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rows in the Data Viewer, starting with a and ending with b. The formula a ; b creates a list
starting with a and incrementing by b for each row. For example, replace t with 0 : 6 . 283
and then replace V with sin (t). Plot V versus I and you will see a nice sine wave! Pretty
lame, huh?

One trick is to read in data from a file and manipulate it with the data browser and use
XPPA UT as a fancy graphing program.

9.5 Oscillators, phase models, and averaging
One of the main areas of my own research concerns the behavior of coupled nonlinear
oscillators. In particular, I have been interested in the behavior of weakly coupled oscillators.
Before describing the features of XPPAUT that make such analyses easy, I will discuss a
bit of the theory. Consider an autonomous differential equation

X’=F(X)

which admits as a solution an asymptotically stable periodic solution X0(t) = X0Q + P),
‘Iwhere P is the period. Now suppose that we couple two such oscillators, say, X1 and X2:

= F(Xj)±eG1(X,,X1),

X = F(X,) + eG2(X1,X,),

where G1, G7 are possibly different coupling functions and E is a small positive number.
V

One can apply successive changes of variables and use the method of averaging to show
that, for E sufficiently small,

X(r) = X(9) + 0(E),

at guess with
I +EH1(&2—8i), = I +EH2(—82),

and H are P-periodic functions of their arguments. This type of model is called a phase
[ng File model and has been the subject of a great deal of research One of the key questions is What

is the form of the functions H and how can one compute them? This is where XFPA UT
say the can be used. The formula for H is

ton in the
1 “

iula. The H()
— j

X(t) . G[X0(1 +).X9(t)]dt (9.1)P0

ymbols &
which is the average of the coupling with a certain P-periodic function X* called the adjointivative of
solution. This equation satisfies the linear differential equation and normalization:and then

- V_V

Note that dX*(t)
V

ou cannot dt
= _[DXF(XOQ))ITX*(t) X*(t) X(t) = 1

Iumn with Here, DxF is the derivative matrix of F with respect to X and AT is the transpose of the
‘umber of matrix A.
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Thus, to compute the functions H, the adjoint must be computed along with the inte
gral. XPPAUTimplements a numerical method invented by Graham Bowtell for computing
the adjoint X*(t). The method only works for oscillations which are asymptotically stable.
Here is the idea. Let B(t) = (DxF(Xo(t))). Since the limit cycle is asymptotically stable,
if we integrate the equation

y’ = B(t)Y

forward in time, it will converge to a periodic orbit proportional to X(t) as a consequence
of the stability of the limit cycle and the translation invariance. Similarly, the solution to

Z’ =

will converge to a periodic orbit if we integrate it backward in time. As you can see, this is
the desired adjoint solution and is how XPFAUT computes it. Once X*(t) is comprLted, it
is trivial to compute the integral and thus compute the interaction function.

9.5.1 Computing a limit cycle and the adjoint

To use XPPAUTto compute the adjoint, as a necessary first step to computing the interaction
function H we have to compute exactly one full cycle of the oscillation. Let’s use as our
example the Morris—Lecar equation:

= I + gl(ei — v) + gw(e — w) + gc11t(v)(eca

= (w(u)
— w)A(v).

We will look at

= f(vj. u1) + 6(07
— Ut),

w = g(vi, w1),

= f(v, w2) + E(Vi —

w = g(v2, w7).

Since the method of averaging depends on the two oscillators being identical, except pos
sibly for the coupling, all you need to do is integrate the isolated oscillator. Use the file
ml . ode. Change the parameters 1= 09, phi=0 5. Integrate the equations and click
on Initialconds Last a few times to make sure you have gotten rid of all transients.
Now you are pretty much on the limit cycle. To compute the adjoint, you need one full
period. In many neural systems, coupling between oscillators occurs only through the volt
age and thus the integral (9.1) involves only one component of the adjoint, the voltage
component. For whatever reason, the numerical algorithm for computing the adjoint for a
given component converges best if you start the oscillation at the peak of that component.
Thus, since we will only couple through the potential in this example, we should start the
oscillation at the peak of the voltage. Here is a good trick for finding that maximum. In
the Data Viewer click on Home which makes sure that the first entry of the data is at the

J
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top of the Data Viewer. Click on Find and, in the dialog box, choose the variable v and,
for a value, choose 1000 and then click Ok. XPPA UT will find the closest value of v to
1000 which is obviously the maximum value of v. Now click on Get in the Data Viewer
which grabs this as initial conditions. In the Main Window, click on Initialconds Go
to get a new solution. Plot the voltage versus time. Use the mouse to find the time of the
next peak. (With the mouse in the graphics window, hold down the left button and move
the mouse around. At the bottom of the windows, read off the values.) The next peak is at
about 22.2. In the Datad Viewer scroll down to this time and find exactly where v reaches
its next maximum. Note that, as we suspected, it is at t = 22.2. In the Main Window, click
on the nUmerics menu and then Total to set the total integration time. Choose 22 .21
(it is always best to go a little bit over—but just a little). Escape to the main menu and click
on Initialconds Go. Now we have one full cycle of the oscillation! The rest is easy.

Computing the adjoint

Click on nUmerics Averaging New adj oint and after a brief moment, XPPAUTwi1I
beep. (Sometimes, when computing the adjoint, you will encounter the Out of Bounds
message. In this case, just increase the bounds and it recomputes the adjoint.) Click on
Escape and plot v versus time. This time, the adjoint of the voltage is in the Data Viewer
under the voltage component. (Note that the adjoint is almost strictly positive and looks
nearly like 1 + cost. This is no accident and has been explained theoretically.)

9.5.2 Averaging

Now we can compute the average. Recall that the integral depends on the adjoint, the
original limit cycles, and a phase-shifted version of the limit cycle:

X*(t)
. G(X0Q + 1)’ X0(t)).

In XPPAUT, you will be asked for each component of the function G. For unshifted parts,
use the original variable names, e.g., x, y, z and, for the shifted parts, use primed versions,

z’. The coupling vector in our example is

(V(t+)— V(t),O).

Thus, for our model, the two components for the coupling are (v’ -v, 0). This says that
we take the phase-shifted version of the variable v, called v’ by XPPAUT, and subtract
from it the unshifted version of v. With these preliminaries, it is a snap to compute the
average. Click on nUmerics Averaging Make H. Then type in the first component of
the coupling, v’ -v and the second 0. Then let it rip. In a few moments, the calculation will
be done. If your system has more than two columns in addition to time t (as this example
does with - v, w, ica, ik), then the first column contains the average function H(),
the second column contains the odd part of the interaction function, and the third column
contains the even part. Plot the function H by escaping back to the main menu and plotting
v versus time—remember v is the first column in the browser after the t column. This is a
periodic function. For later purposes, we want to approximate this periodic function. Click
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on nUmerics stocHastic Fourier and choose v as the column to transform. Look

at the data browser and observe the first three cosine terms (column I after the t column)

and the first three sine terms (column 2). They are (3.34, —3.05, -—.29) and (0.3.6l,—0.33),

respectively. Thus to this approximation,

HQ/) = 3.34 3.05 cos —
0.29cos2 + 3.61 sin —0.33 sin2. (9.2)

To get the interaction function, adjoint, or original orbit back into the data browser,

click on Averaging Hfun, etc. from the nUmerics menu.

Summary

Here is how to average weakly coupled oscillators:

1. Compute exactly one period of the oscillation—you may want to phase-shift it to the

peak of the dominant coupling component.

2. Compute the adjoint from the nUmeric Averaging menu.

3. Compute the interaction function using the original variable names for the unshifted

terms and primed names for the shifted terms.

9.5.3 Phase response curves

One of the most useful techniques available for the study of nonlinear oscillators is the phase

response curve (PRC). The PRC is readily computed experimentally in real biological and

physical systems and is defined as follows. Suppose that there is a stable oscillation with

period T. Suppose that at t = 0 one of the variables reaches its peak. (This can always be

done by translating time.) At a time r after the peak, one of the state variables is given a

brief perturbation that takes it off the limit cycle. This will generally cause the next peak to

occur at a time T’(r) that is different from the time it would have peaked in absence of the

perturbation. The PRC (r) is defined as

A(T) I —
T’(r)/T.

If (r) > 0 for some r, we say that the perturbation advances the phase since the time of

the next maximum is shortened by the stimulus. Delaying the phase occurs when (r) < 0.

Experimental biologists have computed PRCs for a variety of systems such as cardiac cells,

neurons, and even the flashing of fireflies. We will use XPPAUTto compute the PRC for

the van der Pol oscillator
I=—x+(l —x2)

subjected to a square-wave pulse of width u and amplitude a.

Here is how we will set up the problem. We will let r be a variable rather than

a parameter so that we can range through it and keep a record—it is like a bifurcation

parameter. We will define a parameter T0 which is the unperturbed period. We will use the

ability of Xf’PAUTto find the maxima of solutions to ODEs and have the computation stop

when the maximum of x is reached. The time at which this occurs is the time T’(r) and so

we will also track an auxiliary variable 1 — t/ T0 which is the PRC. Here is the ODE file:
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fi vdpprc.ode
4 PRC of the van der Pol oscillatormit x=2
x’ =y
y’ )cy* (l-x2) ÷a*pulse (t-tau)
tau’ =0
pulse (t) =heav(t) *heav(sigmat)
par sigma=.2,a=0
par tO=6.65
aux prc=l-t/tO
@ dt=.0l
done
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Note that the function pulse (t) produces a small square-wave pulse. To compute thePRC, you want to integrate the equations for a bit to get a good limit cycle with no perturbation (a 0). Then start at the maximum value of x and integrate until the next maximum.This will tell you the base period. Then you want to apply the perturbation at differenttimes and compute the time of the next maximum and then from this get the PRC. Fire upXPPAUT with this file. Follow these simple steps:

1. Integrate it and then integrate again using the Initial conds Last (IL) commandto be sure you have integrated out transients.

2. Now find the variable of interest, in this case, x. To do this, in the Data Viewer clickon Home to go to the top of the data window. Click on Find and type in x for thevariable and 100 for the value. XPPA UTwill try to find the value of x closest to 100.This will be the maximum. Click on Get to load this as an initial condition.
3. Figure out the unperturbed period. One way is to integrate the equations and estimatethe period. A better way is to let XPPAUT do it for you. In the Main Window, clickon nUmerics Poinc are map Max/Mm and fill in the dialog box as follows:

Variable: x
Section: 0
Direction: I
Stop on sect: Y

and then click on Ok. You have told XPPA UT to integrate, plotting out only themaxima (Direction=1) of x. The Stop on section ends the calculation whenthe section is crossed. Click on Transient and choose 4 for the value. This is sowe don’t stop at the initial maximum. Transient allows the integrator to proceedfor a while before looking at and storing values. Now exit the numerics menu byclicking Esc. Click on Initialconds Go and the program will integrate until xreaches a maximum. In the Data Viewer, click on Home and you should see thatTime has a value of around 6.6647. This is the unperturbed period. Set the parameterto to the value in the Data Viewer.
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4. Now we are all set to compute the PRC. Change the perturbation amplitude from 0

to 3. Click on Initialconds Range and fill in the dialog box as follows:

Range over: tau

Steps: 100

Start: 0

End: 6.6647

Reset storage: N

and click Ok. It should take a second or two.

5. Plot the auxiliary quantity PRO against the variable tau. (Click on Viewaxes 2D

and put tau on the X-axis and PRO on the Y-axis. Click OK and then Window

Fit to let XPPAUT figure out the window.) You should see something like the top

curve in Figure 9.2.

Freeze this curve and try using a different value of the amplitude a.

Exercise. Compute the PRC for the Morris—Lecar oscillator by adding the required parts

to the file ml . ode. Define a square-wave pulse just like above with a width of 0.25 and a

magnitude of 0.1. If you are stuck, download the file mlprc. ode which sets up the ODE

for you. You should get something like the bottom plot of Figure 9.2.

9.5.4 Phase models

En the previous section we saw how to reduce a pair of coupled oscillators to a pair of scalar

models in which each variable lies on a circle. XPPA UT has a way of dealing with flows on

systems of scalar variables each of which lie on a circle. The phase-space of a system of,

say, two such variables, is the two-torus. Let’s start with the simplest phase model:

= w + ci sin(6?7 —

= cv, + a sin(61
— 92)

representing a pair of sinusoidally coupled oscillators with different uncoupled frequencies,

wj, w2 and coupling strength, a. The ODE file for this is straightforward:

# phase2.ode

# phase model for two coupled oscillators

thi’ =wl+a*sin(th2_thl)

th2’ =w2+a*sin(thlth2)

par wl=l,w2=l.2,a.l5

@ total=lOO
done

Fire this up and integrate the equations. You will get the Out of bounds message at

= 90 or so. That is because the variables 9 are actually defined only modulo 27r and
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Figure 9.2. Top: The PRCfor the van der Pol oscillator with different amplitudes.
Bottom: The PRCfor the Morris—Lecar model.

are not really going out of bounds but instead just wrapping around the circle. Thus, it is
more proper to look at t9j modulo 2r. If you define an auxiliary variable which is fmod 2r
and then plot it, you will get a series of ugly lines that cross from one part of the screen to
the other. This is because XPPAUT does not know that this particular variable is defined
on the circle. There is a simple way to tell XPPA UT which of the state variables lie on the
circle. Click on phAsespace Choose (A C) and when prompted for the period, choose
the default which is approximately 27r. A little window will appear with all your variables
included. Move the cursor to the left of each of them and click the mouse to see a little
X next to the variable. Put this mark next to both variables and click on done. This tells
XPPA UT that these are both considered “folded” variables and they will be folded mod 27r.
Now reintegrate the equations. This time you get no such out of bounds message—instead
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you will see that the plots are all modulo 2jr. Switch the view’ to the phase-plane for the two

variables, 92. (In the Initial Data Window click on the box to the left of each variable

and then on the xvsy button.) You will see that the trajectories seem to converge on a

diagonal line which is shifted slightly upward. Try integrating using the Initialconds

mIce (II) command to choose a variety of initial conditions. They should converge to the

same line. This is an example of a phase-locked solution—an invariant circle on the torus.

Change a from 0.15 to 0.08 and integrate the equations again. Notice how the trajectories do

not converge to an attractor, instead, the whole torus will gradually fill up. Phase-locking

no longer occurs.

A derived example

Now let’s turn to the example that we derived in the previous section and see if a pair of oscil

lators will phase-lock when we use the interaction function defined in (9.2), phase_app ode:

# phase app.ode

# phase model for two coupled oscillators

# using numerically computed H

h(x)=3.34_3.05*cos(x)_.29*cos(2*x)+3.61*sin(x)_.33*sin(2*x)

thi’ =wl÷a*h(th2.thl)

th2’ =w2.i.a*h(thl_th2)

par wl=l,w2=l,a=.l

@ total=lO0

fold=thl, foldth2

@ xlo=O,ylo=D,xhi=6.3,yhi=6.3,xp=thl,yp=th2

done

I have added a few new @ commands. The fold=thl directive tells XPPAUT to make

a circle out of the variable thi, that is, to mod it out. All variables that you want to mod

out can be set by the fold=name directive. This automatically tells XPPA UT to look for

modded variables. The default period is 27r so we don’t have to change it. If you want to

change the period to, say, 3, set it with the command @ tor_period=3. Run XPPAUT

on this, using the mouse to set some initial conditions. Note how all initial data synchronize

along the diagonal, implying 9 = 2. Change the intrinsic frequency w2 and see how big

you can make it before phase-locking is lost.

Pulsatile coupling

Winfree [42] introduced a version for coupling oscillators using the PRC of the oscillator,

assuming that the interaction between oscillators occurred only through the phase and took

the form of a product. Ermentrout and Kopell [II] proved that this was a reasonable model

when certain assumptions were made concerning the attractivity of the limit cycle. Here is

a pair of pulse-coupled phase models:

d81
= w + P(97)R(9),


