 5. Phase diagram of the three-variable model in the plane g1/g, g2/g,
for different values of the time constants �1 and �2 relative to � � C/g (marked
above each panel). Brown, unstable region; green, regions where resonance
occur; dark green, resonance with a trough at a lower frequency; red lines, the
boundaries of the regions in which damped oscillations occur in response to a
current step. See text for more details.
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which is controlled by the characteristics of the externally
applied noisy current. It is useful to distinguish situations
depending on whether r0 is lower or greater than fR.

High firing rate r0 	 fR . When the firing rate of the neuron
is greater than its resonance frequency, two distinct modes of
behavior were identified: when the neuron fires regularly due to
a direct drive with a low-noise term (low noise) and when the
neuron fires irregularly due to a high-noise term and a weak
direct drive (high noise). Histograms of the response of these
two cases to a current composed of a nonoscillating interval, an
interval with a component of frequency fR � 5 Hz and a final
interval with a component of frequency r0 � 20 Hz are plotted
in Fig. 6, A and B. The full frequency-dependent profiles of the
signal gain A(f ) and phase �(f ) are also given in Fig. 6 C
and D.

Low noise. The neuron fires regularly under the action of a
strong direct drive I0 � 0.95 nA perturbed by a weak noise
term IN � 0.11 nA (�V � 0.68 mV). In this regime (the red
curves of Fig. 6), the neuron behaves as a nonlinear oscillator
of frequency r0. In the spike histogram (Fig. 6A), it is clear that
the modulation is strongest in the third interval where the
modulation of the current is at a frequency of 20 Hz, equivalent
to the firing rate.

High noise. In the converse case of noise-driven irregular
firing (still at an average rate of r0 � 20 Hz) with I0 � 0.78 nA
and IN � 0.55 nA (�V � 3.4 mV), the amplification properties
of the resonant neuron change. As shown in the corresponding
(blue) spike histogram of Fig. 6B, the amplification is now
strongest in the second interval of the response, corresponding
to a modulation of the input current at a frequency equal to the
subthreshold resonance fR � 5 Hz. Note that the noise level
chosen here corresponds to the typical magnitude of membrane
potential fluctuations measured in vivo, which are 
3–5 mV
(Anderson et al. 2000; Destexhe and Paré 1999).

It is instructive to examine the signal gain for different
values of noise, while the firing rate r0 is kept constant through
compensatory changes of the direct drive I0, see Fig. 6C. As the
relative strength of the noise is increased, the signal-gain peak
at the firing rate decreases and vanishes before the peak at the
resonance frequency emerges at higher noise levels. The green
curve in Fig. 6C shows an intermediate case with a flat signal-
gain profile. The curves showing the phase in Fig. 6D show
qualitatively similar behavior, except that the peaks (indicating
the greatest phase advance) are at lower frequencies than the
corresponding peaks in the signal gain.

Low firing rate r0 � fR. When the firing rate r0 is lower than
the resonant frequency fR, the “low-noise” (regular firing)
situation becomes almost impossible to reach because in ab-
sence of noise the neuron often starts to fire at a finite fre-
quency (a type II neuron, see e.g., Rinzel and Ermentrout
1989). In this case, firing at low frequencies can only be
achieved through the action of a noisy current, rendering
neuronal firing irregular. Thus in practice, low firing rates
imply high noise (noise-driven firing). When r0 � fR, the
inter-spike interval is sufficiently long such that the neuron has
time to explore its subthreshold regime and begin to “resonate”
before firing. As could be expected, the subthreshold resonant
frequency is therefore strongly evident in the signal gain, see
Fig. 7A in which the neuron was driven by a weak DC I0 �
0.50 nA and noise term IN � 0.55 nA (�V � 3.4 mV). The full
profile of the signal gain demonstrates that the frequency most
preferentially amplified is the subthreshold resonance fR � 5
Hz, as in Fig. 6B. This case is therefore similar to the high-
firing-rate case (high noise) for which noise also dominated the
firing process, despite the fact that the inter-spike dynamics are
quite different.

The amplitude and phase of the signal gain A(f ) give a full
picture of the changing behavior as the neuron moves between
regular firing and irregular noise-driven firing in these two
cases. As stated previously, the advantage of the GIF neuron is
that it allows for a direct link between the subthreshold prop-
erties and their effect on the firing rate. A mathematical anal-
ysis, presented elsewhere (unpublished results), provides ana-
lytical expressions for the signal gain and its phase in terms of
the parameters of the model, in the limit that �1 is long. The
mathematically generated curves have been plotted in Figs. 6,

A

B

C
D

FIG. 6. Effect of noise strength on the amplification of a frequency f in the
firing rate of a resonant neuron. Two cases are considered: low noise (red) and
high noise (blue). The particular generalized integrate-and-fire (GIF) model
neuron (C � 0.5 nF, g � 0.025 �S, g1 � 0.025 �S, and �1 � 100 ms) has a
resonance near 5 Hz, and in all cases, the firing rate is kept at r0 � 20 Hz. A
and B: simulation of a 3-s current injection protocol. 0–1 s: injected noisy
current with no oscillatory component. 1–2 s: addition of a 5 Hz (fR) sinusoidal
component. 2–3 s: sinusoidal component at 20 Hz (r0). A: low-noise case (I0 �
0.95 nA, I1 � 0.024 nA, and IN � 0.11 nA) in which the neuron fires regularly.
The amplification is greatest at f � r0 � 20 Hz. B: high-noise case (I0 � 0.78
nA, I1 � 0.059 nA, and IN � 0.55 nA). The strongest amplification is at the
resonance frequency f � fR � 5 Hz. C: signal gain amplitude �A(f )� vs.
frequency. D: phase of the signal gain �(f ) vs. frequency. Both low (red
curves) and high (blue curves) noise cases with the green curves representing
an intermediate case (I0 � 0.92 nA and IN � 0.22 nA giving �V �1.36 mV).
The signal gain curves are normalized to 1 at f � 0, see APPENDIX. The full lines
are the theoretical predictions and the symbols come from numerical simula-
tions of the model.
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C and D, and 7, A and B, for comparison with data from
numerical simulation. All signal-gain amplitude profiles are
normalized to 1 at f � 0, see APPENDIX.

The results can be summarized by the following two state-
ments: 1) when the noise is low and the firing regular, a
resonant neuron preferentially amplifies input frequencies at
the firing rate itself. 2) In cases of irregular noise-driven firing,
a resonant neuron will preferentially amplify an input fre-
quency close to its subthreshold resonance. It should be noted
that the first mode of amplification is not restricted to resonant
neurons. In fact this type of behavior is also seen in passive
neurons and has been demonstrated experimentally (Knight
1972). In this situation, the neuron does not directly commu-
nicate any information about its subthreshold properties to the
network. The second mode of amplification, in which the
preferential amplification is at a frequency intrinsic to the cell,
is particular to resonant neurons: the mathematical analysis
directly links this firing-rate resonance with the existence of a
subthreshold resonance.

Conductance-based models

The analysis of a resonant GIF neuron in the preceding text
demonstrated that there are two distinct modes of behavior
with respect to the amplification of particular frequencies. In
the case of low noise, the frequency most strongly amplified
was at the firing rate (a property also of passive neurons),
whereas in the case of high noise the amplification was most
strong at the intrinsic resonant frequency of the cell.

These results were obtained using the idealized GIF model
in which the Hodgkin-Huxley action potential is replaced with
a voltage threshold and reset. A further assumption is that the
subthreshold behavior is the same at all holding voltages.
Another simplification is that a current-based white-noise term
was used to model the synaptic bombardment rather than a
more realistic temporally correlated conductance-based noise.
Given these approximations, it should be tested if the results of
the previous section carry over to more complete models that
include spike-generating and other voltage-dependent currents
together with conductance noise (Destexhe et al. 2001). The
preceding analysis was therefore repeated for the two conduc-
tance-based model neurons that are described in METHODS and
the APPENDIX and for which the subthreshold resonance behav-
iors are depicted in Figs. 3 and 4.

MODEL I. A NEURON WITH IH, INA, AND IK CURRENTS. The
amplitude of the signal gain was examined in both the low- and
high-noise regimes analogous to that shown in Figs. 6 and 7.
As can be seen in Fig. 4A, the subthreshold resonance fre-
quency varies with holding voltage. However, as seen in the Q
values in the same figure, the dominating resonance frequency
fR is near 10 Hz.

Low noise with high firing rate r0 	 fR. The synaptic drive
was parameterized by the conductances geo � 0.01 �S, gio �
0.0085 �S and noise strengths �e � �i � 0.0005 �S eliciting
regular firing at a rate r0 close to 50 Hz. As can be seen in Fig.
8A, the signal gain peaks at this firing-rate frequency.

High noise with high firing rate r0 	 fR. The synaptic drive
was parameterized by the conductances geo � 0.01 �S, gio �
0.015 �S and noise strengths �e � �i � 0.01 �S also giving
a firing rate r0 close to 50 Hz. As expected in this case of
irregular firing, the peak in the signal gain (Fig. 8B) is now at
the resonant frequency fR � 10 Hz.

High noise and low firing rate r0 � fR. The synaptic drive
was parameterized by the conductances geo � 0.01 �S, gio �
0.063 �S and noise strengths �e � �i � 0.015 �S giving a low
(but noise-driven) firing rate of r0 
5.5 Hz. As in the previous
example of noise-driven firing, the peak in the signal gain is
near the resonant frequency of 10 Hz, Fig. 8C.

MODEL II. A NEURON WITH IKS, INAP, INA, AND IK CURRENTS. The
Q values for this model (see Fig. 4B) demonstrate that the
resonance is strong for a range of frequencies with a peak at the
onset of spontaneous oscillations near 55 Hz. As the subthresh-
old resonance is at relatively high frequencies, the only case
examined for model II is that for which the firing rate is less
than the resonant frequency r0 � fR.

Noise-driven firing with r0 � fR . The synaptic drive was
parameterized by the conductances geo � 0.02 �S, gio � 0.012
�S and noise strengths �e � �i � 0.01 �S inducing a firing
rate of 
20 Hz. As can be seen in Fig. 8D, the signal gain
profile is peaked at 50–55 Hz: near the subthreshold resonance
frequency.

EFFECT OF THE CONDUCTANCE INCREASE FROM THE SYNAPTIC

DRIVE. It should be noted that the conductance change caused
by the modeled noise (see Eq. 8) has the effect of increasing
the value of the subthreshold resonance frequency, relative to
that which would be measured in the absence of synaptic drive.
In Fig. 8, for the case of model I (case of high noise and high

FIG. 7. The signal gain for the case of noise-
driven firing at a low rate. GIF model, same param-
eters as in Fig. 6. A: the amplitude �A(f )�. The fre-
quency most strongly amplified is at the subthresh-
old resonance of 5 Hz. B: the phase �(f ) of the
signal gain. There is a phase advance at low fre-
quencies as well as peak at 
2 Hz. The signal gain
curves have been normalized to pass through 1 at
f � 0. —, the theoretical predictions; F, from nu-
merical simulations of the model. The firing rate r0

and the subthreshold resonance frequency fR are
shown (2).
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firing rate), the conductance change corresponded to a 70%
increase in the leak. This effect increased the subthreshold
resonant frequency by 
1 Hz over the voltage range �100 to
�60 mV. For model II (for which the conductance increase
was 90%) the corresponding increase in the subthreshold res-
onant frequency was �2 Hz. Larger synaptic conductances
lead to larger shifts in the subthreshold preferred frequency and
consequently in the firing-rate preferred frequency as shown in
Fig. 9 for the case of model II. The preferred frequency is close
to 50 Hz for a conductance change of 100% but increases to

60 and 80 Hz for a conductance change of 200 and 400%—
values similar to some estimates of conductance changes in
vivo (Destexhe and Paré 1999). The frequency where the spike
rate is in phase with the input increases accordingly. The shift
of the firing rate resonant frequency is related to the shift in
subthreshold frequency. The latter shift can be calculated using
Eq. A6 of the APPENDIX. The strength of subthreshold resonance
decreases with an increase in synaptic conductance, near a
particular holding voltage. Thus one would expect that the
strength of the firing rate resonance would also decrease with
the conductance increase. However, this is not necessarily the

case, as shown in Fig. 9 where it is seen that the resonance
strength increases with the conductance increase. The increase
in this case appears to be due to the fact that the neuron spends
more time at values of the membrane potential close to thresh-
old, where the subthreshold resonance is stronger (see Fig. 4).

In summary, the conclusions drawn in the analysis of the
GIF model neuron also hold for two distinct conductance-
based models of resonance: the neurons amplify frequencies
near their subthreshold resonance frequency under conditions
of noise-driven irregular firing. A supplementary feature is that
conductance-based synaptic noise increases the subthreshold
resonance frequency. This in turn increases the frequency for
which the firing rate is preferentially modulated, in the irreg-
ular firing regime.

D I S C U S S I O N

Many classes of neurons throughout the nervous system
exhibit subthreshold resonance. In this paper, we systemati-
cally studied the effect of this intrinsic frequency preference on
both the subthreshold properties and the dynamics of the firing

FIG. 8. The spike-response (I1�A(f )�) to a weak applied os-
cillating current (amplitude I1) for regular and noise-driven
firing modes for two conductance-based models of resonant
neurons. A: model I, regular firing (geo � 0.01 �S, gio � 0.0085
�S, �e � �i � 0.0005 �S, I1 � 0.02 nA). The strongest
amplification is at a frequency equal to the firing rate r0 � 50
Hz. B: model I, noise-driven irregular firing at high rate (geo �
0.01 �S, gio � 0.015 �S, �e � �i � 0.01 �S, I1 � 0.2 nA). The
strongest amplification is now near the resonant frequency fR �
10 Hz. C: model I, noise-driven firing at low rate r0 
5.5 Hz
(geo � 0.01 �S, gio � 0.063 �S, �e � �i � 0.015 �S, I1 � 0.1
nA). Again the peak amplification is at the resonance frequency
fR � 10 Hz. D: model II, noise-driven firing at low rate (geo �
0.02 �S, gio � 0.012 �S, �e � �i � 0.01 �S, I1 � 0.1 nA). The
strongest amplification is near the resonant frequency of this
neuron, at 
50 Hz. The error bars are smaller than the symbol
size.

FIG. 9. The effect of increasing synaptic
conductance on the modulation and phase of
the spike-response (I1�A(f )�). Model II, for
which gL � 0.037 �S, with synaptic-con-
ductance input that increases this conduc-
tance by 100% (F, geo � 0.021 �S, gio �
0.016 �S), 200% (■ , geo � 0.038 �S gio

�
0.036 �S), and 400% (}, geo � 0.076 �S,
gio � 0.072 �S). A: spike rate modulation.
The spike-rate resonant frequency is shifted
to 
50, 60, and 80 Hz for conductance in-
creases of 100, 200, and 400%, respectively.
B: phase. The frequency where the spike rate
is in phase with the input has a correspond-
ing shift to higher values. In all cases, the
amplitude of the sinusoidal current was 0.05
nA and �e � �i � 0.01 �S, eliciting a
background firing rate of 20 Hz.
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rate. Using reduced models as well as two example conduc-
tance-based model neurons, it was found that resonant neurons
can amplify an oscillatory component in their input as they
transmit it to postsynaptic targets. When the noise from the
synaptic bombardment is significant, the frequency most
strongly amplified is the subthreshold resonant frequency it-
self. The results of this study underline the importance of
taking noise into account when examining neuronal response
and provides a first step in the understanding of the role of
resonance in oscillations at the network level.

Subthreshold dynamics

Our analysis of two- and three-variable neuronal models
classifies a broad range of subthreshold behavior, providing a
unifying framework in which different models can be inserted
and compared. In particular, it shows that resonance and
damped oscillations in response to transient inputs occur in
overlapping but different regions of parameters.

Neurons can exhibit resonance when they include a suffi-
ciently slow variable that opposes voltage change as previously
emphasized (see e.g., Hutcheon and Yarom 2000). In this case,
the negative feedback at low frequencies together with the
suppressed response at high frequencies creates a band-pass
filter that gives the resonant response but not a damped-oscil-
latory response. Figure 2 shows that having a sufficiently slow
variable that opposes voltage change is indeed a sufficient
condition for resonant behavior. It is, however, not a necessary
condition because even a fast variable (i.e., �1 � C/g) can
produce resonance as long as its conductance g1 is sufficiently
large. In fact, an examination of the regions in Fig. 2 shows
that resonant neurons with slow variables are generally non-
oscillating, whereas those with fast variables are generally
intrinsically oscillating. Conversely, neurons exhibiting
damped oscillations do not necessarily have resonance if the
damping of the oscillation is strong enough. This appears in a
small parameter region where the effective coupling between
the two variables is weak, as shown in Fig. 2.

Our analysis also clarifies the relationship between the phase
and the amplitude of the impedance. Phase advance of the
membrane potential at low frequencies implies a peak in the
impedance profile, but the reverse is not necessarily true, if the
resonance is too weak.

Further analysis of three-variable models identified an im-
pedance profile with a trough at low frequency followed by a
peak at higher frequencies. Such behavior was recently found
experimentally in CA1 interneurons of the hippocampus by
Pike et al. (2000). The criteria for a trough in the impedance
profile are two active components that act on a slower time
scale than the membrane time constant. The slowest of the two
variables must act to amplify voltage change, whereas the
faster should act to oppose the change. An explicit example
was given in terms of a neuron with an inactivating slow
potassium current.

The analytical results presented can be used in the interpre-
tation of experiment in two ways. They allow for the system-
atic building of a minimal model of a neuron, given the
experimentally measured impedance profile. First the qualita-
tive features of the resonance curve indicate the minimal num-
ber of variables needed (e.g., two variables for neurons with a
single peak in the curve, three variables for neurons with a

trough followed by a peak); second, the parameters of the
model can be obtained quantitatively by fitting the impedance
curve of the given model to the data. From an experimental
point of view, they provide hints for the type of currents, or
combination of currents, needed to achieve given resonance
properties (see also Hutcheon and Yarom 2000).

The general subthreshold “phase diagrams” that were intro-
duced here are related to several diagrams, which appeared
previously in the literature for particular neurons. In models
with persistent sodium and slow potassium currents, diagrams
have been drawn in parameter space gNaP-gKs (Hutcheon and
Yarom 2000; White et al. 1995). In Fig. 2, � is proportional to
minus gNaP, whereas � is proportional to gKs. The triangular
region (of the above-mentioned diagram) where subthreshold
oscillations occur corresponds to the area bounded by the line
where spontaneous oscillations arise and the continuation of
the straight line indicating a zero total conductance in Fig. 2.
Likewise, the diagram of Manor et al. (1997), showing how the
cellular behavior changes when the leak conductance and the
conductance of a low-threshold calcium current are changed, is
related to Fig. 2, by an appropriate change of variables. The
conductance of the low-threshold calcium channels enters both
on the � variable (through its instantaneous activation dynam-
ics) and on the � variable.

Firing-rate dynamics

Resonance properties have traditionally been studied at the
single-neuron level or in neurons coupled by gap junctions
(Manor et al. 1997). On the other hand, firing properties of
resonant neurons have been less systematically studied. Such
studies are important to assess the role of resonance in net-
works in which the main coupling is chemical and not electri-
cal. Indeed, for subthreshold resonant properties to affect net-
work dynamics, as reported by Tiesinga et al. (2001) and Wang
(2002), the firing properties of single neurons themselves
should be sensitive to the resonance. In the present paper, this
question has been investigated, using both reduced models and
conductance-based models. It has been shown how noise plays
a crucial role in the appearance of resonance at subthreshold
frequencies of the firing rate modulated by a sinusoidal input.
When noise is weak and firing is regular, the firing rate re-
sponse is dominated by resonances at the background firing
frequency and the subthreshold resonance is masked. When
noise is strong and firing is approximately Poisson, the reso-
nance at the background firing rate disappears and the sub-
threshold resonance is revealed. The phenomenon is most
clearly seen with the GIF model that has a subthreshold re-
sponse independent of membrane potential and is submitted to
white-noise current inputs. This produces a single voltage-
independent resonant frequency that can be directly compared
with the frequency amplified in the firing rate. Given the
simplicity of the model, the shift of the firing rate resonance
with noise and its relation to the subthreshold can also be
demonstrated mathematically. However, neurons are more re-
alistically modeled using a conductance-based description. In
addition, synaptic “noise” is better modeled by conductance
fluctuations that both modify the conductance of the neuron
and give rise to correlated noise. This complicates the phenom-
enon as compared with the GIF model. The neuronal conduc-
tance and the preferred subthreshold frequency vary with the
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membrane potential and with the input strengths. The effect of
increasing synaptic conductance is to increase the subthreshold
resonance frequency, and this effect leads, for noisy inputs, to
a corresponding increase in firing rate resonance frequency.
The noise correlations also modify the neuronal response at
high frequency as previously described (Brunel et al. 2001),
but this happens at higher frequencies than those of interest
here. So the phenomenon observed with the GIF model is
found to remain true for the conductance-based models. At a
general level of explanation, it can be attributed to the band-
pass filter properties of the membrane subthreshold dynamics
that amplify the response at the subthreshold preferred fre-
quency.

Our study suggests a functional role for noise in making
known to the network the frequency preferences of single
neurons. In a sense, noise allows the neurons to communicate
to each other information about the particular subthreshold
ion-channel dynamics they exhibit, a message that otherwise
would be lost in regular spiking dynamics. These results on the
firing rate dynamics of resonant neurons could be tested in any
slice preparation in which resonant neurons are observed.
Between 1,000 and 50,000 s of simulation time were needed to
produce accurate numerical data for this paper. However, sim-
ulations also suggest that collecting spikes for 
5–10 min per
frequency should be sufficient to see the effects of subthreshold
resonance in the signal gain at a reasonable significance level.

It should perhaps be emphasized that the unmasking of
subthreshold resonance properties by noise is quite distinct
from the usual “stochastic resonance” effect (Wiesenfeld and
Moss 1995) that quantifies the output at a given frequency as
the strength of noise is varied. In this case, resonance generally
arises as some stochastic rate coincides with the given oscil-
lating frequency. A simple IF model, with passive membrane
properties, displays stochastic resonance (Bulsara et al. 1994)
but not the subthreshold and firing-rate resonance studied here.

Firing rate resonance and the associated phase advance of
the firing rate at low frequencies can also be due to other
mechanisms, such as spike frequency adaptation (Fuhrmann et
al. 2002). One difference between the two mechanisms is that
with spike frequency adaptation the negative feedback
comes through action potential-dependent currents, whereas
in the case of subthreshold resonance negative feedback
comes from the interspike subthreshold dynamics. Another
difference is that for the case of subthreshold resonance, the
peak response in the signal gain and corresponding zero
phase lag near the resonant frequency do not appear under
noiseless conditions.

Implications for network synchronization

The firing rate signal gain examined in this paper is one of
the crucial quantities that determines the synchronization prop-
erties of large networks, together with the temporal character-
istics of synaptic transmission. In particular, the existence of
phase advance of the firing rate at low frequency can generate
an oscillation in networks of excitatory neurons as was shown
for the case of adapting neurons (Fuhrmann et al. 2002).
Therefore we expect that in noisy in-vivo-like conditions,
networks of excitatory neurons with subthreshold resonance
could generate oscillations.

From the theoretical point of view, we have introduced a
simplified neuronal model for a resonant neuron, the general-
ized IF neuron, that can be engineered to capture the subthresh-
old dynamics of any conductance-based model neuron but with
a fixed threshold for firing. Simple one-variable IF neurons
have proven very useful for understanding the dynamics of
large networks because analytical tools can be applied to study
and understand in great detail the collective dynamics of such
networks (see e.g., Abbott and van Vreeswijk 1993; Amit and
Brunel 1997; Amit and Tsodyks 1991; Brunel 2000; Brunel
and Hakim 1999; Gerstner 2000; Treves 1993). However, IF
neurons are clearly not suited to describe neurons with sub-
threshold resonance. The generalized IF neuron that was intro-
duced here provides an appropriate tool for the investigation of
the collective properties of networks of resonant neurons. Such
theoretical studies will help to obtain a deeper understanding of
the functional role of subthreshold resonance in the nervous
system.

A P P E N D I X

Model I: spiking neuron with an IH current

The model is defined as follows

CM

dV

dt
� �IL 	 IH 	 INa 	 IK 	 Isyn 
 Iapp

where the membrane capacitance CM � 0.37nF and the leak current IL

is defined by IL � g�L (V � EL ) with g�L � 0.037 �S and EL � �68
mV. The other currents take the form

INa � g�Nam�
3 h�V 	 ENa�

IK � g�Kn4�V 	 EK�

IH � g�H�0.8f 
 0.2s��V 	 EH�

where the conductances g� and reversal potentials E are given in Table
A1, and it should be noted that f� � s�. The time-varying activation
and inactivation variables h, n, f, and s all follow equations of the form

TABLE 1. Definitions and parameters of the currents used for the conductance-based models

Current g� , �s E, mV Gating Variables x� �x, ms

INa 19.24 �55 m� � �m/(�m � �m) �m � 0
h� � �h/(�h � �h) �h � 1/(�(�h � �h))

IK 7.4 �90 n� � �n/(�n � �n) �n � 1/(�(�n � �n))
IH 0.03 �41 f� � 1/(1 � e(V�78)/7) �f � 38

s� � 1/(1 � e(V�78)/7) �s � 319
INaP 0.037 �55 p� � 1/(1 � e�(V�51)/5) �p � 0
IKs 2.59 �90 q� � 1/(1 � e�(V�34)/6.5) �q � 6
IKs
(2) 5.18 �90 q� � 1/(1 � e�(V�34)/6.5) �q � 6

k� � 1/(1 � e(V�65)/6.6) �k � 200 � 220/(1 � e�(V�71.6)/6.85)
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�x�V�
dx

dt
� x��V� 	 x (A1)

The voltage dependence of the corresponding �x(V) and x�(V)
parameters are also given in Table A1. All currents are taken to be at
physiological temperatures, and hence the time scale of the Hodgkin-
Huxley spike-generating currents have been shortened by the temper-
ature factor � � 3(36�6.3)/10 � 26.12. The resting voltage of this
model neuron is equal to Vrest � �65.2 mV and the firing threshold
is close to �56.4 mV.

LINEARIZATION. Following the procedure outlined in METHODS, the
conductance-based model outlined in the preceding text can be lin-
earized around a holding voltage V* (which can be varied by changing
Iapp). This model yields the following set of linear equations

CMv̇ � �gMv 	 ghwh 	 gnwn 	 gfwf 	 gsws

�hẇh � v 	 wh

�nẇn � v 	 wn

�f ẇf � v 	 wf

�sẇs � v 	 ws

The conductance gM � �Imem/�V is the slope of the instantaneous
I-V curve at V*

gM � g�L 
 g�Nam�
3 h� 
 g�Kn�

4 
 g�H(0.8f� 
 0.2s�)

�3g�Nam�
2 h��V* 	 ENa���m�

�v �*

where the convention that X* is the quantity X evaluated at the holding
voltage V* is used. The other conductances introduced are

gh � g�Na�V* 	 ENa�m�
3��h�

�v �*

gn � 4g�K�V* 	 EK�n�
3��n�

�v �*

gf � g�H0.8�V* 	 EH���f�

�v�*

gs � g�H0.2�V* 	 EH���s�

�v�*

REDUCTION TO TWO VARIABLES. The variables wh and wn are much
faster than other time scales in the system. Thus the substitution wh � v
and wn � v in the voltage equation represents a good approximation. The
slow variable of the H current ws has a relatively long time scale and
hence follows the time average of v (obtained from a solution of Eq. A1).
For voltage changes that average to zero around the rest, the replacement
ws30 is a valid approximation. These approximations taken together
yield the two-variable system of equations

C
dv

dt
� �gv 	 gf wf

�f

dwf

dt
� v 	 wf

where C � CM and g � gM � gh � gn.

Model II

The model is defined as follows

CM

dV

dt
� �IL 	 INaP 	 IKs 	 INa 	 IK 	 Isyn 
 Iapp

where CM � 0.37 nF and the leak current is defined by IL � g�L (V �
EL ) with g�L � 0.037 �S and EL � �60 mV. The spike-generating
currents are identical to those of model I. The INaP and noninactivating
IKs currents are defined (Wang 1993) by

INaP � g�NaPp��V � ENaP�

IKs � g�Ksq�V 	 EKs�

The resting voltage of the neuron is Vrest � �66.2 mV and the onset
of spontaneous oscillations occurs near �57.2 mV.

LINEARIZATION. Linearizing this model at a fixed voltage V* yields
the following set of linear differential equations

Cv̇ � �gMv 	 ghwh 	 gnwn 	 gqwq

�hẇh � v 	 wh

�nẇn � v 	 wn

�qẇq � v 	 wq

where again the conductance gM � �Imem/dV is the slope of the
instantaneous I-V curve at V*

gM � g�L 
 g�Nam�
3 h� 
 g�Kn�

4 
 g�NaPp� 
 g�Ksq� 
 3g�Nam�
2 h��V* 	 ENa���m�

�v �*


 g�NaP�V* 	 ENa���p�

�v �*

and the other conductance not common to model I is

gq � g�Ks�V* 	 EK��dq�

dv �*

where all voltage-dependent quantities are evaluated at V*.

REDUCTION TO TWO VARIABLES. Again the model can be reduced
to the two-variable form by noting that the time scales of the spike-
generating currents are much faster than other time scales in the
voltage equation. However, in this case the replacements wh � v �
gh�hv̇ and wn � v � gn�nv̇ are used, giving a better agreement near the
line where spontaneous oscillations appear. Thus the two-variable
reduction of this model is

C
dv

dt
� �vg 	 gqwq

�q

dwq

dt
� v 	 wq

where C � CM � gh�h � gn�n and g � gM � gh � gn.

TABLE 2. Values for � and � used in the definition of the spike-
generating currents INa and Ik

� �

m �m �
�0.1�V 
 32�

exp��0.1�V�32))�1
�m � 4 exp(�(V � 57)/18)

h �h � 0.07 exp(�(V � 46)/20) �h �
1

exp��0.1�V 
 16�� 
 1

n �n �
�0.01�V 
 36�

exp��0.1�V 
 36�� 	 1
�n � 0.125 exp(�(V � 46)/80)
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Model with a trough in the impedance

This model is similar to model II defined in the preceding text,
except that in this case an inactivation term is included in the defini-
tion of the slow potassium current

IKs
�2� � g�Ksqk�V 	 EK�

see Table A1 for the values of the various parameters. This model is
linearized around �65 mV to give the following set of equations

Cv̇ � �gMv 	 ghwh 	 gnwn 	 gqwq 	 gkwk

�hẇh � v 	 wh

�nẇn � v 	 wn

�qẇq � v 	 wq

�kẇk � v 	 wk

where in this case

gM � g�Nam�
3 h� 
 g�Kn�

4 
 g�NaPp� 
 g�Ksq�k� 
 g�NaP�V* 	 ENa���p�

�v �*


 3g�Nam�
2 h��V*�ENa���m�

�v �*

and

gk � g�Ks�V* 	 EK�q���k�

�v �*

gq � g�Ks�V* 	 EK�k���q�

�v �*

The corresponding three-variable model is found by assuming the h
and n variables are fast, leaving the set

Cv̇ � �gv 	 gqwq 	 gkwk

�qẇq � v 	 wq

�kẇk � v 	 wk

where C � CM � gh�h � hn�n and gM � g � gn � gh.
The two-variable approximation of this model is obtained by the

further assumption that the k variable is slow, and hence wk is set to
zero. At V*� �65 mV, this two-variable model is identical to that of
model II given in the preceding text. The impedance curves of the full,
three-, and two-variables models are given in Fig. 3B.

Impedance and eigenvalues of the two-variable model

The eigenvalues of the two-variable model are

�1 �
1

2�1
���� 
 1� 
 ��� 	 1�2 	 4��

�2 �
1

2�1
���� 
 1� 	 ��� 	 1�2 	 4�� (A3)

STABILITY OF THE MEMBRANE POTENTIAL. For the membrane
potential to be stable, the real part of both eigenvalues must be
negative. This gives the following bounds on the parameters � and �

� � �1 and � 
 � � 0 (A4)

AMPLITUDE OF THE IMPEDANCE. For an oscillating current of
frequency f � �/(2), the amplitude of the complex impedance �Z� is
given as

�Z� � ��1

C
� � �1 
 �1

2�2�

�� 
 � 	 �1
2�2�2 
 �1

2�2�1 
 ��2 (A5)

A subthreshold resonance, signaled by the existence of peak in
�Z(f )� at some nonzero frequency, occurs if (Hutcheon et al. 1996a)

� � ��� 
 1�2 
 1 	 �1 
 ��

and at a frequency

fR �
1

2�1

���� 
 � 
 1�2 	 �� 
 1�2�1/2 	 1�1/2 (A6)

THE PHASE OF THE IMPEDANCE. The phase �, defined in Eq. 11, is

tan � � �1�
� 	 �1 
 �1

2�2�

� 
 ��1 
 �1
2�2�

(A7)

A zero phase-lag exists for � 	 1, whereas a phase lag 	90° is
present for � � 0.

RESPONSE TO A SQUARE-PULSE CURRENT. The response of the
neuron to the onset of a square-pulse current Iapp � I�(t) can be found
in terms of the eigenvalues as

v � v� 
 v�� e�1t��1�1�2 
 �2

�1 	 �2
�
 e�2t��1�1�2 
 �1

�2 	 �1
��

where v� � I/(g � g1) is the holding voltage corresponding to an
applied current of Iapp � I in the linear approximation. When the roots
are complex and written as � � �� � i�0 the form above can be
written more conveniently as

v � v� 	 v�e��t�cos ��0t� 
 �� 	 �1��
2 
 �0

2�

�0
� sin��0t�

The existence of complex eigenvalues indicates that the neuron has
damped oscillations at a frequency f0. This occurs when 4� 	 (� �
1)2 (Puil et al. 1986) giving

�0 �
1

2�1

�4� 	 �� 
 1�2

The qualitatively different types of behavior that can occur are the
following: when � 	 (� � 1)2/4, the membrane responds with
damped oscillations; when � 	 1 and 0 � � � (� � 1)2/4, the
membrane has a single overshoot (or sag if the current pulse is
hyperpolarizing); for all other cases, � � 1, � � (� � 1)2/4 and � 	
1, � � 0, the voltage changes monotonically from its initial to final
value.

Impedance and eigenvalues of the three-variable model

The complex impedance of the three-variable model model defined
by Eq. 7 is

Z �
1

g
� �1 
 i��1� �1 
 i��2�

�1 
 i��m��1 
 i��1��1 
 i��2� 
 �1�1 
 i��2� 
 �2�1 
 i��1�
� (A8)

where � � 2f, �m � C/g, �1 � g1/g, and �2 � g2/g.
To classify the behavior of the amplitude of the impedance versus

frequency curve in terms of the number of local minima and/or
maxima, the derivative of �Z� with respect to � is computed. Its sign
is determined by a fourth order polynomial in �2. The number of real
positive roots of this polynomial tell us how many local extrema there
are in the amplitude versus frequency curve. The roots of the poly-
nomial are found numerically. From these roots, the boundaries of the
regions with 0, 1, or 2 local minima, corresponding respectively to no
resonance, simple resonance, and resonance preceded by a trough, are
found numerically.

The eigenvalues of the stability matrix of Eq. 7 are given by the
following cubic polynomial
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�3 
 � 1

�m



1

�1



1

�2
��2 
 � 1

�1�2



1 
 �1

�1�m



1 
 �2

�2�m
�� 


1 
 �1 
 �2

�m�1�2

� 0

(A8)

Insertion of � � 0 in Eq. A8 yields the line 1 � �1 � �2 � 0. To
find the line where spontaneous oscillations appear, we set � � i� and
obtain a half straight line in a parametric way

�1 �
�m 
 �2

�1 	 �2

�1 
 �2�1
2�

�2 � �
�m 
 �1

�1 	 �2

�1 
 �2�2
2�

Finally, to obtain the regions where damped oscillatory behavior
arise in response to a step current, the roots of the cubic polynomial
are computed numerically. The boundaries of the area in which a pair
of complex conjugate roots appear are then found.

Calculation of the firing-rate resonance

The modulation in the instantaneous firing rate due to a sinusoidal
input in the limit �1 		 � can be calculated analytically. Details will
be published elsewhere (Brunel et al. 2003). The modulation in the
firing rate can be written

A��� � �1 	
�Y ���

1 
 �Y ��� 
 i��1
�ALIF���

Y��� �
1 	 g�m�v� 	 vr�ALIF���

1 
 i��m

where � � g1/g, �m � C/g, and ALIF(�) is the firing-rate linear
response (signal gain) of the IF neuron (Brunel and Hakim 1999;
Brunel et al. 2001)

ALIF��� �
r0

g��1 
 i��m)
��U

�y
�yt, ��m� 	

�U

�y
�yr, ��m�

U�yt, ��m� 	 U�yr, ��m�
� (A9)

the noise strength here is given by � � (IN /g)�N /�m. The parameters
yt, yr and the background firing rate r0 are given by the set of equations

yt �
v� 
 ��v� 	 I0/g

�

yr �
vr 
 ��v� 	 I0/g

�

�v� �
I0/g 	 �v� 	 vr�r0�m

1 
 �
(A10)

r0 � ��m�	
yr

yt

eu2
�1 
 erf�u����1

where erf(u) is the standard error function, and U is given in terms of
combinations of hypergeometric functions (Abramowitz and Stegun
1970)

U�y, �� �
ey2

���1 
 i��/2�
M�1 	 i�

2
,
1

2
, �y2�


2yey2

��i�/2�
M�1 	

i�

2
,
3

2
, �y2�
(A11)

The amplitudes of the signal-gain profiles �A(f )� in Figs. 6 and 7
have been normalized to 1 at zero frequency for both the analytical
results (—) and data from numerical simulation (F). A systematic and
frequency-independent shift of 
10% between theory and numerics
was visible in the unnormalized curves due to the finite value of �1.

Such a shift can be captured analytically by examining higher orders
of the approximation that take the finite value of �1 into account.
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