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Preface

These are lecture notes for Math 7800 taught at the University of Utah in the
Fall of 2022. The course will be on K-stability with a focus on recent progress on
understanding the K-stability of Fano varieties using algebraic tools.

This document will be updated weekly throughout the semester. Any comments,
corrections, and questions on these notes are welcome.

The prerequisite for this course will be a solid foundation in algebraic geometry.
For example, a year long course in algebraic geometry or Chapters I-V of Hartshorne
will suffice. Knowledge of some higher dimensional geometry, such as material on
positivity of line bundles [Laz04, Sections 1.1-1.5] and singularities of the Minimal
Model Program [KM98, Section 2.3], will be helpful, but not strictly necessary. We
will review the relevant definitions and concepts in class.
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CHAPTER 1

Introduction

In this chapter, we give a brief survey on: “What is K-stability?” This is meant
to provide motivation and context for definitions and topics that will appear in future
chapters.

K-stability is a notion that was introduced by Tian to detect the existence of cer-
tain canonical metrics on algebraic varieties [Tia97]. The definition was reformulated
in a purely algebraic way and generalized by Donaldson [Don02]. While the latter
definition is algebraic, it originally looked quite foreign to algebraic geometers. For
example, the definition is quite involved to state and difficult to verify in even the sim-
plest of examples without additional machinery. Hence, algebraic geometers originally
did not expect the notion to be important outside of complex differential geometry.

Recently, there has been great interest and progress by the algebraic geometry
community in understanding K-stability algebraically. This has relied on connections
between K-stability and topics including birational geometry, non-Archimedean ge-
ometry, and singularity theory. This progress has also resulted in applications to
algebraic geometry: the construction of moduli spaces of Fano varieties. The goal of
this course is to understand some of this algebraic progress and applications.

Conventions: In this chapter, all varieties are defined over the field C, since we
will be discussing connections between complex differential geometry and algebraic
geometry.

1. Kähler–Einstein metrics

The motivation for K-stability arises from the search for canonical Kähler metrics
on algebraic varieties. Below, we briefly discuss the key points in the theory.

1.1. Kähler metrics. On a complex manifold X, a natural class of metrics to
consider are Hermitian metrics. Such a metric ω is the data of a (1,1) form, which
can be described in local holomorphic coordinates z1, . . . , zn by

ω =locally
i

2π

∑
hijdzi ∧ dzj,

where hij is a Hermitian matrix of C-valued C∞ functions on X. A Hermitian metric
is Kähler if dω = 0.
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8 1. INTRODUCTION

The simplest example of a Kähler metric is the Fubini–Study ωFS metric on CPn.
In the coordinates z1, . . . , zn on the affine chart {[1 : z1 : . . . : zn] | zi ∈ C} ⊂ Pn,

ωFS =locally
i

2
∂∂ log

(∑
|zi|2 + 1

)
.

An elegant feature of this metric is that it is invariant with respect to the action
by SU(n + 1) on Pn. Though, since it is not invariant with respect to Aut(Pn) =
PGL(n+ 1), it is not entirely canonical without the choice of coordinates!

On any smooth projective complex variety X, we can always construct a Kähler
metric on X as follows. For any embedding X ⊂ Pn, the pull-back of the Fubini–Study
metric ω := ωFS|X is a Kähler metric on X. Since X can be embedded in bigger and
bigger projective spaces, we should expect the space of Kähler metrics on X to be
infinite dimensional.

1.2. Kähler-Einstein metrics. In order to find canonical metrics on a smooth
complex algebraic variety, one must consider a more restrictive class of metric. A
Kähler–Einstein metric ω is a Kähler metric such that

Ric(ω) = λω

for some λ ∈ {−1, 0, 1}. Above, Ric(ω) denotes the Ricci curvature of ω, which is the

(1,1) form locally given by Ric(ω)=locallyi
∑

i,j Rijdzi∧dzj, whereRij = − ∂2

∂zi∂zj
log deth.

The simplest examples of a Kähler-Einstein metric is the Fubini–Study metric on CPn.
Not all complex varieties can admit a Kähler-Einstein metrics. Indeed, the Kähler-

Einstein equality implies either

(1) X is canonically polarized (i.e. KX is ample);
(2) X is K-trivial (i.e. KX ∼Q 0)
(3) X is Fano (i.e. −KX is ample).

The geometry of X is drastically different in each of the above three cases.
An amazing feature of Kähler–Einstein metrics is that when they exist they are

unique up to action by Aut(X). Hence, they may be viewed as “canonical” metrics.
This leads to the question of when such a Kähler-Einstein metric exists.

In landmark papers of Yau and Yau and Aubin it was shown that Calabi-Yau
varieties and canonically polarized varieties always admit Kähler-Einstein metrics
[Aub78,Yau78]. The case of Fano varieties turns out to be surprisingly more subtle
and interesting.

Not all Fano varieties admit Kähler–Einstein metrics. For example, it was shown
by Matsushima that Kähler-Einstein Fano varieties must have reductive automor-
phism group [Mat57]. Hence, BpP2 cannot admit a Kähler-Einstein metric. This
leads to the question of which Fano varieties admit Kähler-Einstein metrics.
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1.3. Examples. It has long been a difficult problem to determine if a given Fano
variety variety admits a Kähler–Einstein metric.1 Here we list some basic examples
where the answer is known.

(1) Projective space: The Fubini–Study metric ωFS is a KE metric on Pn.
(2) Curves: A smooth projective curve C is Fano if and only if C ' P1. The

latter always admits a Kähler-Einstein metric by the previous example.
(3) Del Pezzo surfaces: A del Pezzo surface is a smooth projective surface

X with −KX ample (in other words, a Fano variety of dimension 2). By
classification results, such varieties are of the form

P2, P1 × P1, Bp1,...,prP2

where the last variety is the blowup of P2 at r ≤ 8 sufficiently general points.
All such varieties admit KE metrics, except Bp1P2 and Bp1,p2P2.

(4) Fano threefolds: By the work of Iskovskih, Mori, and Mukai, Fano 3-
folds admit a classification into 105 types. There has been recent work in
analyzing which 3-folds admit Kähler-Einstien metrics [ACC+21].

(5) Hypersurfaces: If X ⊂ Pn is a smooth projective hypsurface of degree d,
then adjunction implies

ωX = OX(d− n− 1).

Hence, X is Fano if d < n + 1. By work of Tian and Donaldson, a general
Fano hypsurface admits a KE metric . It is a folklore conjecture that all
Fano hypersurfaces admit KE metrics; see [Fuj19, AZ21] for progress on
this problem.

1.4. Geometry of Fano varieties. Since Fano varieties play an important role
in K-stability and these notes, we give a brief digression on their properties.

A key feature of Fano varieties is there particularly “well behaved” geometry. In
particular, they satisfy the following properties:

(1) Fano varieties are rationally connected. The latter means: if x and y are two
points on a Fano variety X, then there exists a morphism f : P1 → X such
that f(0) = x and f(1) = y.

(2) Fano varieties are simply connected.
(3) On a Fano variety X, H i(X,OX) = 0 for i > 0.2

(4) On a Fano variety X, Pic(X) ' H2(X,Z). Indeed, consider the exponential
sequence

0→ 2πiZ→ OX
exp→ O∗X → 0.

1Recently using recent progress in algebraic K-stability theory, the problem is often solvable in
concrete examples in dimension ≤ 3.

2The result follows from Kodaira vanishing, which states that if X is a smooth complex projective
variety and L an ample line bundle on X, then Hi(X,ωX⊗L) = 0 for all i > 0. Applying the theorem
to a Fano variety X with L = ω∗X gives the desired result.
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Taking cohomology gives an exact sequence

H1(X,OX)→ H1(X,O∗X)→ H2(X,Z)→ H2(X,OX)

is exact. Using that H1(X,O∗X) ' Pic(X) and (3), we conclude Pic(X) '
H2(X,Z).

(5) Fano varieties of fixed dimension n form a bounded family. This means that
for each integer n > 0, there exists a smooth projective morphism of varieties
Y → S such that: if X is a Fano variety of dimension n, then X ' Ys for
some s ∈ S.

Note that the above properties do not hold for canonically polarized.
While the geometry of Fano varieties is well-behaved, this does not mean that they

are easy to understand. For example, it is an open problem to determine which Fano
hypersurfaces rational. Even the seemingly simple case of a general cubic fourfold is
wide open. Hence, the geometry of Fano varieties is very rich.

2. K-stability

2.1. Yau-Tian-Donaldson Conjecture. In the early 1990s, Yau conjectured
that there should exist an algebraic stability notion that detects when a Fano variety
admits a Kähler-Einstein metric. The latter was inspired by the Kobayashi–Hitchin
correspondence, which relates the existence of a certain metric on a vector bundle over
a smooth projective variety to the slope stability of the vector bundle.

In order to make Yau’s conjecture precise, Tian defined K-stability [Tia97]. In
[Don02], Donaldson reformulated K-stability using a purely algebraic definition and
generalized the notion. Hence, the following statement, which is now a theorem, is
often referred to the Yau–Tian–Donaldson Conjecture:

Theorem 2.1 (Chen–Donaldson–Sun and Tian). A smooth Fano variety X admits
a Kähler–Einstein metric if and only if it is K-polystable.

The forward implication of the theorem, often considered the easier implication,
was proven by Berman [Ber16]. The reverse implication was shown independently by
Chen, Donaldson, and Sun in [CDS15] and Tian [Tia15]. More recently, there have
been additional proofs of the theorem, as well as an extension of the above theorem
to singular Fano varieties [LTW21,Li22,LXZ22].

2.2. Definition. K-stability is defined in terms of the positivity of a numerical in-
variant on the set of equivariant degenerations of the variety. We sketch the definition
below and will include more details in future chapters.

Throughout, let X be a projective variety and L an ample line bundle on X. An
important special case is when X is a Fano variety and L = ω∗X .

2.2.1. Test configurations. A test configuration of (X,L) is a type of C∗-equivariant
degeneration of the pair. To construct a test configuration, fix

(1) an embedding X ↪
|Lk|−−→ PN for some k > 0 and
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(2) a group homomorphism ρ : C∗ → PGL(N + 1,C).

Note that ρ induces an action of C∗ y PN and, hence, induces an embedding

j : X ×Gm ↪→ PN ×Gm defined by (x, t) 7→ (ρ(t)x, t).

Consider the closure

X := j(X ×Gm) ⊂ PN × A1 and L := OX (1).

By [Har77, Proposition 9.8], the morphism X → A1 is flat. Hence, X0 is sometimes
referred to as the flat limit of ρ(t) ·X ⊂ PN as t → 0. The data of (X ,L) → A1 is a
test configuration.3

Example 2.2. We give a simple example of a test configuration of (X,OX(1)).
Consider the embedding P1 × P1 ' {w2 + x2 + y2 − z2 = 0} ⊂ P3

w,x,y,z and the action

ρ : C∗ → PGL(4), where ρ(t) · [w : x : y : z] = [w : x : y : t−1z]. Since

ρ(t) · {w2 + x2 + y2 + z2 = 0} = {w2 + x2 + y2 − t2z2 = 0},

it follows that

X := {w2 + x2 + y2 − t2z2 = 0} ⊂ P2
w,x,y,z × A1

t

Observe that Xt ' P1 × P1 for t 6= 0, while X0 = {x2 + y2 − z2} ⊂ P3, which is the
cone over a conic.

2.2.2. Futaki invariant. Associated to a test configuration (X ,L) is the Futaki
invariant, denoted Fut(X ,L). It is defined in terms of the action

C∗ y H0(X0,Lm0 )

as m→∞. This algebraic definition was introduced in [Don02].
2.2.3. Definition of K-stability. Following [Don02], we say (X,L) is:

(1) K-semistable if Fut(X ,L) ≥ 0 for all test configurations (X ,L) of (X,L);
(2) K-polystable if it is K-semistable and Fut(X ,L) = 0 only when (X ,L) '

(X,L)× A1.

The above definition is modeled on GIT, which is defined in terms of the non-
negativity of a numerical invariant along Gm-equivariant degenerations. A key dif-
ference between K-stability and GIT is that in K-stability the set of degenerations
considered is not finite dimensional. Hence, K-stability is sometimes imprecisely re-
ferred to as an infinite dimensional GIT problem.

3The previous construction is not the standard definition of a test configuration, which is defined
more abstractly. The more abstract definition will be defined in Chapter 2 of these notes.
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2.3. Recent progress. In the past decade, there has been significant progress
in understanding K-stability, especially in the case Fano varieties. We summarize a
number of the important results below:

(1) Singularities : While K-stability is a global condition on (X,L), Odaka showed
that it imposes conditions on the singularities of X [Oda13]. More specif-
ically, if (X,L) is K-semistable and some mild additional assumptions are
satisfied, then X has lc singularities, which are a class of singularities ap-
pearing in the Minimal Model Program.

(2) Special test configurations : Li and Xu showed that to test K-stability of a
Fano variety X, it suffices to consider test configurations X such that X0

has klt singularities [LX14]. As above, klt singularities are a class of mild
singularities that appear in the MMP.

(3) Valuative criterion: Fujita and Li gave a criterion to test K-stability using
valuations, rather than test configurations [Fuj19,Li17b].

(4) Normalized volume: Motivated by a local construction in differential geom-
etry, Li introduced the normalized volume of a klt singularity [Li17b]. The
K-stability of a Fano variety X can be detected by the normalized volume of
its cone Spec⊕m≥0 H

0(X,−mKX).
(5) K-moduli of Fano varieties : Using recent advances in understanding the K-

stability of Fano varieties, a large group of mathematicians have constructed
compact moduli spaces parametrizing K-polystable Fano varieties with at
worst klt singularities.

A number of these advances will be discussed in future chapters.



CHAPTER 2

K-stability of polarized varieties

In this chapter, we first carefully define K-stability in terms of test configurations
and Donaldson’s version of the Futaki invariant. Next, we prove Odaka and Wang’s
formula for the Futaki invariant in terms of intersection numbers and apply it to prove
results of Odaka on K-stability of polarized varieties.

References: K-stability was first introduced for Fano varieties by Tian [Tia97]. In
his work, test configurations were always assumed to have normal special fiber and
the Futaki invariant was defined analytically.

In [Don02], Donaldson defined K-stability for polarized schemes. In his work, test
configuration were allowed to have arbitrarily bad special fiber and the Futaki invariant
was defined algebraically in terms of weights. In this section, we use Donaldson’s
definition, but closely following the presentation in [BHJ17, Sections 1-3], which is
an excellent reference.

Conventions:

(1) Unless stated otherwise, all schemes are defined over an algebraically closed
field k of arbitrary characteristic.

(2) A polarized pair (X,L) is the data of a scheme X and an ample line bundle
L on X.

1. Test configurations

1.1. Q-line bundles. In the definition of K-stability, it will be convenient to
work with Q-line bundles, rather than line bundles. This definition allows us to scale
line bundles by rational numbers.

Definition 1.1. A Q-line bundle L on a scheme X is a formal symbol

L = M⊗1/m

where M is a line bundle on X and m a positive integer. Two Q-line bundles L =
M⊗1/m and L = M ′⊗1/m′ are equivalent if

M⊗d/m 'M⊗d/m′

are isomorhic as line bundles for some d > 0 sufficiently divisible. Equivalently, the
Q-line bundles agree as elements of Pic(X)⊗Z Q.

To see the use of this definition, consider the following example.

13



14 2. K-STABILITY OF POLARIZED VARIETIES

Example 1.2. Let A =
⊕

m∈NAm be a finitely generated graded k-algebra with
A0 = k and set X = Proj(A).

(1) In general, OX(1) is not necessarily a line bundle. For example, take A =
k[x, y], where x and y have weights 2.

(2) For a sufficiently divisible positive integer m, OX(m) will be a line bundle
and, hence, OX(m)⊗1/m is a Q-line bundle.

At times this notion can cause confusion. Since most constructions in K-stability
are only concerned with high powers of a line bundle, it will not cause technical
problems.

1.2. Definition of test configurations. In the definition of K-stability, we con-
sider equivariant degenerations of a polarized pair over the affine line. These degen-
erations are called test configurations and defined as follows.

Definition 1.3. Let X be a projective scheme and L an ample line bundle on X.
A test configuration of (X ,L) of (X,L) is the data of

(1) a proper morphism of schemes X → A1,
(2) a Gm-action on X extending the standard Gm-action on A1,
(3) a Gm-linearized ample Q-line bundle L on X ,
(4) an isomorphism (X1,L1) ' (X,L).

Remark 1.4. The isomorphism in (4) and the Gm-action on X induces a Gm-
equivariant isomorphism

(X ,L)A1\0 ' (X,L)× (A1 \ 0),

where Gm acts on the right hand side as the product of the trivial action on (X,L) and
the standard action on A1 \ 0. The latter isomorphism induces a birational morphism

X 99K X × (A1 \ 0)

As we will later see, understanding test configurations will be related to understanding
Gm-equivariant birational models of X × A1

Remark 1.5. If (X ,L) is a test configuration of (X,L), we can twist the test
configuration as follows. For each integer d, t−dOX = OX (dX0) is a Gm-linearized line
bundle.1 Hence, the pair (X ,L⊗OX (dX0)) is a test configuration of (X,L) and differs
from (X ,L) by the linearization.

Example 1.6. We list two related examples of test configurations.

(1) The trivial test configuration is

(XA1 , LA1) := (X,L)× A1,

where Gm-acts as the product of the trivial action on (X,L) and the standard
action on A1.

1Note that OX (cX0) ' OX as line bundles, but their natural linearizations differ.
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(2) Fix a Gm-action on X and a Gm-linearization of L. The data induces a
product test configuration

(XA1 , LA1) := (X,L)× A1

where Gm-acts diagonally on XA1 as the product of the Gm-action on X and
the standard action on A1. Note that this differs from (1), since the Gm-action
is not necessarily trivial.

Example 1.7 (Deformation to the normal cone). The following construction,
which plays a key role in Fulton’s Intersection Theory [Ful98], provides many ex-
amples of non-trivial test configurations.

Fix a closed subscheme Z ⊆ X and consider the blowup

X := BlZ×0(X × A1)
p−→ X × A1.

The induced morphism X → A1 is proper, since it is a composition of proper mor-
phisms, and flat by [Ful98, Appendix B.6.7]. Additionally,

X0 = E + F,

where E = p−1(Z×0) is the exceptional divisor and F is the strict transform of X×0.
See [Ful98, Section 5.1]

We claim that X can be endowed with the structure of a test configuration. Since
Z × 0 is a Gm-invariant subscheme of X × A1, there is an induced Gm-action on X .
Since −E is ample over X × A1, L(−tE) is an ample Q-line bundle for 0 < t � 1.
Hence, (X ,L(−tE)) a test configuration of (X,L)

Example 1.8 (Degenerations in projective space). Fix an integer r such that rL
is very ample and consider the embedding X ↪→ P(V ∗) where V := H0(X, rL). A
group homorphism ρ : Gm → GL(V ) induces a Gm-action

P(V ∗)× A1.

Let X denote the closure of the image of

X ×Gm ↪→ P(V ∗)×Gm

under the map (x, t) maps to (ρ(t)x, t). By [Har77, Proposition 9.8], X → A1 is flat
and, hence, X0 is often referred to the flat limit of ρ(t) ·X as t→ 0. Additionally, the
Gm-action on P(V ×)×A1 restricts to a Gm-action on X . Hence, (X , 1

k
OX (1)) is a test

configuration of (X,L). As discussed in [BHJ17, Section 2.3], all test configurations
of (X,L) arise from this construction.

1.3. Rees correspondence. The Rees correspondence provides a way to under-
stand Gm-linearized vector bundles on A1. Before discussing this, we start with a
simpler correspondence.

Example 1.9 (Gm-actions on vector spaces). Given a a vector space V , there is
a bijective correspondence

Gm-actions on V ←→ Z-gradings of V.
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Indeed, if Gm-acts on V , there is a weight decomposition V = ⊕λ∈ZVλ, where

Vλ := {v ∈ V | a · v = aλv for all a ∈ Gm(k)}

is the λ-weight space. Conversely, given a decomposition V = ⊕λ∈ZVλ as a direct sum
of vector spaces, we can define a Gm-action on V by

a · v =
∑

aλ · vλ,

where v =
∑
vλ and vλ ∈ Vλ.

For the Rees correspondence, we will use the notion of a filtration.

Definition 1.10 (Filtrations). A Z-filtration F • of a finite dimensional vector
space V is the data of subspaces F λV ⊂ V for each λ ∈ Z such that

(1) F λ+1V ⊂ F λV for each λ ∈ Z,
(2) F λV = 0 for λ� 0, and
(3) F λV = V for λ� 0.

The Rees construction states that there is a correspondence:

Gm-linearized vector bundles on A1 ←→ Z-filtrations of of vector spaces.

(On both sides, we only work with finite dimensional vector spaces and vector bun-
dles.) We first explain the reverse direction of the correspondence, which uses Rees
algebras.

Definition 1.11 (Rees algebra). The Rees algebra of a Z-filtration F • of V is

Rees(F •) :=
⊕
λ∈Z

F λV t−λ.

Note Rees(F •) is a finitely generated torsion free k[t]-module, where the module
structure is given by t(vt−λ) = vt−λ+1. Additionally, Rees(F •) admits a Z-grading
that respects the Z-grading on k[t]. Hence, Rees(F •) corresponds to a Gm-linearized
vector bundle V on A1.

For the forward direction of the correspondence, fix a Gm-linearized vector bundle
V on A1. Since the space of global sections admits a Gm-action, there is a decompo-
sition into subspaces

H0(A1,V) =
⊕
λ∈Z

H0(A1,V)λ.

Since t has weight −1, multiplication by t induces a map

H0(A1,V)λ
·t−→ H0(A1,V)λ−1.
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Since H0(A1,V) is a torsion free k[t]-module, the map ·t is an inclusion. To define a
Z-filtration, set V := V1

2 and

F λV := image
(
H0(A1,V)λ → V

)
Proposition 1.12. With the notation in the above paragraph, the following hold:

(1) F • is a Z-filtration of V .
(2) The natural map H0(A1,V)→ Rees(F •) is an isomorphism of Z-graded k[t]-

modules.

Proof. Note that the diagram

H0(A1,V)λ H0(A1,V)λ−1

V V

·t

=

commutes, since the image of t under the morphism k[t]→ k[t]/(t−1) ∼= k is 1. Hence,
the fact that the top row is an inclusion implies F λV ⊂ F λ−1V . Since H0(A1,V) is a
finitely generated k[t]-algebra, it follows that H0(A1,V)λ = 0 for λ � 0 and, hence,
F λV = 0 for λ � 0. Since im(H0(A1,V) → V ) = V , F λV = V for λ � 0. This
completes the proof of (1).

For the proof of (2), we first claim that the natural map

H0(A1,V)λ → V

is injective. If not, then there exists 0 6= vλ ∈ H0(A1,V) such that vλ ∈ (t −
1)H0(A1,V). This is not possible, since there are no nonzero elements of (t−1)H0(A1,V)
of pure degree λ. Hence, the map is injective and the natural map H0(A1,V)λ → F λV
is an isomorphism. the latter implies (2) holds. �

Proposition 1.13. If V is a Gm-linearized vector bundle on A1 and F • is the
corresponding Z-filtration of V := V1, then we have Gm-equivariant isomorphisms

VA1\0 ' V × (A1 \ 0) and V0 ' gr•FV =
⊕
λ∈Z

F λV/F λ+1V.

Proof. Using the Rees correspondence, this amounts to computing certain tensor
products of modules. For the first isomorphism, consider the map of k[t, t−1]-modules

φ :
⊕
λ∈Z

F λV t−λ ⊗k[t] k[t, t−1]→
⊕
λ∈Z

V t−λ.

The map is clearly injective. To see it surjective, fix an element st−λ, where s ∈
V . Since F • is a filtration, there exists µ ∈ Z such that s ∈ F µV . Using that
φ(sµt−µ ⊗ tµ−λ) = st−λ, we conclude φ is surjective.

2The notation here is slightly abusive, since V1 is technically a locally free sheaf on Spec(k),
which we identity with a vector space V . We make similar abusives of notation throughout this
section.
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To prove the second isomorphism, we must show

Rees(F •)⊗k[t] k[t]/(t) ' grF (V )

are isomorphic as Z-graded k-vector spaces. This is clear, since t · Rees(F •) =⊕
λ∈Z F

λ+1V t−λ. �

Remark 1.14. Using the computation in the above proof, it follows that s ∈ F λV
if and only if st−λ ∈ V , where s is the Gm-invariant section of VA1\0 such that s1 = s.
To see this note that the injection H0(A1,V) ↪→ H0(A1 \ 0,V) can be written as the
composition

H0(A1,V)
'−→
⊕
λ∈Z

F λV t−λ ↪→
⊕
λ∈Z

V t−λ
'−→ H0(A1 \ 0,V)

and s corresponds st0 in the right center module.

Example 1.15. Assume V is a Gm-linearized vector bundle on A1 of rank 1. In
this case, V := V1 is a 1-dimensional vector space, and, hence, the induced filtration
F • of V has the property: there exists µ ∈ Z such that

F λV =

{
V for λ ≤ µ

0 for λ > µ
.

In this case, we see

Rees(F •) =
⊕
λ≤µ

V t−λ = V t−µ[t].

We leave the following statement as an exercise to the reader.

Exercise 1.16. If V is a Gm-linearized vector bundle on A1, then:

(1) There exists an isomorphism of Gm-linearized vector bundles

V ' V0 × A1.

(2) V is a direct sum of Gm-linearized line bundles on A1.

Hint : To prove (1), use the Rees correspondence to translate the statement to a
problem concerning either filtrations or torsion free graded k[t]-modules. Warning the
isomorphism is non-canonical! Use (1) to prove (2).

1.4. Filtrations and test configurations. Using the Rees correspondence, we
will prove a relationship between test configurations and filtrations of section rings.
To begin, we first introduce a definition.

Definition 1.17 (Z-filtrations). Let R :=
⊕

m∈NRm be a graded k-algebra such
that each Rm is a finite dimensional k-vector space. A Z-filtration F •R of R is the
data of a Z-filtration F •Rm for each m such that

F λRm · F λ′Rm′ ⊂ F λ+λ′Rm+m′

for all λ, λ ∈ Z and m,m′ ∈ N.
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A filtration F •R of R is called finitely generated if the Rees algebra

Rees(F •R) :=
⊕
m∈N

⊕
λ∈Z

Rmt
−λ ⊂ R[t, t−1]

is finitely generated over k.

Let (X ,L) be a test configuration of a polarized pair (X,L). Fix a positive integer
r > 0 such that rL is a line bundle and consider the graded k-algebra

R(X, rL) :=
⊕
m∈N

H0(X,mrL).

To construct a filtration of R(X, rL), we use

(i) H0(X ,mrL) is the space of sections of the Gm-linearized vector bundle π∗(Lmr)
on A1 and

(ii) there is a canonical isomorphism H0(X ,mrL)1 ' H0(X,mrL)

Note that (ii) holds, since (X ,L)A1\0 ' (X,L)× (A1 \ 0). Hence, we may use Section
1.3 to define a filtration F •X ,L of H0(X,mrL) by

F λ
X ,LH

0(X,mrL) := image
(
H0(X ,mrL)λ → H0(X,mrL)

)
.

Proposition 1.18. The collection of subspaces F •X ,L is a finitely generated Z-
filtration of R(X, rL).

Proof. To check F •X ,L is a Z-filtration of R(X, rL), it remains to show

F λ
X ,LH

0(X,mrL) · F λ′

X ,LH
0(X,m′rL) ⊂ F λ+λ′

X ,L H0(X, (m+m′)rL)

for all λ, λ′ ∈ Z and m,m′ ∈ N. The latter holds by the definition of F •X ,L and the
inclusion

H0(X ,mrL)λ ·H0(X ,m′rL)λ′ ⊂ H0(X , (m+m′)rL)λ+λ′ ,

which follows from the definition of the weight spaces. Hence, F •X ,L is a Z-filtration
of R(X, rL).

To see the filtration is finitely generated, we use that, by the Rees correspondence,
the natural map

H0(X ,mrL) =
⊕
λ∈Z

H0(X ,mrL)λ
'−→
⊕
λ∈Z

F λH0(X,mrL)t−λ

is an isomorphism of Z-graded k[t]-modules. Hence, we get an isomorphism⊕
m∈N

H0(X ,mrL) '
⊕
m∈N

⊕
λ∈Z

F λ
X ,LH

0(X,mrL) = Rees(F•X ,LR(X, rL)).

Since L is relatively ample over A1, the left hand side of the above expression is a
finitely generated k[t]-algebra, and, hence, so is the right hand side. Therefore, F •X ,L
is finitely generated. �

Theorem 1.19. There is a correspondence between test configurations (X ,L) of
(X,L) and finitely generated filtrations F • of R(X, rL) for some r > 0.
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Proof. Proposition 1.18 shows that a test configuration induces a finitely gen-
erated Z-filtration. It remains to start with a finitely generated Z-filtration F • of
R(X, rL) and produce a test configuration. Consider the morphism

X := Proj

(⊕
m∈N

⊕
λ∈Z

F λH0(X,mrL)t−λ

)
π−→ A1,

where the Proj is taken with respect to the N-grading. Since Rees(F •R) is a finitely
graded k[t]-algebra with m = 0 graded component isomorphic to k[t], the morphism
π is projective and L := 1

k
OX (k) is an ample Q-line bundle for k � 0.

To see (X ,L)→ A1 is a test configuration, we first note that the Z-grading inside
the Proj induces a Gm-action on X and a Gm-linearization of L. Next, we compute
that the natural map

Rees(F •R(X, rL))⊗k[t] k[t±1] −→ R(X, rL)[t±1]

of N × Z-graded k[t]-algebras (see the proof of Proposition 1.13.1 for a similar argu-
ment). Hence, there is a Gm-equivariant morphism

(X ,L)A1\0 ' (X,L)× (A1 \ 0),

where Gm acts on the right hand side as the product of the trivial action on (X,L)
and the standard action on A1 \ 0. The latter endows (X ,L) with the structure of a
test configuration of (X,L). �

Remark 1.20. It is natural to ask if the above correspondence is bijective. This
is not quite the case, since two finitely generated Z-filtrations

F •R(X, rL) and F ′•R(X, r′L)

that agree on H0(X,mL) for sufficiently divisible m, but are not equal for all m,
induce the same test configuration. Modding out by this relation gives a bijective
correspondence.

As a consequence of the Rees correspondence, we prove a few properties of test
configurations.

Proposition 1.21. Let (X ,L) be a test configuration of (X,L).

(1) If X is reduced, then X is reduced.
(2) If X is a variety, then X is a variety.
(3) If X is normal and X0 is reduced, then X is normal.

Proof of Proposition 1.21.1-2. By Theorem 1.18 and its proof, (X ,L) in-
duces a finitely generated Z-filtration F • of R := R(X, rL) for some r > 0 such
that

X ' Proj (Rees (F •R)) ,

Now, assume X is reduced. Then R is reduced, and, using that

Rees(F •R) ⊂ R[t, t−1],
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it follows that Rees(F •R) is reduced, and, hence, X is reduced. Statement (2) can be
proven in the same way by replacing the word “reduced” with “integral.” �

To prove the third part of the proposition, we use Serre’s criterion for normality,
which is stated using the following conditions.

Definition 1.22. A Noetherian scheme X is called

(1) Rk if X is regular at codimension ≤ k points of X
(2) Sk if depth(OX,x) ≥ min{k, dimOX,x} for each point x ∈ X.

Above, depth(OX,x) denotes the longest length of a regular sequence of OX,x
Proposition 1.23. Let X be a Noetherian scheme.

(1) [SPA22, Lemma 031R] X is reduce if and only if it is R0 and S1.
(2) [SPA22, Lemma 031S] X is normal if and only if it is R1 and S2.
(3) [SPA22, Definiton 00N3] X is CM if and only if it is Sk for all k.

Proof of Propositon 1.21.3. Since X is normal and X \ X0 ' X × (A1 \ 0),
X \ X0 is normal. Note that X0 is R0 and S1, by our assumption, and t is a non-
zero divisor of OX , by the flatness of X → A1. Thus, [SPA22, Tag 00NU] and
[SPA22, Tag 090R] imply X is R1 and S2 at points in X0. Hence, X is normal in a
neighborhood of X0. �

Warning 1.24. The assumption in 1.21 that X0 is reduced is necessary. Indeed,
[LX14, Example 4] gives an example of a test configuration of P1 that is not normal.
In the example, the test configuration is the degeneration of a twisted cubic to a plane
cubic with an embedded point.

2. Futaki invariant

The Futaki invariant was first defined analytically as a linear functional on the lie
algebra of the space of holomorphic vector fields of a smooth Fano variety [Fut83].
The latter definition was generalized by Tian and Diang for singular Fano varieties
[DT92]. We will discuss Donaldson’s version of the Futaki invariant, which is defined
algebraically for any test configuration [Don02].

2.1. Weights. The Futaki invariant of a test configuration (X ,L) is defined in
terms of the Gm-action on

H0(X0,mL0)

as m→∞. The definition uses the following notion.

Definition 2.1. The weight of a Gm-action on a finite dimensional vector space
V is defined as

wt(V ) =
∑
λ∈Z

λ dim(Vλ),

where V =
⊕

λ∈Z Vλ is the weight decomposition of V , which means Vλ := {v ∈
V | ξ · v = ξλv for all ξ ∈ Gm(k)}.

https://stacks.math.columbia.edu/tag/031R
https://stacks.math.columbia.edu/tag/031S
https://stacks.math.columbia.edu/tag/00N3
https://stacks.math.columbia.edu/tag/00NU
https://stacks.math.columbia.edu/tag/090R
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Remark 2.2. If Gm acts on a finite dimensional vector space V of dimension N ,
then

wt(V ) = wt(det(V )),

where detV :=
∧N V , which has an induced Gm-action. To see this, choose a basis

s1, . . . , sN for V and λ1, . . . , λN ∈ Z such that ξ · si = ξλisi. Since

ξ · s1 ∧ . . . ∧ sN = ξ
∑

i λis1 ∧ . . . ∧ sN
for each ξ ∈ Gm(k), we see

wt(det(V )) =
N∑
i=1

λi = wt(V ).

2.2. Donaldson’s Futaki invariant. Let (X ,L) be a test configuration of (X,L)
and n := dim(X). For each positive integer m such that mL is a line bundle, set

Nm := dimH0(X0,mL0) and wm := wtH0(X0,mL0).

For m > 0 sufficiently divisible, Nm and wm agree with polynomial functions. In
particular, by Proposition 2.7 proven below, there exists rational numbers ai and bi
such that

Nm := a0m
n + a1m

n−1 + . . .+ an

wm := b0m
n+1 + b1m

n + . . .+ bn+1

for m > 0 sufficiently divisible. Hence, there exist rational numbers Fi such that
wm
mNm

= F0 + F1m
−1 + F2m

−2 + . . .

for m > 0 sufficiently divisible.

Definition 2.3 (Futaki invariant). The Futaki invariant of (X ,L) is

Fut(X ,L) := −2F1.

By solving for F1 in terms of the ai and bi, it follows that Fut(X ,L) = 2(b0a1−b1a0)

a20
.

2.3. Compactification. In order to express the Futaki invariant as an intersec-
tion number, we will need to work with compact spaces.

Definition 2.4. The compactification of a test configuration (X ,L) of (X,L),
which is denoted by

π : (X ,L)→ P1,

is the gluing the two equivariant families (X ,L)→ A1 and (X,L)× (P1 \0)→ (P1 \0)
along their isomorphic open subsets

(X ,L) (X,L)× (P1 \ 0)

(X,L)× (A1 \ 0) (X,L)× (A1 \ 0)

.
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In the above gluing, the Gm-action on (X,L) × (P1 \ 0) is the product of the trivial
action on (X,L) and the standard action on P1 \ 0.

Observe that

• π : X → P1 is a Gm-equivariant flat proper morphism of schemes,
• L is a Gm-linearized π-ample Q-line bundle on X , and
• the fiber over∞, which is denoted by (X∞,L∞), is isomorphic to (X,L) with

the trival Gm-action.

Example 2.5. Let X := P1×A1 be the product test configuration induced by the
Gm-action on P1 given by

t · [x : y] = [tdx : y]

for some integer d. Then the compactification of X → A1 is

X := PP1(OP1 ⊕OP1(d))→ P1,

where X is a Hirzebruch surface.

2.4. Intersection formula. In this section, we prove Odaka and Wang’s formula
for the Futaki invariant in terms of intersection numbers [Oda13,Wan12].

Theorem 2.6 ([Wan12,Oda13]). If (X ,L) is a test configuration of (X,L) and
X is normal, then

Fut(X ,L) =
Ln ·KX/P1

V
+ S

Ln+1

(n+ 1)V
,

where V = Ln and S = nV −1(−KX · Ln−1).

The theorem follows from the following more detailed proposition.

Proposition 2.7. If (X ,L) is a test configuration of (X,L) and n = dim(X),
then there exists rational numbers ai and bi such that

Nm := dimH0(X0,mL0) = a0m
n + a1m

n−1 + . . .+ an

wm := wt(H0(X0,mL0) = b0m
n+1 + b1m

n + . . .+ bn+1

for all m > 0 sufficiently divisible. Furthermore,

a0 =
Ln

n!
and b0 =

Ln+1

(n+ 1)!
.

Additionally, if X is normal, then

a1 = −L
n−1 ·KX

2(n− 1)!
and b1 = −

Ln ·KX/P1

2n!

Proof. If m is a sufficiently divisible positive integer, then Serre vanishing implies

H i(X t,mLt)) = 0

for all t ∈ P1. For such m, [Har77, Theorem 12.11] implies
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(i) Riπ∗OX (mL) = 0 for all i > 0,
(ii) π∗OX (mL) is a vector bundle, and
(iii) and the natural map π∗OX (mL)⊗k(t)→ H0(Xt,mLt) is an isomorphism for

all t ∈ P1.

Below, we always assume m > 0 is sufficiently divisible so that these statements hold.
Now, observe that

Nm := H0(X0,mL0) = H0(X1,mL1) = H0(X,mL),

where the second equality holds by (ii) and (iii). Hence, Theorem 1.7 implies Nm

agrees with a polynomial of degree ≤ n and the desired formulas for a0 and a1 hold.
It remains to analyze the weight function wm. By (ii), det(π∗OX (mL)) is a Gm-

linearized line bundle on P1. By (iii),

wt(det(π∗OX (mL))0) = wt detH0(X0,mL0) = wm.

Since Gm acts trivially on (X ,L)∞, we also have

wt(det(π∗OX (mL))∞) = 0.

Now, Proposition 3.7 implies

det(π∗OX (mL)) ' OP1(wm).

The latter isomorphism is the key to relating the weight wm to an intersection number!
We now compute

wm = deg(OP1(wm)) = deg(π∗OX (mL)) = χ(P1, (π∗OX (mL))− rk((π∗OX (mL)

= χ(P1, (π∗OX (mL))−Nm

= χ(X ,OX (mL))−Nm

where the third equality is by the Riemann-Roch formula for vector bundles on curves,
which can be deduced from [Har77, Theorem IV.1.3], the fourth uses that

rk(π∗OX (mL)) = dimH0(X0,mL0) = Nm

by (ii) and (iii), and the fifth is by (i) combined with [Har77, Exercise III.8.1]. Since
χ(X ,OX (mL)) and Nm agree with polynomials of degree ≤ n + 1 by Theorem 1.7,
wm agrees with a polynomial as well.

The final step in the proof is to compute b0 and b1. Theorem 1.7 implies

wm = χ(X ,OX (mL))−Nm

=
Ln+1

(n+ 1)!
mn+1 + lower order terms,

Hence, the formula for b0 holds. Additionally, if X is normal, then

wm =
Ln+1

(n+ 1)!
mn+1 − L

n ·KX + 2Ln

2n!
mn + lower order terms.
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Using that
2Ln = 2Ln · OX (X1) = Ln · π∗OP1(2) = −Ln · π∗KP2 ,

we deduce the desired formula for b1. �

Proof of Theorem 2.6. The theorem is an immediate consequence of Propo-
sition 2.7 and the formula

Fut(X ,L) =
2(b0a1 − b1a0)

a2
0

.

�

2.5. Normalization of test configurations. A powerful tool for understanding
K-stability is the intersection formula for the Futaki invariant. Since the formula only
holds and makes sense for normal test configurations, it will be useful to take the
normalization of a test configuration.

Definition 2.8 (Normalization). Let (X ,L) be a test configuration of a polarized
scheme (X,L), with X a normal variety. The normalization of (X ,L) is

(X̃ , L̃),

where ν : X̃ → X is the normalization morphism and L̃ := ν∗L.

Observe that (X̃ , L̃) is naturally a test configuration of (X,L). Indeed, the com-
position

X̃ → X → A1

is flat by [Har77, III.9.7] and proper. Additionally, using the universal property of

the normalization morphism, there exists a unique morphism σ̃ : Gm×X̃ → X̃ , which
makes the diagram commute

Gm × X̃ X̃

Gm ×X X

∃!

id×ν ν .

Furthermore, σ̃ is a Gm-action on X̃ , since the diagrams in the definition of a Gm-
action commute over an open set and hence, everywhere. Next, since X|A1\0 ' X ×
(A1 \ 0) is normal, there is an induced isomorphism

X̃A1\0 ' X × (A1 \ 0).

Finally, L̃ admits a natural Gm-linearization. It is ample over A1, since L is ample
over A1 and ν is finite.

Remark 2.9. More generally, this construction makes sense without even assum-

ing X is normal. In the general setting, the normalization X̃ → X is defined to be

the normalization of the reduction Xred and L̃ denotes the pullback of L. If (X ,L) is
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a test configuration of (X,L), then its normalization (X̃ , L̃) is a test configuration of

(X̃, L̃).

The following proposition shows that when testing the positivity of the Futaki
invariant, it suffices to consider normal test configurations.

Proposition 2.10. Let (X,L) be a polarized scheme with X normal. If (X ,L) is
a test configuration of (X,L), then

Fut(X̃ , L̃) ≤ Fut(X ,L).

Proof. To simplify notation in the proof, let (X ′,L′) denote the normalization
of (X ,L). Let

w′m := wt(H0(X ′0,mL′0) and wm := wt(H0(X0,mL0)).

Additionally, set

N ′m := dim(H0(X ′0,mL′0) and Nm := dim(H0(X0,mL0)).

Note that for m > 0 sufficiently divisible

N ′m = H0(X,mL) = Nm.

It remains to compare w′m and wm.
As observed in the proof of Proposition 2.7, for any test configuration (X ,L)

wm = χ(X ,OX (mL))−Nm

for all m > 0 sufficiently divisible. Hence, we consider the short exact sequence

0→ OX → ν∗OX ′ → F → 0,

where F := (ν∗OX ′)/OX . Tensoring by ·⊗OX (mL) and using the projection formula,
gives

0→ OX (mL)→ ν∗(OX ′(mL
′
))→ F ⊗OX (mL)→ 0

Thus, for m > 0 sufficiently divisible,

χ(X ′,OX ′(mL
′
)) = χ(X , ν∗OX ′(mL

′
))

= χ(X ,OX (mL)) + χ(X ,F ⊗OX (mL))

= χ(X ,OX (mL)) +H0(X ,F ⊗OX (mL)).

Above, the first equality holds by the fact that ν is affine and [Har77, Exercise III.8.2].
For the third equality, note that L|X0 is ample and Supp(F) ⊂ X0, so H i(X ,F ⊗
OX (mL)) = 0 for all i > 0 and sufficiently large m > 0 by Serre vanishing. Therefore,

w′m = wm +H0(X ,F ⊗OX (mL)).

Since dim(Supp(F)) ≤ n := dim(X), [Kle66, Section 1] implies

H0(X ,F ⊗OX (mL)) = O(mn)
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where n = dim(X). Therefore,

w′m ≥ wm and w′m = wm +O(mn)

for m > 0 sufficiently divisible, which implies Fut(X ′,L′) ≤ Fut(X ,L) as desired. �

The following proposition gives a characterization of normal trivial test configura-
tions.

Proposition 2.11. Let (X,L) be a polarized variety with X normal and (X ,L)
a normal test configuration A normal test configuration (X ,L) is trivial if and only if
the birational map

φ : X 99K X × A1

is an isomorphism in codimension 1.

Proof. The forward implication is trivial. For the reverse implication, assume φ
is an isomorphism in codimension 1. Hence, there exists a commutative diagram

X X × A1

U V

φ

ψ

such that ψ is an isomorphism and the vertical arrows are open embedding with
complement codimension at least 2.

Since (X ,L) and (XA1 , LA1) are isomorphic over (A1 \ 0),

LA1|V ⊗ ψ∗(L∨|U)

is trivial over V \ V0. Hence,

LA1|V ⊗ ψ∗(L∨|U) = OX(d(X × 0))|V
for some integer d, which implies

LA1(d(X × 0))|V ' ψ∗(L|U).

Finally, observe that we have natural maps

X ' Proj
⊕
m∈N

H0(X ,mL) ' Proj
⊕
m∈N

H0(XA1 ,m(LA1 + d(X × 0))) ' XA1 ,

where the second isomorphism is a consequence of the algebraic Hartog’s Lemma
[Har77, Proposition 6.3A]. �

2.6. Definition of K-stability.

Definition 2.12. Let X be a proper normal variety and L an ample line bundle
on X. The pair (X,L) is:

(1) K-semistable if and only if Fut(X ,L) ≥ 0 for all normal test configurations
(X ,L) of (X,L),

(2) K-polystable if and only if (X,L) is K-semistable and Fut(X ,L) = 0 only
when (X ,L) is a product, and
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(3) K-stable if and only if (X,L) is K-semistable and Fut(X ,L) = 0 only when
(X ,L) is trivial.

The above definition uses the notion of product and trivial test configurations.
Recall, a test configuration (X ,L) is a product if there is Gm-equivariant isomorphism
over A1

X ' X × A1,

where the Gm-action on X×A1 is the product of a Gm-action on X and the standard
action on A1. It is trivial if the Gm-action on X × A1 is the product of the trivial
action on X and the standard action on A1.

Remark 2.13. We consider the relationship between the three stability notions.

(1) It follows from the definition that

K-stability =⇒ K-polystability =⇒ K-semistability

(2) If there exists a non-trivial Gm-action on X and a Gm-linearization of L,
then (X,L) is not K-stable. Indeed, a non-trivial Gm-action on (X,L) and
its inverse induce non-trivial product test configurations (X ,L) and (X ′,L′)
with

Fut(X ,L) + Fut(X ′,L′) = 0.

Hence, at least one of the Futaki invariants is non-positive.
(3) If X is a smooth Fano variety over C, then:

(a) (X,−KX) is K-polystable if and only if X admits a Kähler-Einstein
metric [CDS15,Tia15];

(b) (X,−KX) is K-stable if and only if X admits a Kähler-Einstein metric
and has discrete automorphism group.

(c) (X,−KX) is K-semistable if and only if there exists a test configuration
(X ,L) of (X,−KX) such that X0 is a possibly singular Fano variety with
Kähler-Einstein metric [Li17a].

Similar results are known to hold when X is singular by [Li22,LXZ22].

Remark 2.14. In Definition 2.12, we only consider normal test configurations.

(1) In the definition of K-semistablity, it would be equivalent to consider all test
configuration by Proposition 2.10.

(2) In the definition of K-stability and K-polystability, it is essential that we
only consider normal test configurations. Indeed, [LX14, Example 14] gives
an example of a test configuration (X ,L) of (P1,OP1(1)) with an embedding
X ⊂ P2 × A1 such that X1 ⊂ P2 is a twisted cubic and X0 ⊂ P2 is a plane
cubic with an embedded point. In this example,

Fut(X ,L) = Fut(X̃ , L̃) = 0

and (X̃ , L̃) is a trivial test configuration. Hence, if we considered all test
configurations in Definiton 2.12, then (P1,OP1(1)) would not be K-polystable.
In fact, due to similar examples [Oda15b, Proposition 3.5], almost nothing
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could be K-stable or K-polystable if we required Fut(X ,L) > 0 for all (not
necessarily normal) non-product test configurations!

Remark 2.15. In Defnition 2.12, we only defined K-stability in the case when X
is normal. In future sections, we will primarily be interested in this case.

More generally, one can define K-(semi/poly)stability without the normality as-
sumption on X. For this, one defines a test configuration (X ,L) of (X,L) to be almost

trivial (resp., almost a product) if its normalization (X̃ , L̃) is a trivial (resp., product)

test configuration of (X̃, L̃). Then in Definition 2.12, we consider all test configu-
rations (not just normal ones) and require that Fut(X ,L) = 0 only when (X ,L) is
almost a product (resp., almost trivial).





CHAPTER 3

Odaka’s Theorems

In this chapter, we discuss Odaka’s theorems on K-stability. The first solves the
problem of which Calabi-Yau and canonically polarized varieties are K-stable. The
second shows that K-semistability imposes conditions on singularities.

These results and their proof showed the first connections between K-stability and
the Minimal Model Program. As we will see in future chapter, connections between
these two fields will be the key to understanding the K-stability of Fano varieties.

Conventions: Throughout, all schemes are defined over an algebraically closed field
k of characteristic 0.

1. Calabi-Yau and canonically polarized varieties

The following theorem determines which Calabi-Yau varieties and canonically po-
larized varieties are K-stable.

Theorem 1.1. Let X be a normal variety and L an ample Q-line bundle on X.

(1) Assume KX ∼Q 0. Then

X is klt ⇐⇒ (X,L) is K-stable

X is lc ⇐⇒ (X,L) is K-semistable

(2) Assume KX = L. Then

X is lc ⇐⇒ (X,L) is K-stable ⇐⇒ (X,L) is K-semistable.

The result was proven in [Oda12, Oda13]. See also [BHJ17, Section 9.1] for a
similar argument with different exposition.

Example 1.2. The theorem immediately implies that the following polarized
curves are K-stable.

(1) (E,L), where E is an elliptic curve and L an ample line bundle on E.
(2) (C,KC), where C is a smooth curve of genus g ≥ 2.

Remark 1.3 (Canonically polarized varieties with non-canonical polarizations).
In Theorem 1.1.2, it is essential that KX = L. Indeed, by [Ros06], for each g ≥ 5,
there exists a polarized scheme

(C × C,L),

where C is a smooth genus g curve and L an ample line bundle on C ×C, that is not
K-semistable. Note that in this example KC×C = p∗1KC ⊗ p∗2KC , which is ample.
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Remark 1.4 (Relation to complex geometry). In the case when the ground field
k = C, the result mirrors existence statements for Kähler-Einstein metrics on possibly
singular Calabi-Yau and canonically polarized varieties [EGZ09,BG14].

In this section, we will prove the forward implication of Theorem 1.1. The argu-
ment relies on an intersection number computation and the definitions of klt and lc
singularities. The proof even works in characteristic p.

The proof of the reverse implication of Theorem 1.1 requires machinery Minimal
Model Program. Its proof will be discussed in Section 2, which focuses on a more
general result.

1.1. A modified intersection formula. A key ingredient in the proof of Odaka’s
theorems is a modified version of the intersection formula for test configurations.

Let (X ,L) be a normal test configuration of a polarized variety (X,L). Consider
the diagram

Y

X X × P1

f g
,

where Y is the main component of the normalization of the graph of X 99K X × P1

and f, g are the natural morphisms to X and X × P1.

Proposition 1.5. With the above setup,

Fut(X ,L) =
Ln · f∗(KY/X×P1 + g∗p∗1KX)

V
+ S

Ln+1

(n+ 1)V
,

where S := nV −1(−KX · Ln).

The advantage of the above formula over the original intersection formula in The-
orem 2.6 is that involves the relative canonical divisor KY/X×P1 , which is related to
the singularities of X.

Proof. Recall, Theorem 2.6 states that

Ln ·KX/P1

V
+ S

Ln+1

(n+ 1)V
.

Hence, it suffices to show that

f∗(KY/X×P1 + g∗p∗1KX) = KX/P1 .

To prove the latter observe that

KY/X×P1 + g∗p∗1KX = KY − g∗(KX×P1 − p∗1KX)

= KY − g∗p∗2(KP1)

= KY − f ∗π∗(KP1),
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where the second equality uses that KX×P1 = p∗1KX + p∗2KP1 , which can be deduced
from [Har77, Exercise II.8.3.b] applied on the smooth locus of X × P1. Hence,

f∗(KY/X×P1 + g∗p∗1KX) = f∗KY − f∗f ∗π∗(KP1) = KX − π∗KP1 = KX/P1

as desired. �

Proposition 1.6. Keep the above notation.

(1) If X is lc, then KY/X×P1 is effective.
(2) If X is klt, then KY/X×P1 is effective and has support equal to Y0.

Proof. First, assume X is lc. We claim that (X × P1, X × 0) is lc. Indeed, this
follows from inversion of adjunction [KM98, Theorem 5.50] or the following simple
argument. Fix a log resolution f : Y → X of X. Since X is lc, KY/X =

∑r
i=1 aiEi for

some prime divisors Ei ⊂ Y and ai ≥ −1. Now, note that fP1 : Y × P1 → X × P1 is a
log resolution of (X × P1, X × 0) and

KY×P1/X×P1 − f ∗P1(X × 0) =
r∑
i=1

aiEi − Y × 0,

which has coefficients ≥ −1. Hence, (X × P1, X × 0) is lc. The latter implies

KY/X×P1 − g∗(X × 0) = KY/X×P1 − Y0

has coefficients ≥ −1. Since Supp(KY/X×P1) ⊂ Exc(g) = Y0,red, it follows that
KY/X×P1 has coefficients ≥ 0, which proves (1). A similar argument proves (2). �

1.2. Proof of Theorem 1.1. As a consequence of the modified intersection for-
mula in Section 1.1, we can now prove the forward implication of Theorem 1.1.

Proof of the forward implications of Theorem 1.1. Let (X ,L) be a non-
trivial normal test configuration of (X,L). Assume KX ∼Q 0 and X is lc. Then
Theorem 1.5 implies

Fut(X ,L) =
Ln · f∗(KY/X×P1)

V

and f∗KY/X×P1 is effective by Proposition 1.6. Since Supp(f∗KY/X×P1) ⊂ X0,red and
L|Y0,red is ample, it follows that Fut(X ,L) ≥ 0. Hence, (X,L) is K-semistable.

If KX ∼Q 0 and X is klt, the same argument applies, but Lemma 2.11 and Propo-
sition 1.6 imply f∗KY/X×P1 is effective and non-zero. Thus, the above argument shows
Fut(X ,L) > 0. Hence, (X,L) is K-stable.

Finally, assume KX = L and X is lc. In this case, the formula in Theorem 1.5
gives

Fut(X ,L) =
Ln · f∗(KY/X×P1)

V
+

(f ∗Ln · g∗LA1)− n
n+1
Ln+1

(n+ 1)V
.
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As argued above,
Ln·f∗(KY/X×P1 )

V
≥ 0. Additionally, [BHJ17, Proposition 7.8] shows1

(f ∗Ln · g∗LA1)− n
n+1
Ln+1

(n+ 1)V
> 0.

(In fact this inequality holds for all normal test configurations without the assumption
that KX = L. The argument relies on the Hodge Index Theorem.) �

2. K-semistability implies log canonical

The following theorem shows a suprising connection between K-stability and sin-
gularities in the Minimal Model Program.

Theorem 2.1. [Oda13] Let X be a normal variety with KX Q-Cartier and L an
ample Q-line bundle on X. If (X,L) is K-semistable, then X is lc.

Remark 2.2 (Singularities and stability). It is natural that a “stability” notion
should impose conditions on singularities.

(1) Stable curves by definition have at worst nodal singularities [DM69].
(2) If a polarized variety (X,L) is asymptotically Chow semistable, then

mult(x,X) ≤ (dim(X) + 1)!

at each x ∈ X, where mult(x,X) denotes the Hilbert-Samuel multiplicity of
mx ⊂ OX,x [Mum77, Proposition 3.12]. Here, asymptotic Chow stability is
a notion that arises from GIT and imple K-semistability.

The proof of Theorem 2.1 is in fact related to the argument in [Mum77].

Remark 2.3 (Klt singularities). In [Oda13], Odaka also proves that X has klt
singularities in two important cases.

(1) Fano case: Assume (X,L) in Theorem 2.1 additionally satisfies L = −KX . If
(X,L) is K-semistable, then X is klt.

(2) Calabi-Yau case: Assume (X,L) in Theorem 2.1 additionally satisfies KX ∼Q
0. If (X,L) is K-semistable, then X is klt.

Remark 2.4 (Non-normal case). A version of Theorem 2.1 holds without the as-
sumption that X is normal. In particular, if we replace “normal” with “S2 Gorenstein
at codimension 1 points”, then [Oda13] proves: if (X,L) K-semistabile, then X is
slc.

Slc singularities are a non-normal version of lc singularties. In dimension 1, slc
singularities are either smooth points or nodes. In higher dimensions, slc singulari-
ties appear naturally when compactifying the moduli space of canonically polarized
varieties [Kol13a].

1In the language of [BHJ17, Section 7.2], the value equals INA(X ,L)− JNA(X ,L).
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The proof of Theorem 1.1 requires significant machinery from the Minimal Model
Program. The strategy is to show that if X is not lc, then (X,L) admits a test
configuration with negative Futaki invariant. To construct the destabilizing test con-
figuration, Odaka uses results from the Minimal Model Program for lc pairs [OX12].

2.1. A result from the MMP. The proof of Theorem 1.1 uses the following
result.

Theorem 2.5 ([OX12]). Let X be a normal variety such that KX is Q-Cartier.
If X is not lc, then there exists a closed subscheme Z ⊂ X such that

(1) the blowup BZX is normal,
(2) the exceptional locus of Y → X is Supp(KY/X), and
(3) all the coefficients of KY/X are < −1.

Note that condition (3) is the hardest to arrange. The proof of Theorem 2.5 follows
from the existence of log canonical models.

Remark 2.6 (Log canonical models). In [OX12], the authors show that if X is a
normal variety with KX is Q-Cartier, then there exists a proper birational morphism
f : Y → X such that

(i) (Y,∆Y := Exc(f)) is an lc pair and
(ii) KY + ∆ is relatively ample over X.

The pair (Y,∆Y ) is called the log canonical model of X and is unique up to isomor-
phism.

To construct Z ⊂ X in Theorem 2.5 from the log canonical model, set

E := KY/X + ∆.

Since E is exceptional and ample over X, the negativity lemma implies −E is effective
[KM98, Lemma 3.39]. Now, if we define Z as the subscheme cut out by

I := f∗OY (−mE),

where m > 0 is sufficiently divisible, then [BHJ17, Lemma 1.13] implies BZX ' Y
and I · OY = OY (−mE). Since KY/X = −E −∆Y and E = Exc(f), the coefficients
of KY/X are all < −1.

Example 2.7. Let h ∈ k[x0, . . . , xn] be a homogeneous polynomial of degree d
with n ≥ 3 such that H = {h = 0} ⊂ An+1 has an isolated singularity at 0. As

discussed in Example 1.5.3, there exists a log resolution H̃ → H given by blowing up
the point 0 ∈ H, and

KH̃/H = (n− d)F,

where F is the unique exceptional divisor.
By the above discussion, H is not lc precisely when d > n + 1. In this case, the

log canonical model of H is H̃ and Z = {0} satisfies the conclusion of Theorem 2.5.
In general, the choice of Z will be substantially more complicated.
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2.2. Proof of Theorem 2.1. Let (X,L) be a polarized variety such that X is
normal and KX is Q-Cartier. Assume X is not lc. We aim to show there is a normal
test configuration (X ,L) with Fut(X ,L) < 0.

Let Z ⊂ X be a closed subscheme satisfying the conclusion of Theorem 2.5 and
set

I = IZ×A1 + tNOX×A1 ⊂ OX×A1 ,

where N is a positive integer. Consider the normalization of the blowup of X × A1

along I:

X := ˜BIX × A1 g−→ X × A1.

We may write I · OX = OX (−E) for some Cartier divisor E. Set

Lε := g∗LA1 − εE,
which is ample over A1 when 0 < ε � 1, since LA1 is ample and −E is rela-
tively ample over X × A1. Similar to Example 1.7, (X ,Lε) is a test configuration
of (X,L).2 Additionally, since the coefficients of KY/X are < −1, [Oda13, page 14]
shows Supp(KX/X×A1) = Exc(f) and the coefficients of KX/X×A1 are < 0, assuming
N is sufficiently large and divisible.

Proof of Theorem 2.1. We aim to show Fut(X ,Lε) < 0 when 0 < ε� 1. To
proceed, we use that modified intersection formula in Proposition 1.5 implies

Fut(X ,Lε) =
Lnε ·KX/X×P1

V
+
Lnε g∗p∗1KX

V
+

S

n+ 1

Ln+1

ε

V
. (2.1)

By the multlinearity of the intersection product, the equation shows Fut(X ,Lε) is a
polynomial function for 0 < ε � 1. We will now analyze the lowest order coefficient
of the polynomial.

We begin with the first term in (2.1). Write KX/X×P1 =
∑

F aFF , where the sum

runs through prime divisors F ⊂ Supp(E), and set

d := min
F

codimX×0g(F ).

We compute

Lnε ·KX/X×P1 =
n∑
j=0

εn−j
(
n

j

)
(g∗LP1)j · (−E)n−j ·KX/X×P1

=
∑
F

n∑
j=0

εn−jaF

(
n

j

)
(g∗LP1)j · (−E)n−j · F.

By Lemma 2.8 proven below,

Lnε ·KX/X×P1 = cεd + higher order terms

2When N = 1, I = IZ×0 and BIX × A1 is the deformation to the normal cone from Example
1.7.
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for some rational number c < 0. Repeating a similar argument for the remaining two
terms in the formula for Fut(X ,Lε) gives

Fut(X ,Lε) = cεd + higher order terms.

Thus, Fut(X ,Lε) < 0 for 0 < ε� 1 and, hence, (X,L) is not K-semistable. �

Lemma 2.8. Keep the notation from the proof of Theorem 2.1. Additionally, let
M1, . . . ,Ms be line bundles on X, F a prime exceptional divisor on X , and set

C := g∗M1,P1 · . . . · g∗Ms,P1 · (−E)n−1 · F.
(1) If dim g(F ) < s, then C = 0.
(2) If dim g(F ) = s and M1, . . . ,Ms are ample, then C > 0.

Proof. It suffices to prove the result when M1, . . . ,Ms are ample. Indeed, for
(1), this follows from the fact that Mi ' Ai⊗B∗i for some very ample line bundles Ai
and Bi on X. For (2), the reduction follows from replacing each Mi by a power that
is very ample.

Now, choose general elements Hi ∈ |Mi|. If (1) holds, then

H1 ∩ · · · ∩Hs ∩ g(F ) = ∅.
Hence,

g∗H1,P1 ∩ · · · ∩ g∗Hs,P1 ∩ F = ∅,
which implies C = 0. If (2) holds, then

H1 ∩ · · · ∩Hs ∩ g(F )

is a union of general points of g(F ). Thus,

C = OY (−E)|n−sW ,

where W := g∗H1,P1 ∩ · · · ∩ g∗Hs,P1 ∩ F is dimension n − s. Since −E is relatively
ample over X × P1, OY (−E)|W is ample, which implies C > 0. �





CHAPTER 4

Valuations and test configurations

In this section, we discuss the language of valuations and their connection to test
configurations. This connection was first explored in depth by Boucksom, Hisamotto,
and Jonsson [BHJ17]. The presentation and results in Section 2 follows loc. cit.
closely.

Conventions: All schemes are defined over an algebraically closed field k of charac-
teristic 0.

1. Valuations

Throughout this section, let X be a normal variety and K := K(X) denote its
function field.

Definition 1.1. A valuation v of K is a map v : K× → R satisfying

(1) v(fg) = v(f) + v(g)
(2) v(f + g) ≥ min{v(f), v(g)}
(3) v|k× = 0

By convention, we set v(0) = +∞.
In the literature, such a map is often referred to as a real valuation that is trivial

on the base field. Since we only consider such objects, we use the above terminology.

Example 1.2. The following are examples of valuations.

(1) Let x ∈ X be a smooth point on a variety of dimension n. The order of
vanishing at x is the valuation defined by

ordx(f) := max{d | f ∈ mx}
for 0 6= f ∈ OX,x. Since ordx satisfies (1), (2), and (3) for f, g ∈ OX,x \ 0 it
extends uniquely to a valuation K× → R by setting

ordx(f/g) := ordx(f)− ordx(g).

We will often specify a valuation by stating its values on a local ring of X.
(2) Let X = A2

x,y and consider the valuation v of K(x, y) defined by sending

f =
∑

a,b∈N ca,bx
ayb, where ca,b ∈ k, to

v(f) = min{a+ b
√

2 | ca,b 6= 0}.
This is an example of a monomial valuation. The values v(x) = 1 and v(y) =√

2 are its weights.

39
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(3) Let X = A2
x,y and consider the ring morphism

φ : k[x, y] ↪→ k[[t]],

which sends x 7→ t and y 7→ ex−1 = x+ x2

2!
+ x3

3!
+ · · · , which is a well defined

power series. Let w denote the composition

k(x, y)× ↪→ k((t))×
ordt−→ Z,

where the first map is induced by φ and ordt is the t-adic valuation. For
example,

v
(
y − x− x2

2!

)
= ordt

(
x3

3!
+ x4

4!
+ · · ·

)
= 3.

1.1. Divisorial valuations. A divisor E over X is the data of a proper bira-
tional morphism µ : Y → X and a prime divisor E ⊂ Y with Y normal. Since the
local ring OY,E is a DVR, there is an induced valuation

ordE : K× → Z,

which sends 0 6= f ∈ K to the order of vanishing of µ∗f along E. A valuation of the
form cordE, where c ∈ R>0, is called a divisorial valuation.

The valuation ordx in Example 1.2.1 is a divisorial valuation. Indeed, ordx = ordF ,
where F is the exceptional divisor of the blowup of X at x.

1.2. Quasi-monomial valuations. Let Y → X be a proper biraitonal mor-
phism, η ∈ Y be a smooth point, and y1, . . . , yr ∈ OY,η local coordinates. Given a
weight vector α = (α1, . . . , αr) ∈ Rr

≥0, we define a valuation vα of K as follows. By
Cohen’s structure theorem, there is an isomorphism

ÔY,η = k(η)[[y1, . . . , yr]].

Hence, we can write 0 6= f ∈ OY,η uniquely as f =
∑

β∈Nr cβy
β, where cβ ∈ k(η) and

yβ := yβ11 · . . . , yβrr . We set

vα(f) := min{〈α, β〉 | cβ 6= 0}.

A valuation that can be written in this form is called quasi-monomial.
The case when η ∈ Y is a codimension 1 point shows that all divisorial valuations

are quasi-monomial. More generally, if α ∈ R · Zr≥0, then vα is divisorial by Theorem
1.3.

1.3. Valuation rings. Let v be a valuation of K. The valuation ring of v is the
local ring

Ov := {f ∈ K | v(f) ≥ 0},
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which has maximal ideal mv := {f ∈ K | v(f) ≥ 0}. If there is a morphism Spec(Ov)→
X such that the diagram

Spec(K) X

Spec(Ov) Spec(k)

commutes, then the image of the closed point of Spec(Ov) on X is called the center of
v on X and denoted cX(v) ∈ X. (Equivalently, the center of v is the point ξ ∈ X such
that v ≥ 0 on OX,ξ and v > 0 on mξ.) Since X is a variety, the valuative criterion
for separatedness implies the center is unique if it exists. If X is proper, then the
valuative criterion for properness implies that a center exists. We say v is a valuation
on X if it has a center on X.

The transcendence degree of a valuatin v is

tr.deg(v) := tr.degk(k(v)),

where k(v) := Ov/mv. The rational rank of v is

rt.rk(v) = dimQ(Γv ⊗Z Q),

where Γv := v(K×) is the value group and Γv⊗ZQ is viewed as a Q-vector space. The
Abhyankar inequality [Abh56] states that

tr.deg(v) + rt.rk(v) ≤ n. (1.1)

The case when equality holds is particularly important.

Theorem 1.3. Let v be a valuation of K. The following hold:

(1) v is quasi-monomial if and only if tr.deg(v) + rt.rk(v) = n;
(2) v is divisorial if and only if tr.deg(v) = n− 1 and rt.rk(v) = 1.

Statement (1) is proven in [JM12, Proposition 3.7], which uses an argument of
[ELS03]. Statement (2) is a classical theorem of Zariski [KM98, Lemma 2.45].

In the literature valuations such that the Abhyankar inequality is an equality
are often referred to as Abhyankar valuations. The above theorem shows that in our
setting, i.e. real valuations on the function field of characteristic 0 varieties, Abhyankar
and quasi-monomial valuations are the same.

It is instructive to compute the transcendence degree and rational rank of the
valuations in Example 1.2. These are given by

tr.deg rt.rk dim(X)
ordx 1 n− 1 n
v 0 2 2
w 0 1 2
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1.4. Valuations ideals. If v is a valuation of K, we can define its valuation ideal
aλ(v) ⊂ OX for λ ∈ R≥0 as flows. If U ⊂ X is an open set containing cX(v), then

aλ(v) := {f ∈ OX(U) | v(f) ≥ λ}.
If cX(v) /∈ U , then aλ(v) = OX(U).

Remark 1.4. There are also valuation ideals on Ov defined by Iλ(v) := {f ∈
Ov | v(f) ≥ λ} ⊂ Ov. The two types of valuation ideals are related by aλ(U) =
OX(U) ∩ Iλ(v) when cX(v) ∈ U

1.5. Evaluation. Using the notion of the center, a valuation can evaluate more
general objects than functions.

Definition 1.5. Fix a valuation v ∈ ValX .

(1) For an ideal a ⊂ OX , we set v(a) := min{f ∈ a · OX,cX(v)}.
(2) For a Cartier divisor D on X, v(D) := v(fD), where fD is the local defining

equation of D at cX(v).
(3) More generally, for a Q-Cartier Q-divisor D, we set v(D) := 1

m
v(mD), where

m is a positive integer such that mD is a Cartier divisor.
(4) Let L be a line bundle and s ∈ H0(X,mL). After fixing a trivialization

φ : LcX(v)
'−→ OX,cX(v) at cX(v), we set v(s) := v(φ(s)).

In (2)-(4), the value is independent of choice. For example, for (2) this uses that
any other local defining equation differs from fD by a unit in OX,cX(v).

1.6. Valuation space. We write ValX for the set of valuation on X. The set
ValX has the structure of a topological space, where the topology is the weakest
topology such that the function

evf : ValX → R,
defined by evf (v) := v(f), is continuous for each f ∈ K×.

Remark 1.6 (Berkovich spaces). A fundamental class of objects in non-Archimedean
geometry are Berkovich spaces. The space ValX is a dense subset of the Berkovich
space of X with respect to the trivial valuation on k. The boundary parameterizes
valuations on subvarieties of X. See [JM12, Section 6.3] for further discussion on the
relation.

1.7. Log discrepany. Let X be a normal variety such KX is a Q-Cartier.

Definition 1.7. If E is a prime divisor on a normal variety Y with a proper
birational morphism Y → X, then the log discrepancy of E

AX(E) = 1 + coeffE(KY/X).

We will often write AX(ordE) for this value.

Remark 1.8 (Relation to lc and klt). Using that KY/X =
∑

E⊂Y (AX(E) − 1)E,
it follows that:
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(1) X is klt if and only if AX(E) > 0 for all divisors E over X;
(2) X is lc if and only if AX(E) ≥ 0 for all divisors E over X.

Remark 1.9 (Log discrepancy vs. discrepancy). In the birational geometry liter-
atuere one often considers the discrepancy of E [KM98, Section 2.3], which is

a(E;X) := coeffE(KY/X) = AX(E)− 1.

While both notions can be used to define klt (resp., lc) singularities, the log discrep-
ancy extends more naturally to a continuous function on the valuation space. This
can be seen in the following example.

Example 1.10. Let X = A2
x,y. For relativlye prime positive integers a, b, let

Ya,b → A2 denote the weighted blowup at 0 with weights a and b along x and y with
exceptional divisor Fa,b. The valuation ordFa,b

is the monomial valuation on A2 with
weights a and b along x and y.

A toric computation shows

AA2(Fa,b) = a+ b.

Hence, the log discrepancy is linear in a and b, while the discrepancy is not.

Theorem 1.11. [JM12,Bou15] The log discrepancy extends uniquely to a lower-
semicontinuous, homogenous function

ValX → R ∪ {∞}.

The function can be defined in the following steps.

(1) For a divisorial valuation cordE,

AX(cordE) := cAX(E) = c(1 + coeffE(KY/X)

(2) For a quasi-monomial valuation vα in the notation of Section 1.2, we extend
linearly by setting

AX(vα) = α1AX(E1) + · · ·αrAX(Er),

where Ei is the prime divisor on Y locally defined by yi at η,
(3) For a general valuation v, AX(v) is defined by approximating v by quasi-

monomial valuations and taking a sup. See [JM12, Section 5.2] for details.

2. Relations to test configurations

In this section, we describe a link between K-stability and valuations observed in
[BHJ17]. The connection arises from the fact that a normal test configuration (X ,L)
of a polarized pair (X,L) induces a canonical Gm-equivariant birational map

X 99K X × A1

and each irreducible component E ⊂ X0 induces a valuation ordE of K(X ), which is
isomorphic to K(X)(t).
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2.0.1. Valuations on the trivial test configuration. Let X be a normal variety. In
this section, we study valuations K(X × A1) ' K(X)(t).

Definition 2.1. If v is a valuation of K(X)(t), we denote by r(v) its restriction
to K(X), which fits into a diagram

K(X)× K(X)(t)× R

r(v)

v .

Proposition 2.2. Let v be a valuation of K(X)(t).

(1) If v is quasi-monomial, then r(v) is quasi-monomial.
(2) If v is divisorial, then r(v) is divisorial or the trivial valuation.

Proof. The proof uses a generalized version of the Abhyankar inequality, which
states that if k ⊂ L′ ⊂ L are field extensions and w is a valuation of L, then

tr.degw + rt.rkw ≤ tr.degw′ + rt.rkw′ + tr.degL′(L),

where w′ is its restriction L′ [BHJ17, (1.3)]. Therefore,

tr.degv + rt.rkv ≤ tr.degr(v) + rt.rkr(v) + 1 ≤ n+ 1,

where the second inequality is (1.1). Since v is quasi-monomial, we know

tr.degv + rt.rkv = n+ 1

by Theorem 1.3. Combining the previous two inequalities gives

tr.degr(v) + rt.rkr(v) = n.

Thus, r(v) is quasi-monomial by Theorem 1.3. If v is in addition divisorial, then

rt.rkr(v) ≤ rt.rkv = 1.

If rt.rkr(v) = 1, then r(v) is divisorial by Theorem 1.3. If rt.rkr(v) = 0, then r(v) is
the trivial valuation. �

Definition 2.3. A valuation v of K(X)(t) is Gm-equivariant if

v(f) = v(f · a)

for each f ∈ K(X)(t) and a ∈ Gm(k) = k×. We write ValGm

X×A1 for the set of Gm-

equivariant valuations on X × A1.

In the above definition, the action of a ∈ k× on f ∈ K(X)(t) is given by

a · f =
∑
λ∈Z

a−λfλt
λ,

where f =
∑

λ∈Z fλt
λ and each fλ ∈ K(X).
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Example 2.4. Fix a valuation w of K(X) and a real number s ≥ 0. We define a
valuation ws of K(X)(t) by setting

ws(f) := min{w(fλ) + λs}

for f =
∑

λ fλt
λ ∈ K(X)(t). We state a number of properties of ws.

(1) The valuation is Gm-equivariant, since w(a−λfλ) = w(fλ) for each a ∈ k×.
(2) If w has center on X, then

cX×A1(ws) =

{
cX(w)× 0 if s > 0

cX(w)× A1 if s = 0

(3) If w = c · ordF for some integer c and prime F on a variety Y with a proper
birational morphism Y → X, then ws is the quasi-monomial combination of
F × A1 and Y × 0 with weights c and s.

Proposition 2.5. The map

ValX × R→ ValGm

X×A1 ,

sending (w, s) to ws is a bijection.

Proof. The map is clearly injective. Hence, it suffices to show surjectivity. Fix
a Gm equivariant valuation on X × A1. Set

w := r(v) and s := v(t).

We seek to show v = ws.
To proceed, fix f =

∑
λ fλt

λ ∈ K(X)(t) and observe that

v(f) ≥ min{v(fλ) + λs) |λ ∈ Z} = ws(f).

To prove the reverse inequality, fix a positive integer N such that fλ = 0 for λ > N .
Next, fix λ0 ≤ N achieving the minimum, i.e.

v(fλ0) + λs = min{v(fλ) + λs) |λ ∈ Z},

and distinct elements (aµ)1≤µ≤N in k×. Using that

aµ · f =
∑
λ∈Λ

a−λµ fλt
λ

and that the determinant of (a−λµ )1≤µ,λ≤N is non-zero by the Vandermonde determinant

formula, we see fλ0t
λ0 is a k-linear combination of the aµ · f . Hence,

ws(f) = v(fλ0t
λ0) ≥ min{v(aµ · f) | 1 ≤ µ ≤ N} = v(f),

which implies ws(f) = v(f) as desired. Therefore, ws = v. �
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2.1. Test configurations. Let (X ,L) be a normal test configuration of polarized
variety (X,L). Consider the diagram

Y

X X × A1

f g
,

where Y is the main component of the normalization of the graph of the canonical
birational map X 99K X × A1. Note that the above morphisms are Gm-equivariant,
where the action on X×A1 is the product of the trivial action on X and the standard
action on A1.

Definition 2.6. An irreducible component E ⊂ X0 induces a valuation ordE of
K(X ) ' K(X)(t). We write vE := r(ordE) for its restriction to K(X).

We state a number of important properties of these valuations

Lemma 2.7. Let E be an irreducible component of X0.

(1) ordE is a Gm-equivariant divisorial valuation on X × A1.
(2) vE = c ordF for some integer c > 0 and prime divisor F on a normal variety

Y with a proper birational morphism Y → X.

Additionally, ordE is the quasi-monomial valuation with weights c and ordE(t) along
F × A1 and Y × 0.

Proof. We first prove (1). Since Gm and E are irreducible,

Gm · E = im(Gm × E → X )

is irreducible. Using that Gm · E ⊂ X0 and 1 · E = E, it follows that Gm · E = E.
Therefore, a · E for each a ∈ Gm(k), and, hence, ordE is Gm-equivariant. Since

ordE = ordẼ, where Ẽ is the birational transform of E on Y , ordE is a divisorial
valuation on X × A1.

Statement (2) follows immediately from Theorem 1.3.2 and that ΓvE ⊂ Z. The
last statement is a consequence of Example 2.4 and Proposition 2.5. �

Using the valuations in Definition 2.6, we can describe the filtration of the section
ring of (X,L) induced by the test configuration.

Proposition 2.8. For m > 0 sufficiently large and divisible,

F λ
X ,LH

0(X,mL) :=
⋂
E⊂X0

{
s ∈ H0(X,mL) | vE(s) +mordE(D) ≥ λordE(t)

}
,

where D denotes the Q-divisor on Y supported on Y0 such that f ∗L ' g∗LA1 +D.

Proof. Fix s ∈ H0(X,mL), and let s denote the Gm-invariant section of L ×
(A1 \ 0) such that s1 = s. Using that (X ,L)|A1\0 ' (X,L)× (A1 \ 0), we may view s
as a rational section of mL.
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By Remark 1.14, s ∈ F λH0(X,mL) if and only if st−λ ∈ H0(X ,L). Since X is
normal, st−λ ∈ H0(X ,L) if and only if ordE(st−λ) ≥ 0 for all irreducible components
E ⊂ X0. We compute

ordE(st−λ) = ordE(s)− λordE(t) = vE(s) +mordE(D)− λordE(t).

Hence, the desired formula holds. �

Remark 2.9. The last equality in the proof is a tad confusing, since s gives a
rational section of mL as well as mLA1 . The above choice changes the value of ordE.

Adding subscripts to denote which line bundle the rational section lives on, we
compute in more detail:

ordE(st−λmL) = ordE(smL)− λordE(t) = ordE(sf∗mL)− λordE(t)

= ordE(sg∗mLA1 (D))− λordE(t)

= ordE(sg∗mLA1
) +mordE(D)− λordE(t)

= vE(s) +mordE(D)− λordE(t).

The following comparison of log discrepances will be useful in future sections.

Lemma 2.10. If E is an irreducible component of X0, then

AX×A1(ordE) = AX(vE) + ordE(t).

Proof. Using the notation and statement of Lemma 2.7, we compute

AX×A1(ordE) = c · AX×A1(ordF×A1) + ordE(t) · AX×A1(ordY×0)

= c · AX(ordF ) + ordE(t)

= AX(vX0) + ordE(t),

where the first equality uses that ordE is the quasi-monomial combination of F × A1

and Y × 0 with weights c and ordE(t), the second that KY×A1/X×A1 = p∗1KY/X , and
the third that vE = cordF . �





CHAPTER 5

K-stability of Fano varieties and Valuations

In this chapter, we develop tools for understanding the K-stability of Fano varieties.
In particular, we discuss Kento Fujita and Chi Li’s valuative criterion for K-stability.

Conventions: Throught this section, all schemes are defined over an algebraically
closed field k of characteristic 0.

1. Klt Fano varieties

1.1. Definition.

Definition 1.1. A klt Fano variety is a projective variety X such that X is klt
and −KX is ample.

Remark 1.2 (Why klt?). Of course, the most important examples of klt Fano
varieties are smooth Fano varieties. Regardless, we are more generally interested in
klt Fano varieties for the following reasons.

(1) A possibly singular normal K-semistable Fano variety has at worst klt sin-
gularities by [Oda13]. Hence, this is the largest class of Fano varieties for
which studying K-stability makes sense.

(2) Most algebraic arguments in the study of the K-stability of smooth Fano
varieties also apply verbatim to klt Fano varieties.

(3) As we will see in later chapters, smooth K-polystable Fano varieties are pa-
rameterized by a quasi-projective moduli space. The moduli space can be
compactified by parameterizing smoothable klt K-polystable Fano varieties
at the boundary.

Example 1.3. Let us give a few interesting examples of klt Fano varieties.

(1) Since smooth varieties are klt, we already listed a number examples of klt
Fano varieties in Section 1.3.

(2) Weighted projective space. Let a0, . . . , an be positive integers and set

P(a1, . . . , an) = Proj k[x0, . . . , xn],

where k[x0, . . . , xn] is the graded ring with xi weight ai. Set theoretically,

P(a1, . . . , an)(k) = (An+1(k) \ 0)/ ∼,
49
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where the equivalence relation is given by (x0, . . . , xn+1) ∼ (λa0x0, . . . , λ
anxn)

for each λ ∈ k×. Using that weighted projective spaces have quotient singu-
larities, which are klt, and a computation of the canonical divisor, it follows
that they are klt Fano varieties.

(3) Let f ∈ k[x0, . . . , xn] be a homogeneous polynomial of degree d < n + 1
such that X = {f = 0} ⊂ Pn is a hypersurface. Its projectivized cone is
Y = {f = 0} ⊂ Pn+1, where f is viewed as a polynomial in k[x0, . . . , xn+1.
Note that Y is a klt Fano variety, since it is klt by Example 1.14 and has
−KY = OY (−n− 2 + d), which is ample.

In this chapter, we will discuss the K-stability of klt Fano varieties. To reduce
notation, a test configuration (X ,L) of a klt Fano variety X will always mean a test
configuration of (X,−KX).

1.2. Special test configurations. In the study of the K-stability of Fano vari-
eties, a special class of test configurations play an important

Definition 1.4. A test configuration (X ,L) of a klt Fano variety X is special if
X0 is a klt Fano variety.

Example 1.5. The test configuration in Example 2.2, which is the degeneration
of P2 to the cone over a conic, is a special test configuration.

In Tian’s original definition of K-stability, he only considered special test configu-
rations [Tia97].1 The following theorem of Li and Xu shows that his definition agrees
with Donaldson’s definition [Don02].

Theorem 1.6. [LX14] To test K-(semi/poly)stability of a klt Fano variety, it
suffices to consider special test configurations.

More precisely, [LX14] shows that if (X ,L) is a test configuration of a klt Fano va-
rietyX, then there exists an integer d > 0 and special test configuration (X s,−KX s/A1)
of X such that

Fut(X s,−KX s/A1) ≤ dFut(X ,L).

Its proof relies on using the Minimal Model Program to modify the original test
configuration and showing that the Futaki invariant decreases throughout this process.

Remark 1.7 (Integral central fiber). If (X ,L) is a special test configuration, then
X0 is variety and, hence, integral. In the next sections, test configurations with X0

integral will play an important role due to their relation to certain valuations on X.

2. Test configurations and dreamy valuations

Throughout, let X be a klt Fano variety and fix r > 0 such that L := −rKX is a
line bundle.

1The definition of special in [Tia97] is that X0 is normal. This differs slightly from our definition.
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2.1. Dreamy valuations. A Z-valued divisorial valuation v on X induces a Z-
filtration of R(X,L) :=

⊕
m∈NH

0(X,mL) defined by

F λ
v H

0(X,mL) := {s ∈ H0(X,mL) | v(s) ≥ λ}.
To see this is indeed a Z-filtration, note that

F λ
v H

0(X,mL) · F µ
v H

0(X, qL) ⊂ F λ+µ
v H0(X, (m+ q)L),

by the definition of a valuation.

Remark 2.1. Note that if we write v = c · ordE and E ⊂ Y
µ→ X, then we have

a diagram

F λ
v H

0(X,mL) H0(X,mL)

H0
(
Y,mµ∗L− bλ/ccE

)
H0(Y,mµ∗L)

µ∗ µ∗ ,

where the vertical arrows are isomorphisms. It will be convenient to view the filtration
using this isomorphism.

Definition 2.2 (Fujita). A Z-valued divisorial valuation v of X is dreamy if F •v
is finite generated. If v = ordE is dreamy, we say E is a dreamy divisor over X.

The work dreamy is a reference to Mori dream spaces, which were defined by Hu
and Keel in [HK00]. Such spaces satisfy many finiteness properties.

Remark 2.3. If we write v = c · ordE and E ⊂ Y
µ→ X, then Remark 2.1 implies

Rees(F •v ) is isomorphic to ⊕
(m,λ)∈N×Z

H0(Y,mµ∗L− bλ
c
cE)

Hence, v is dreamy if this algebra is finitely generated.

Example 2.4. We give a few examples of dreamy and non-dreamy divisors.

(1) If E is a prime divisor on X (i.e. E ⊂ X), then E is dreamy.
(a) In the case when E ∼Q −cKX for some c ∈ Q (e.g. X = Pn and E ⊂ Pn

is any prime divisor), this can be deduced from the fact that R(X,L) is
finitely generated.

(b) The general result is highly non-trivial and follows from a powerful finite
generation result in [BCHM10, Corollary 1.1.9] and the assumption
that X is Fano.

(2) As we will see in Proposition 2.6, if (X ,L) is a test configuration of X with
X0 integral, then the valuation vX0 on X is dreamy.

(3) As observed by Goto, Nishida and Watanabe, there exist space C ⊂ P3 such
that the ⊕

λ∈N

aλ(ordC)
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is not finitely generated, where aλ(ordC) ⊂ OP2 is the λ-th valuation ideal
[Laz04, Remark 2.4.17]. From this, it can be deduced that ordC is not
dreamy.

In general, one expects that “most” valuations are not dreamy.

2.2. Test configurations with integral central fiber. As we will see, dreamy
valuations are related to test configurations with integral central fiber. To begin, we
observe some basic properties of such test configurations.

Lemma 2.5. Let (X ,L) be a test configuration of a klt Fano variety X. If X0 is
integral, then

(1) X is normal and
(2) L ' −KX/A1 + cX0 for some rational number c ∈ Q.

Proof. Since X is normal by the klt assumption and X0 is reduced, Proposition
1.21.3 implies X is normal. Next, fix an integer r such that rL is line bundle. Since

rL|A1\0 ' −rp∗KX ' −rKX/A1|A1\0,

where p is the composition X \ X0 ' X × (A1 \ 0) → X, there exists a divisor G
supported on X0 such that

rL ' −rKX/A1 +G.

Since X0 is a prime Cartier divisor, G is multiple of X0, which implies (2) holds. �

Since a scheme is integral if and only if it is irreducible and reduced, Lemma 2.5.1
implies ordX0 is a divisorial valuation of X .

Proposition 2.6. Let (X ,L) be a test configuration of a klt Fano variety X with
X0 integral. The following hold:

(1) There exists a rational number C such that

F λ
X ,LH

0(X,L) = F λ+mC
vX0

H0(X,mL)

for all m ∈ N and λ ∈ Z.
(2) If L = −KX/A1 as linearized Q-line bundles, then C = −rAX(v0).
(3) The valuation vX0 is dreamy.

Proof. By Proposition 2.8, we have

F λH0(X,mL) =
{
s ∈ H0(X,mL) | vX0(s) +mrordX0(D) ≥ λordX0(t)

}
for m > 0 sufficiently divisible. The Q-divisor D appearing above is defined as follows.
Consider the diagram

Y

X X × A1,

f g
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where Y is the main component of the normalization of the graph of X 99K X × A1.
Above, D is the Q-divisor supported on X0 such that f ∗L = g∗p∗1(−KX)(D). Since
X0 = {t = 0} and X0 is reduced, ordX0(t) = 1. Thus, the first statement holds with
C := ordX0(D).

By (1), there is an isomorphism of k[t]-algebras

Rees(F •v ) ' Rees(F •X ,L).

(The isomorphism is not an isomorphism of N × Z-graded algebras, since there is a
shift in grading). When L = −KX/A1 , we compute

D = g∗(KX×A1 − p∗2KA1)− f ∗(KX − π∗KA1)

= g∗KX×A1 − f ∗KX
= KY/X −KY/X×A1 ,

where the first equality uses that KX×A1 = p∗1KX +p∗2KA1 and the second that g◦p2 =
f ◦ π. Therefore,

ordX0(D) = coeffX̃0
(KY/X )− coeffX̃0

KY/X×A1 = 0− (AX×A1(ordX0)− 1)

= −AX(vX0),

where the last equality is Lemma 2.10. �

2.3. Correspondence.

Proposition 2.7. There exists a bijective correspondence between

(1) test configurations (X ,−KX/A1) of X with X0 integral
(2) dreamy Z-valued divisorial valuations of X.

given by the map sending a test configuration (X ,−KX/A1) to the valuation vX0.

Example 2.8. We provide a few simple examples of this correspondence:

(1) The map sends the trivial test configuration

(X × A1,−KX×A1/A1)

to the trivial valuation vtriv of X.
(2) Consider a product test configuration

X := X × A1

induced by a Gm-action σ : Gm ×X → X As observed in [?Fuj19, Example
3.5], the induced valuation vX0 is the composition

K(X)× K(X)(t)× Z

vX0

σ∗ ordt−1
,
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where σ : Gm × X → X is the action of Gm on X.2 We call vX0 a product
valuations, since it is induced by product test configurations.

(2’) The choice of integers a and b, induces a Gm-action on P2
[x0:x1:x2] given by

t · [x0 : x1 : x2] = [x0, t
−ax1 : t−bx2]

and, hence, a product test configuration X a,b := P2×A1 of P2. Using (2), we
see the induced valuation is the monomial valuation on

A2 ' Ux0 6=0 ↪→ P2,

with weights a and b on x1
x0

and x2
x0

.

To prove the correspondence, we need the following lemma, which describes the
test configuration induced by a dreamy valuation.

Lemma 2.9. Let v be dreamy Z-valued divisorial valuations of X and set

X := ProjA1

(
Rees(F •v )

)
,

The following hold:

(1) (X ,−KX/A1) is a normal test configuration of X
(2) X0 is integral, and
(3) vX0 = v.

Note that it only makes sense to consider X := ProjA1

(
Rees(F •v )

)
in the case when

v is dreamy, since otherwise Rees(F •v ) is not finitely generated and its Proj will not
necessarily be projective over A1.

Proof. To prove X0 is integral, note that

Rees(F •v )

tRees(F •v ))
=
⊕
m∈N

⊕
λ∈Z

F λ
v H

0(X,mL)

F λ+1
v H0(X,mL)

=
⊕
m∈N

⊕
λ∈Z

grλFv
H0(X,mL).

Hence, X0 is Proj of the associated graded ring of F •v . We claim the graded ring
is a domain. To see this, observe that if 0 6= s ∈ grλFv

H0(X,mL) and 0 6= t ∈
grµFv

H0(X, qL), then v(st) = v(s) + v(t) = λ+ µ and, hence,

0 6= s · t ∈ grλ+µ
Fv

H0(X, (m+ q)L).

Therefore, X0 is integral. Additionally, 1.21.1 implies X is a normal test configuration
of X by Proposition 1.21.3. Using that

L := 1
r
OX (1) = −KX/A1 + cX0

for some c ∈ Q by Lemma 2.5, (X ,−KX/A1) is a normal test configuration of X as
well. Thus, (1) and (2) hold.

2The minus sign arises from the fact that the equivariant birational map

X|A1\0 → X × A1

sends (x, t) 7→ (σ(t−1, x), t).
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We sketch the proof of (3). By Proposition 2.6,

F λ
X ,LH

0(X,mL) = F λ+mrC
vX0

H0(X,mL)

for some constant C and all (m,λ) ∈ N × Z. On the other hand, since (X ,L) is the
test configuration constructed using F •v , Remark 1.20 implies that, after replacing L
by a power,

F λ
X ,LH

0(X,mL) = F λ
v H

0(X,mL)

for all (m,λ) ∈ N×Z. We leave it as an exercise to use the previous two equalities to
deduce that v = vX0 . �

Proof of 2.7. If (X ,−KX/A1) is a test configuration of X with X0 integral, then
vX0 is dreamy by Proposition 2.6.3. The map is surjective by Lemma 2.9, while the
injectivity can be deduced from Proposition 2.6 and the correspondence between test
configurations and filtrations. �

3. Valuative criterion

3.1. Fujita’s β-invariant. The following invariant of a valuation was developed
in the work of Kento Fujita [Fuj16,Fuj19] and also the work of Chi Li [Li17b].

Definition 3.1 (Fujita’s β-invariant). Let X be a klt Fano variety and r a positive
integer such that −rKX is Cartier. For a a Z-valued valuation v of klt Fano variety
X,

βX(v) := AX(v)− S(v),

where S(v) is the limit

S(v) = lim sup
m→∞

∑
λ∈Z λ dim grλFv

H0(X,−mrKX)

m dimH0(X,−mrKX)
.

As will be discussed in a future section, the previous limsup is actually a limit. If
v := ordE for some divisor E over X, we simply write

βX(E) = AX(E)− S(E)

for the above values.

The motivation for the definition arises from the following computation.

Proposition 3.2. If (X ,−KX/A1) is a test configuration of a klt Fano variety X
and X0 integral, then

Fut(X ,−KX/A1) = AX(vX0)− S(vX0) = c(AX(E)− S(E)),

where v = c · ordE.

Proof. To mininimize notation, let v := vX0 and A := AX(vX0). By applying
Theorem 2.6 and then Proposition 2.7,

Fut(X ,−KX/A1) = −
(−KX/A1)n+1

(n+ 1)(−KX)n
= −F0.
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Above, F0 is the Laurent expansion

wtH0(X0,−mKX/A1|X0)

m dimH0(X,−mKX)
= F0 + F1m

−1 + F2m
−2 + · · · ,

where equality holds for m > 0 sufficiently divisible. Now, note that

wtH0(X0,−mKX/A1 |X0) =
∑
λ∈Z

λ dim grλFX ,−KX/A1
H0(X,−mKX)

=
∑
λ∈Z

λ dim grλ+mA
Fv

H0(X,−mKX)

=
∑
λ∈Z

(λ−mA) dim grλFv
H0(X,−mKX)

=
∑
λ∈Z

λ dim grλFv
H0(X,−mKX)−mAX(vX0) dimH0(X,−mKX),

where first equality is by Proposition 1.13 and the second Proposition 2.6. Thus,

−F0 = AX(vX0)− lim
m→∞

λ dim grλFv
H0(X,−mrKX)

m dimH0(X,−mrKX)

and, hence,

Fut(X ,−KX/A1) = AX(vX0)− S(vX0),= c (AX(E)− S(E)) ,

where the second equality uses that both terms are homogeneous of degree 1. �

A key feature of the formula in Proposition 3.2 is that it involves only the first
term of the weight polynomial of the test configuration induced by vX0 . The second
term of the weight polynomial is much more difficult to understand and compute.

Proposition 3.3. Let X be a klt Fano variety of dimension n. If µ : Y → X is
a proper birational morphism with Y regular and E ⊂ Y a prime divisor, then

S(E) =
1

(−KX)n

∫ ∞
0

vol(−µ∗KX − tE) dt

Remark 3.4. While the above integral is from 0 to∞, it can actually be computed
in a finite region, since vol(−µ∗KX − tE) = 0 for t� 0. To see the latter statement,
fix an ample divisor A on Y . Since E · An−1 > 0, it follows that

(−µ∗KX − tE) · An−1 = −µ∗KX · An−1 − tE · An−1 < 0

for t� 0. Hence, for such t, no positive multiple of −µ∗KX − tE has sections.
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Proof. To reduce notation, let F • denote the filtration of
⊕

m∈NH
0(X,−mrKX)

induced by ordE. Observe that∑
λ∈Z

λ dim grλFH
0(X,−mrKX) =

∑
λ∈Z

λ(F λH0(X,−mrKX))− F λ+1H0(X,−mrKX))

=
∞∑
λ=1

F λH0(X,−mrKX)

=
∞∑
λ=1

dimH0(Y,−µ∗mrKX − λE)

=

∫ ∞
0

dimH0(Y,−µ∗mrKX − dteE) dt

= (mr)−1

∫ ∞
0

dimH0(Y,−µ∗mrKX − dt/(mr)eE) dt

Thus,

S(E) = lim sup
m→∞

∫ ∞
0

dimH0(Y,−µ∗mrKX − dt/(mr)eE)

dimH0(−mrKX)
dt

Since the fraction inside the integral is always ≤ 1 and

lim
m→∞

dimH0(Y,−µ∗mrKX − dt/(mr)eE)

dimH0(−mrKX)
=

vol(Y,−µ∗KX − tE)

vol(−KX)
,

where the fact that the limit exists follows from [KK12, Corollary 3.11], the domi-
nated convergence theorem implies

S(E)X =

∫ ∞
0

vol(Y,−µ∗KX − tE)

vol(−KX)
dt.

�

Example 3.5. Using the previous proposition, Fujita’s β-invariant can be com-
puted in many examples.

(1) Let H ⊂ P2 be a hyperplane. Then AP2(H) = 1 and

SP2(H) =
1

−K2
P2

∫ ∞
0

vol(−KP2 − tH) dt

=
1

OP2(3)2

∫ ∞
0

vol((3− t)H) dt =
1

9

∫ ∞
0

(3− t)2 dt = 1.

Hence, AP2(H)− SP2(H) = 1.
Another way to compute this value is to note that ordH is induced by a

product test configuration (X ,−KX/A1) of P2. Hence,

AP2(E)− SP2(E) = Fut(X ,−KX/A1) = 0,

where the last equality uses that P2 is K-semistable and the test configuration
is a product.
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(2) Let BpP2 π→ P2 denote the blowup of P2 at p, E ⊂ BpP2 the exceptional
divisor, and L the pullback of a line on P2. Note that

KBpP2 = π∗KP2 + E = −3L+ E.

Thus, we can compute

SBpP2(E) =
1

(−KBpP2)2

∫ ∞
0

vol(−KX − tE) dt

=
1

(3L− E)2

∫ ∞
0

vol(3H − E − tE) dt =
1

8

∫ 2

0

9− (1 + t)2 dt = 7/6.

(Note that the above value differs from SP2(E).) Therefore,

ABpP2(E)− SBpP2(E) = 1− 7/6 = −1/6 < 0.

Since ordE is dreamy by 2.4, it induces a test configuration with Fut = −1/6.
Hence, BpP2 is not K-stable.

(3) Generalize the first example, if D is a prime divisor on a klt Fano variety X
with D ∼Q −cKX , then

SX(H) =
1

(−KX)n

∫ ∞
0

vol(−KX − tH) dt

=
1

(−KX)n

∫ ∞
0

vol(−(1− ct)KX) dt =

∫ 1/q

0

(1− qt)n dt =
1

c(n+ 1)

3.2. Valuative criterion. The following theorem provides a characterization of
K-stability in terms of valuations.

Theorem 3.6. Let X be a klt Fano variety. The following hold:

X is K-stable ⇔ AX(E)− SX(E) > 0 for all divisors E over X

X is K-semistable ⇔ AX(E)− SX(E) ≥ 0 for all divisors E over X

Additionally, X is K-polystable if and only if AX(E) − S(E) ≥ 0 for all divisors E
over X and = 0 only when ordE is a product valuation.

Recall, that the term product valuation appearing in criterion for K-polystability
refers to valuations arising from product test configurations. See Example 2.12 for
the precise defintion. ]

The K-semistable version of the result was first proven by Kento Fujita [Fuj19] and
Chi Li [Li17b]. The K-stable and K-polystable version requires some slight additional
input from [BX19].

The theorem implies that we can use divisorial valuations rather than test config-
urations to understand the K-stability of Fano varieties. This is useful since divisorial
valuations can be understood using tools from higher dimensional geometry and, in
particular, the Minimal Model Program.
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Remark 3.7 (Dreamy version). We have not yet built up the machinery to prove
Theorem 3.6. What we can prove is the following result:

X is K-stable ⇔ AX(E)− SX(E) > 0 for all dreamy divisors E over X

X is K-semistable ⇔ AX(E)− SX(E) ≥ 0 for all dreamy divisors E over X

Additionally, X is K-polystable if and only if AX(E) − S(E) ≥ 0 for all dreamy
divisors E over X and = 0 only when ordE is a product valuation.

To see the above statement holds, note that Theorem 1.6 implies that to check
K-(poly/semi)stability of X, it suffices to consider the value of the Futaki invariant
of test configurations with integral central fiber. Hence, the correspondence between
test configurations with integral central fiber and dreamy valuations (Proposition 2.7),
as well as the relation between Fut and A − S (Proposition 3.2) imply the above
statement.

Remark 3.8 (Proof of Theorem 3.6). The above remark provides a proof of the re-
verse implication of Theorem 3.6. Proving the forward implication requires additional
machinery. We outline a couple approaches.

(1) Assume X is K-semistable and E is a divisor over X. In order to show
AX(E)−SX(E) ≥ 0, we must relate E to a test configuration. If F •ordE

is not
finitely generated, then it does not immediately induce a test configuration.

To remedy this, one could approximate F •ordE
by a sequence of finitely

generated filtrations (F •i ), which induces test configurations (Xi,Li) and try
to show

AX(E)− SX(E) ≥ lim Fut(Xi,Li) ≥ 0.

Unfortunately, seems quite difficult to approach due to the subtle nature of
the b1 coefficient in the weight polynomial.

Instead, Fujita shows that a similar approach works if one replaces Fut
with the Ding invariant [Fuj19]. The Ding invariant of test configuration was
introduced by Berman [Ber16] and involves a certain log-canonical threshold,
rather than the b1 coefficient. Hence, it is easier to work with.

(2) An alternative approach is to study which divisors over a Fano variety are
dreamy. In [BLX19,BLZ19], it is shown (without using test configurations
or the definition of K-stability) that if

AX(E)− SX(E) < 0

for some divisor E over X, then the inequality holds for some dreamy divisor
as well. We will dicsucss this approach in a future section.

3.3. Application to volume bounds. We now discuss an application of the
valuative criterion to the volume of Kähler-Einstein Fano varieties. Recall, the volume
of an n-dimensional klt Fano variety X is the number

vol(X) := vol(−KX) := (−KX)n.
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It is > 0 by the assumption that −KX is ample. Note that

vol(Pn)) := vol(OPn(n+ 1)) = (n+ 1)n.

Remark 3.9. It is natural to ask what values the volume can take.

(1) In dimension up to three, there is a classification of smooth Fano varieties.
The list shows that if X is a smooth Fano variety of dimension n ≤ 3 has

vol(X) ≤ (n+ 1)n

and if equality holds then X ' Pn.
(2) In higher dimensions, Pn does not have the largest volume. See for example

[IP99, p. 128].
(3) By boundedness results of Kollar, Miyaoka, and Mori [KMM92], there exists

a constant c(n) such that if X is a smooth Fano variety of dimension n, then

vol(X) ≤ c(n)n.

By the examples in [Deb01, Proposition 5.22], c(n) cannot be chosen to be
a polynomial.

As observed by Kento Fujita, the volume of a K-semistable Fano variety is very
well behaved.

Theorem 3.10. If X is a K-semistable klt Fano varietiy of dimension n, then

vol(X) ≤ (n+ 1)n

and if equality holds then X ' Pn

The result was first established in [Fuj18], but with the equality part only proven
when X is smooth. The equality part in the singular case was later shown in [LZ18].

The result was originally conjectured by differential geometers, Berman and Berndt-
son, who proved the result for toric varieties [BB17]. Differential geometry methods
prove a weaker bound than (n+ 1)n for Káhler-Einstein Fano varieties [Deb01, Sec-
tion 5.8]. Hence, it was suprising at the time that [Fuj18] was written that algebraic
methods could establish the optimal bound.

Proof of inequality in Theorem 3.10. To prove the inequality, we use the
valuative criterion for K-semistability. Fix a smooth point p ∈ X and let

Y := BpX
µ−→ X

denote the blowup of X at p with exceptional divisor E ⊂ Y .
We seek to estimate SX(E). Consider the short exact sequence

0→ OX(−mKX)⊗mdmtep → OX(−mKX)→ OX(−mKX)⊗ (OX/mdmtep )→ 0,

where m is a positive integer such that −mKX is Cartier and t ∈ Q>0. Taking H0

induces an exact sequence

0→ H0(X,OX(−mKX)⊗mdmtep )→ H0(X,OX(−mKX))→ H0(X,OX/mdmtep ),
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where we are using that OX/mdmtep is supported p. Hence,

dimH0(X,OX(−mKX)⊗mdmtep ) ≥ dimH0(X,OX(−mKX))− dim(OX/mdmtep ).

Now, note that

H0(X,OX(−mKX)⊗mdmtep ) = H0(Y,OY (−mµ∗KX − dmteE))

and

lim
m→∞

dimOX/mdmte

mn/n!
= lim

m→∞

(
dimOX/mdmte

dmten/n!

dmten

mn

)
= mult(mp)t

n = tn.

Above, mult(mp) := limm→∞ n! dim(OX/mm
p ) denote the Hilbert-Samuel multiplicity

of the ideal mp [Har77, Exc V.3.4] and equals 1 by the asumption that p ∈ X is a
smooth point. Thus, we get

vol(−µ∗KX − tE) = lim
m→∞

dimH0(Y,OY (−mµ∗KX − dmteE))

mn/n!

≥ lim
m→∞

(
dimH0(X,OX(−mKX))

mn/n!
− dimOX/mdmte

mn/n!

)
≥ vol(X)− tn.

Now, we can compute

S(E) =
1

vol(X)

∫ ∞
0

vol(−µ∗KX − tE)

≥ 1

vol(X)

∫ vol(X)1/n

0

(vol(X)− tn) dt =
n

n+ 1
vol(X)1/n.

Finally, observe that

n = AX(E) ≥ S(E) ≥ n

n+ 1
vol(X)1/n,

where the first inequality is by the assumption thatX is K-semistable and the valuative
criterion (Theorem 3.6). Thus, vol(X) ≤ (n+ 1)n as desired. �

Remark 3.11 (Proof of the equality case). To prove the equality case Fujita shows
that if vol(X) = (n+ 1)n, then

εp(−KX) := sup{t ∈ Q>0 | − µ∗KX − tE is nef} = (n+ 1),

where εp(−KX) is the Seshadri constant of −KX at p [Laz04, Section 4.1]. By
[Bau09,LZ18], the latter equality implies X ' Pn.





CHAPTER 6

K-stability of Fano varieties and anti-canonical divisors

In this chapter, we discuss two invariants that measure the singularities of anti-
canonical divisors on a Fano variety. The first is Tian’s alpha-invariant [Tia87],
which provides a criterion for K-stability. The next, is the δ-invariant (also known as
the stability threshold), wich characterizes K-stability and plays an important role in
many recent advances in the K-stability of Fano varieties.

1. Invariants of filtrations

Before discussing the α- and δ-invariants, it will be helpful to discuss some invari-
ants of filtrations. Throughout, let X be a klt Fano variety of X and r a positive
integer such that −rKX is Cartier. We set

R :=
⊕
m∈rN

Rm :=
⊕
m∈rN

H0(X,OX(−mKX))

and Nm := dim(Rm) to reduced notation.
We previously worked with Z-filtrations of R. It will be convenient to have the

following more general notion.

Definition 1.1. An R-filtration F • ofR is a collection of vector subspaces F λRm ⊂
Rm for each λ ∈ R and m ∈ rN such that the following hold

(1) F λRm ⊂ F µRm when λ ≥ µ
(2) F λRm = Rm and F λRm = 0 for λ� 0
(3) F λRm = ∩µ<λF µRm

(4) F λRm · F µRq ⊂ F λ+µRm+q.

Example 1.2. The key examples of R-filtrations are the following:

(1) A Z-filtration F • of R defines an R-filtration of R by setting F λRm :=
F dλeRm. To see (4) holds, one uses that

F dλeRm · F dµeRq ⊂ F dλe+dµeRm+q ⊂ F dλ+µeRm..

(2) Any valuation v ∈ ValX induces an R-filtration F •v by setting

F λ
v Rm = {s ∈ Rm | v(s) ≥ λ}.

One reason for working with R-filtrations, is that the data of a real valuation
v on X is more naturally encoded in an R-filtration.

63
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The associated graded ring of an R filtration F • of R is the graded ring

gr•FR :=
⊕
m∈rN

⊕
λ∈R

grλFRm,

where grλFRm = F λRm/F
>λRm . Here, F>λRm = ∪µ>λF µRm. Note that if F • arises

from a Z-filtration (Example 1.2), then F>λRm = F λ+1Rm and, hence, gr•FR agrees
with our previous definition.

The jumping numbers of F • is the non-dicreasing sequence of real numbers

am,1 ≤ · · · ≤ am,Nm

defined by
am,j := sup{λ ∈ R |F λRm ≥ j}.

We set

Sm(F ) :=
1

mNm

Nm∑
j=1

am,j and Tm(F ) :=
1

m
am,Nm

equal to the normalized average and maximal jumping numbers. Since dim grλFRm =
#{j | am,j = λ}, it follows that

Sm(F ) =
1

mNm

∑
λ∈R

λ dim(grλFRm)

Additionaly, we set

S(F ) := lim sup
m→∞

S(F ) and T (F ) := sup
m∈rN

Tm(F ).

We say F • is linearly bounded if there exists an integer C > 0 such that FmCRm = 0
for all m ∈ rN. 1 This is equivalent to the condition that T (F ) < +∞.

Proposition 1.3. If F • is linearly bounded, then

S(F ) := lim
m→∞

S(F ) and T (F ) := lim
m→∞

T (F )

and the values are finite.

Proof. Using the multiplicative property of filtration, it follows that

mTm(F ) + qTm(F ) ≤ (m+ q)Tm+q(F ).

Thus, Fekete’s Lemma implies the sequence converges.
The proof of the convergence of Sm(F ) is similar to the proof of Proposition 3.3.

See [BJ20, Lemma 2.9] for a proof. �

We will often be interested in the case when F • = F •v for some valuation v ∈ ValX .
Sm(v), S(v), Tm(v), T (v) for these values. Additionally, when v = ordE for some
divisor E over X, we Sm(E), S(E), Tm(E), and T (E). We say a valuation v is of
linear growth if T (v) <∞ (equivalently, F •v is linearly bounded).

1There always exists C > 0 such that F−mCRm = Rm for all m ∈ rN. Indeed, this can be
deduced from (2) in the definition of an R-filtration and that R is finitely generated.
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Lemma 1.4. If v ∈ ValX is divisorial, quasi-monomial, or, more generally, AX(v) <
∞, then v is of linear growth.

Proof. If v is divisorial, then the argument in the proof of ? applies. If v is
quasi-monomial, then there exists a divisorial valuation w such that cX(v) = cX(w)
and w(f) ≥ v(f) for all f ∈ OX,cX(v). Since T (v) ≤ T (w), the result for divisorial
valuations implies v is of linear growth. The case when AX(v) < ∞ follows from an
Izumi estimate; see [BJ20]. �

2. Tian’s α-invariant

2.1. Definition. Let X be a klt Fano variety and r a positive integer such that
−rKX is Cartier. The α-invariant of X is the value

α(X) := inf{lct(X,D) | 0 ≤ D ∼Q −KX},

where the infimum runs through all effective Q-divisors Q-linearly equivalent to −KX .
Roughly, this invariant measures the singularities of the most singular anti-canonical
divisor of X.

It will often be convenient to write

α(X) = inf
m∈rZ>0

αm(X),

where

αm(X) := inf{lct(X, 1
m
B) |B ∈ | −mKX |}.

The equality between the two deinitions follows from the simple observe that if 0 ≤
D ∼Q −KX , then 0 ≤ D ∼ −mKX for some m > 0.

Remark 2.1 (History). The α-invariant of a smooth Fano variety was first intro-
duced by Tian in [Tia87] using an analytic definition (i.e. not the one above). There
it was shown that if

α(X) ≥ dim(X)

dim(X) + 1
, (2.1)

then X admits a Kähler-Einstein metric.2 Later, it was shown by Demailly and Kollár
that Tian’s definition agrees with the one stated above [DK01,CS08]

Example 2.2. We provide a few examples of the α-invariant of a Fano variety.

(1) It is an easy exercise to show α(P1) = 1
2
.

(2) Projective space has α(Pn) = 1
n+1

. Note that while PnC admits a Kähler-
Einstein metric, it does not satisfy (2.1).

To compute α(Pn) = n
n+1

, first observe that

α(Pn) ≤ lct(Pn, (n+ 1)H) =
1

n+ 1
,

2An algebraic version of this statement was later proven in [OS12].
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where H ⊂ Pn is a hyperplane. To verify the reverse inequality, fix a Q-divisor
0 ≤ D ∼Q −KPn . By [Kol97, Lemma 8.10.1],

lctp(Pn, D) ≥ 1

ordp(D)
,

where lctp denotes the lct in a sufficiently small open neighborhood of p. Since
D ∼Q −KPn , ordp(D) ≤ n+ 1 at any point p ∈ Pn. Hence,

lct(Pn, D) = inf
p∈Pn

lctp(Pn, D) ≥ 1

n+ 1
.

Since 0 ≤ D ∼Q −KX was arbitrary, this shows α(Pn) ≥ 1
n+1

.

(3) For a smooth cubic surface X ⊂ P3, it was computed in [Che08] that

α(X) =

{
2/3 if X contains an Eckhardt point

3/4 otherwise
,

where an Eckhardt point is a point 0 ∈ X that is the intersection of three
lines on the surface (a general cubic surface will not have such point). This
example shows that the α-invariant encodes information on the goemetry of
a Fano variety.

(4) If X ⊂ Pn+1 is a smooth hypersurface of deg d ≤ n+ 1, then it is easy to see

α(X) ≤ 1

n+ 2− d
.

Indeed, choose a general hyperplane H ⊂ Pn. SinceOX(−KX) = O(n+2−d),
(n+ 2− d)H|X ∼Q −KX and, hence,

α(X) ≤ lct(X, (n+ 2− d)H|X) ≤ 1

n+ 2− d
.

Some of the above examples show a deficiency of the use of the α-invariant in
studying K-stability. For example, while every smooth projective hypersurface X ⊂
Pn+1
C is expected to admit a Kähler-Einstein metrics,

α(X) <
n

n+ 1
,

when d ≤ n. Hence, Tian’s criterion (2.1) cannot be used to verify the conjecture.

2.2. Valuative interpretation. We now explain that Tian’s α-invariant can be
interpreted in terms of the log discrepancy and T -invariant of a valuation. Indeed, for
any valuation v ∈ ValX , note that

Tm(v) = sup{λ |FmλRm 6= 0} =
1

m
sup {v (D) |D ∈ | −mKX |}

and, hence,

T (v) = sup{v(D) | 0 ≤ D ∼Q −KX}.



3. STABILITY THRESHOLD 67

Remark 2.3 (Relation to pseudo-effective threshold). If E is a prime divisor on
a normal variety Y with a proper birational morphism µ : Y → X, then T (E) > t if
and only if

H0(Y,OY (−m(µ∗KX − tE)m)) 6= 0

for some m > 0. Hence, T (E) is the threshold

T (E) := sup{t ∈ Q>0 | − µ∗KX − tE is pseudo-effective}.

See [Laz04] for the definition of pseudo-effective.

The following formulas were shown in [Amb16, pg. 10][BJ20, Section 4.1], and
follow easily from the definitions.

Proposition 2.4. If X is a klt Fano variety, then

αm(X) = inf
E

AX(E)

Tm(E)
= inf

v

AX(v)

Tm(v)

and

α(X) = inf
E

AX(E)

T (E)
= inf

v

AX(v)

T (v)
,

where where the first pair of infimums run through all divisors E over X and the
second through all valuations v of linear growth.

Proof. For the first equality, observe that

αm(X) = inf
D∈|−mKX |

lct(X, 1
m
D) = inf

D∈|−mKX |
inf
E

AX(E)

ordE( 1
m
D)

= inf
E

inf
D∈|−mKX |

AX(E)

ordE( 1
m
D)

= inf
E

AX(E)

Tm(E)
.

Since lct(X,D) = infv∈ValX
AX(v)
v(D)

by Remark 1.19, we also know lct(X,D) = infv
AX(v)
v(D)

,

where infimum runs through all valuations of linear growth. Repeating the same
argument as above shows the second equality for αm(X) holds.

The equalities for α(X) can be deduced from the expressions for αm(X). Indeed,

α(X) := inf
m∈rN

αm(X) = inf
m∈rN

inf
E

AX(E)

Tm(E)
= inf

E
sup
m∈rN

AX(E)

Tm(E)
= inf

E

AX(E)

T (E)

and the proof of the second equality is similar. �

3. Stability threshold

In [FO18], Fujita and Odaka defined a modified version of the α-invariant in the
hopes of characterizing K-stability. Their approach was to measure the singularities
of certain special anti-canonical divisors, rather than all of them.
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3.1. Definition.

Definition 3.1. A Q-divisor 0 ≤ D ∼Q −KX is m-basis type if there exists a
basis s1, . . . , sNm of H0(X,OX(−mKX)) such that

D :=
1

mNm

({s1 = 0}+ · · ·+ {sNm = 0}) ..

Note that normalization factor by 1
mNm

is so that the resulting divisors is Q-linearly
equivalent to −KX .

As we will see in Proposition 3.5, m-basis type divisors are related to the S-
invariant, which appears in the valuative criterion for K-stability. This relation is the
motivatin for considering such divisors.

Example 3.2. On Pn, the divisor

D = H0 + · · ·+Hn+1,

where there Hi = {xi = 0} are the coordinate hyperplanes, is an m-basis type divisor
for all m > 0. To see this choose the basis s1, . . . , sNm for

H0(X,OX(−mKX)) ' H0(X,OX(m(n+ 1))

given by the monomials in x0, . . . , xn+1 of degree m(n + 1) and consider the m-basis
type divisor D := 1

mNm

∑
i{si = 0}. Since Supp(sj = 0) is contained in the union of

the coordinate hyperplanes,

D = b0H0 + · · · bnHn.

for some rational numbers b1, . . . , bn. Since the construction is symmetric in the xi
variables, b0 = · · · = bn. Using that D ∼Q −KPn , we then conclude each bi = 1.

The stability threshold (also, known as the δ-invariant) is defined by measuring
the singularities of m-basis type divisors.

Definition 3.3 (Stability threshold). [FO18] For each m ∈ rN, set

δm(X) := inf{lct(X,D) | 0 ≤ D ∼Q −KX is m-basis type}
and

δ(X) := lim sup
m→∞

δm(X).

In general, it is quite difficult to compute the stability threshold using only the
definition (and not additional machinery that has been developed). We begin with
the simplest example.

Example 3.4. We claim that δm(P1) = 1 for all m ∈ N. Hence, δ(P1) = 1.
To verify the claim, first note recall that {0}+ {∞} is an m-basis type divisor on

P1 by the previous example. Thus,

δm(P1) ≤ lct(P1, {0}+ {∞}]) = 1.
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For the reverse inequality, fix a basis s0, . . . , s2m of

H0(P1,OP1(2m)) =
2m⊕
i=0

k · xiy2m−i

and set

D :=
1

m(2m+ 1)
{s0 · · · s2m = 0}.

To show lct(P1, D) ≥ 1, it suffices to show ordp(D) ≤ 1 at each point p ∈ P1. After
changing coordinates, we may assume p = {x = 0} ∈ P1. After reordering our basis,
we may assume

ordp(s0) ≥ . . . ≥ ordp(s2m).

Since 〈s0, . . . , sj〉 are linearly independent and ordP (sj) is the lowest degree of x
appearing as a monomial in sj,

ordp(sj) ≥ 2m− j
Thus,

ordp(D) =
1

m(2m+ 1)

2m∑
i=0

ordp(si) ≤
1

m(2m+ 1)

2m∑
i=0

(2m− i) = 1.

as desired. Therefore, lct(P1, D) ≥ 1.

The computation in the previous paragraph generalizes to give a formula for S-
invariant in terms of m.

Proposition 3.5. If v is a valuation on X and m ∈ rN, then

Sm(v) := max{v(D) |D is m-basis type}
and the max is achieved if D arises from a basis diagonalizing F •v .

A basis s1, . . . , sNm is said to diagonalize an R-filtration if each F λRm is spanned
by some subset of basis elements. Equivalently, if we set λi := sup{λ ∈ R | s ∈ F λRm},
the condition means that

F λRm = 〈si |λi ≥ λ〉
for each λ ∈ R. Note that such a basis always exists.

Proof. Let s1, . . . , sNm be basis for Rm and set D := 1
mNm
{s1 . . . sNm = 0}.

After rearranging the indices, we may assume v(s1) ≥ · · · ≥ v(sNm). Thus, for any
1 ≤ j ≤ Nm, 〈s1, . . . , sj〉 ⊂ F v(sj)Rm and, hence, am,j ≥ v(sj). Now, we compute

v(D) =
1

mNm

Nm∑
j=1

v(sj) ≤
1

mNm

Nm∑
j=1

am,j = Sm(v).

Additionally, if s1, . . . , sNm diagonalizes the filtration, then the above inequalities are
equalities and we get v(D) = Sm(v). �
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The previous proposition implies the following valuative formula for δm(X).

Proposition 3.6. If X is a klt Fano variety, then

δm(X) = inf
E

AX(E)

Sm(E)
= inf

v

AX(v)

Sm(v)
,

where the first infimum runs through divisors E over X and the second through valu-
ations v of linear growth.

Proof. We compute

δm(X) = inf
D m-basis

lct(X,D) = inf
D m-basis

inf
E

AX(E)

ordE(D)

= inf
E

inf
D m-basis

AX(E)

ordE(D)
= inf

E

AX(E)

Sm(E))

where the last equality is by Proposition 3.5. The second equality can be deduced as
in the proof of Proposition 2.4. �

3.2. Characterization of stability. The importance of the δ-invariant is its
relationship to the valuative criterion for K-stability.

Theorem 3.7. [BJ20, Theorem B] If X is klt Fano variety, then

δ(X) = inf
E

AX(E)

Sm(E)
= inf

v

AX(v)

Sm(v)
,

where the first infimum runs through divisors E over X and the second through valu-
ations v of linear growth. Additionally, δ(X) := limm→∞ δmr(X).

Combining the previous theorem with the valuative criterion for K-stability implies
the following.

Corollary 3.8. [FO18,BJ20] If X is a K-semistable Fano variety, then

X is K-semistable ⇐⇒ δ(X) ≥ 1.

The above corollary was originally conjectured in [FO18], where the reverse impi-
cation was shown. The result was completed in [BJ20]. The subtlety in proving
Theorem 3.7, and, hence, deducing its corollary, is in understanding the convergence
of the relevant invariants. The key result one needs, is the following technical lemma,
which we state without proof.

Proposition 3.9. [BJ20, Corollary 2.10] If X is a klt Fano variety and ε > 0,
then there exists m0 := m0(ε,X) such that

Sm(v) ≤ (1 + ε)S(v)

for all m ≥ m0 and v ∈ ValX of linear growth.

Note that in the above statement, the value m0 is independent of the choice of v.
The result is shown using the theory of Okounkov bodies in [LM09].
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Proof of Theorem 3.7. We will only prove the first equality, since the proof

of the second is similar. Since δm(X) = infE
AX(E)
Sm(E)

by Proposition 3.6 and S(E) =

limm→∞ Sm(E),

lim sup
m→∞

δm(X) ≤ inf
E

AX(E)

S(E)
.

Next, fix ε > 0. By Proposition 3.9, there exists m0 such that Sm(v) ≤ (1 + ε)S(v)
for all m ≥ m0 and v ∈ ValX of linear growth. Hence,

lim inf
m→∞

δm(X) = lim inf
m→∞

inf
E

AX(E)

Sm(E)
≥ 1

1 + ε
inf
E

AX(E)

S(E)
, .

Sending ε → 0 implies lim infm→∞ δm(X) ≥ infE
AX(E)
S(E)

. Therefore, limm→∞ δm(X) =

infE
AX(E)
S(E)

as desired. �

3.3. Computing examples. Given that the stability threshold characterizes K-
stability, there has been great intersest in computing it in examples.

Example 3.10. We list a few examples of the value of the stability threshold

(1) For toric varieties, the stability threshold has a simple formula in terms of the
barycenter of the anti-canonical polytope P−KX

as shown in [BJ20]. Using
this, one can compute
(a) δ(Pn) = 1,3

(b) δ(BpP2) = 6/7, and
(c) δ(Bp,qP2) = 21/25.

Note that Bp(P2) and Bp,qP2 are the two examples of K-unstable del Pezzo
varieties. Hence, it makese sense that there δ-invariants are < 1.

(2) For a smooth cubic surface X ⊂ P3, it was computed in [AZ21] that

α(X) =

{
3/2 if X contains an Eckhardt point

27/17 otherwise
,

Remark 3.11. It can be quite subtle to compute the δ invariant in a given example.
In computations, one often leverages the following results:

(1) If δ(X) < 1, then

δ(X) = inf
E

AX(E)

S(E)

where the infimum runs through all Aut(X)-equivariant divisors E over X
such that ordE is Aut(X)-equivariant [Zhu21]. When X has a large auto-
morphism group, there may be very few Aut(X) equivariant divisors. For
example, there are no Aut(Pn) equivariant divisors over Pn!

3The n = 2 first computed in [PW18] by carefully analyzing the lct’s of m-basis type divisors
on P2.
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(2) In [AZ21], the authors develop a technique for computing the δ-invariant
by restricting to lower dimensional subvarieties using certain special admis-
sible flags. This technique was used heavily in [ACC+21] to comupte which
smooth Fano threefolds are K-stable.

(3) By [BLX19], min{1, δ(X)} is lower semicontinuous and constructible fam-
ilies. Hence, to show a general member of a family of Fano varieties is K-
sesmistable, it suffices to show a single one is K-semistable.

3.4. Properties. We now discuss various properties of the stability threshold,
which shows it is a natural invariant for studying K-stability.

3.4.1. Analytic interpretation. In [Ber21, CRZ19], it was shown that if X is a
smooth complex Fano variety, then

min{1, δ(X)} = sup{c ∈ [0, 1] | ∃ω ∈ c1(X) such that Ric(ω) > cw}.
The quantity on the right hand side is the greatest Ricci lower bound of X and can
be regarded of as a measure of how close one come to constructing a Kähler-Einstein
metric on X. It appeared in the work of Tian [Tia92] and was studied by Székelyhidi
[Szé11].

3.4.2. Volume bounds. Using the stability threshold, Fujita’s volume bound for
K-semistable Fano varieties admits a natural generalization to the K-unstable case.

Theorem 3.12. If X is a klt Fano variety of dimension n, then

vol(X)1/n ≤ (n+ 1)δ(X)−1

and equality holds if and only if X ' Pn.

Proof. Following the proof of Theorem 3.7, pick a smooth point p ∈ X, and let

E ⊂ BpX
µ→ X denote the exceptional divisor of the blowup of X at p. We compute

vol(X)1/n ≤ (n+ 1)

n
SX(E) = (n+ 1)

SX(E)

AX(E)
≤ (n+ 1)δ(X)−1,

where the first inequality shown in the proof of Theorem 3.7 and the second inequality
is by Theorem 3.7.

It remains to analyze the case when equality holds. If vol(X)1/n = (n+ 1)δ(X)−1,
the previous equation implies SX(E) = n+ 1. Now, [Fuj18, Theorem 2.3] implies

εp(−KX) := sup{t | − µ∗KX − tE is nef} = n+ 1.

Finally, [LZ18, Theorem 2] implies X ' Pn. �

3.4.3. Relation to α-invariant. The following theorem compares the stability thresh-
old to Tian’s α-invariant.

Theorem 3.13. [BJ20, Theorem C] If X is a klt Fano variety of dimension n,
then

n+ 1

n
α(X) ≤ δ(X) ≤ (n+ 1)α(X).
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An immediate consequence of the above theorem combined with Theorem 3.6 and
3.7 is the following algebraic version of Tian’s criterion for K-stability.

Corollary 3.14. If X is a klt Fano variety of dimension n and

α(X) ≥ n

n+ 1
resp., >

n

n+ 1
,

then X is K-semistable (resp., K-stable).

The above corollary was first proven algebraically in [OS12] using the original
definition of K-stability. In [FO18], it was realized that the statement could be
deduced as an easy consequence of the valuative criterion for K-stability. In [Fuj19],
it was shown that if X is a smooth Fano variety of dimension n ≥ 2 with α(X) = n

n+1
,

then X is K-stable.
In order to prove Theorem 3.13, we first prove an inequality between the S and

T -invariants.

Proposition 3.15. If X is a klt Fano variety and v ∈ ValX a valuation of linear
growth, then

1

n+ 1
T (v) ≤ S(v) ≤ 1

n+ 1
T (v).

To prove the second inequality above, we use a clever approach of [AZ21], which
relies on the following simple linear algebra statement whose proof we leave for the
reader. For different approachs, see [Fuj19,FO18].

Lemma 3.16. [AZ21, Lemma 3.1] If F • and G• are R-filtrations of R and m ∈ rN,
then there exists a basis s1, . . . , sNm of Rm that diagonalizes both F • and G•.

Proof of Proposition 3.15. We only prove the second inequality, which is
the one needed to verify Tian’s criterion. For a proof of the first inequality, see
[BJ20, Lemma 2.6].

Fix an integer q > 0 such that −qKX is a very ample. Hence, a general element
H ∈ |−qKX | will be a prime divisor and satisfy cX(v) /∈ H. Now, by Lemma 3.16, we
may choose a basis s1, . . . , sNm that is compatible with both F •E and F •H , and consider
the m-basis type divisor D := 1

mNm

∑
i{si = 0}. By Lemma 3.5,

Sm(H) = ordH(D) and Sm(v) = v(D).

(This m-basis type divisor is quite exotic in that it vanishes to a high degree along
two very different valuations!) Since ordH(D) = coeff(H), we can write

D = Sm(H)H + Γ,

where Γ is an effective Q-divisor. Note that

Γ = D − Sm(H)H ∼Q −KX − Sm(H)q(−KX) ∼Q −(1− qSm(H))KX
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Next, we compute

Sm(v) = v(D) = Sm(H)v(H) + v(Γ) = v(Γ)

= (1− qSm(H))v((1− qSm(H))−1Γ) ≤ (1− qSm(H))T (v),

where the third equality uses that cX(v) /∈ H, and the inequaulity uses that 0 ≤
(1− qSm(H))−1Γ ∼Q −KX . Hence, sending m→∞ gives

S(v) ≤ (1− qS(H))T (v) =
n

n+ 1
T (v),

where the equality is Example 3.5.3. �

Proof of Theorem 3.13. The result follows immedatiately from Theorem 3.7
and Propositions 2.4 and 3.15. �

4. Complements

In this section, we use the language of complements to define special classes of
divisorial valuations that satisfy finite generation properties and, hence, induce test
configurations. This leads to a proof of the forward implication of the valuative
criterion for K-stability (Theorem 3.6).

4.1. Complements. The theory of complements was introduced by Shokurov in
the study of 3-fold log flips [Sho92] and goes back to earlier work on anti-canonical
divisors on Fano threefolds [Sho79].

Definition 4.1. Let X be a klt Fano variety. A complement of X is a Q-divisor
∆ such that (X,∆) is lc and KX + ∆ ∼Q 0. We say ∆ is an N-complement, where
N ∈ Z>0, if additionally, N(KX + ∆) ∼ 0.

Informally, a complement is a way to turn a Fano variety into a log Calabi-Yau
pair.

Example 4.2. A 1-complement on P2 is simply a divisor ∆ ∈ | −KP2| such that
(P2,∆) is lc. Hence, ∆ can be either

(1) a smooth cubic,
(2) a nodal cubic,
(3) a conic intersecting a line transversely, or
(4) three lines not all intersecting at a point.

Remark 4.3 (Birkar’s boundedness). An important result of Birkar [Bir19] states
that for each integer n > 0, there exists an integer N := N(n) > 0 such that the
following holds: If X is a klt Fano variety of dimension n, then it admits an N -
complement. A version of this result will play a key role in a later section.
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4.2. Log canonical places.

Definition 4.4. An lc place of a pair (X,∆) is a valuation v ∈ ValX such that
AX,∆(v) = 0. When v = ordE for some divisor E over X, then we simply say E is an
lc place of (X,∆).

Informally, the lc places are valuations that make the pair fail to be klt. In this
case when v = ordE, the condition that AX,∆(E) = 0 simply means

coeffE(KY − µ∗(KX + ∆)) = −1,

where E arises from the data of E ⊂ Y
µ→ X. Equivalently, coeffE(∆Y ) = 1, where

KY + ∆Y = f ∗(KX + ∆).

Definition 4.5. If X is a klt Fano variety and E is a divisor over X, we say E is
an lc place of a complement if there exist a complement ∆ of X such that E is an lc
place of (X,∆).

Example 4.6. Continuing with Example 4.2, let us consider lc places of 1-complements
on P2.

(1) If C ⊂ P2 is a smooth cubic curve, the only lc place of (P2, C) is ordC .
(2) For the complement (P2, {xyz = 0}), the lc places are the toric valuations.

4.3. Relation to test configurations. In this section, we show that lc places
of complements induces test configurations and analyze the geometry of such degen-
erations.

Proposition 4.7. Let X be a klt Fano variety and E a divisor over X. If E is
an lc place of a complement, then E is dreamy.

Recall, dreamy means that the filtration induced byE ofR :=
⊕

m∈NH
0(X,−rKX)

is finitely generated. Equivalently, the k-algebra⊕
(m,p)∈N×Z

H0(Y,−mµ∗rKX − pE)

is finitely generated, where E arises from the data of E ⊂ Y
µ→ X. By Lemma 2.9,

this implies E induces a test configuration (X ,−KX/A1) of X with X0 integral.
As we will see, the result is consequence of finite generation results in [BCHM10].

Proof. Choose a complement ∆ on X such that E is an lc place of (X,∆). Fix a
log resolution µ : W → X of (X,∆) such that E arises a prime divisor E ⊂ W . Since
(X,∆) is lc and AX,∆(E) = 0, there exists 0 < ε < 1 such that

(X, (1− ε)∆) is klt and AX,(1−ε)∆(E) < 0.

Hence, [BCHM10, Corollary 1.4.3] implies there exists a proper birational morphism
µ : Y → X such that Y is Q-factorial, E is a divisor on Y , and ExcDiv(µ) ⊂ E.
(Note that the inclusion could be strict if E is a prime divisor on X.)
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Now, define a Q-divisor Γ on Y by the formula

KY + Γ = µ∗(KX + (1− ε)∆).

Note that Γ is effective, since ExcDiv(µ) ⊂ E and coeffE(∆) = 1 − AX,ε∆(E) < 1.
Thus, the condition that (X, (1−ε)∆) is klt implies (Y,Γ) is klt. Additionally, −KY−Γ
is big and nef, since

−KY − Γ ∼Q −εf ∗(KX),

and −KX is ample. Therrefore, Y is a Mori dream space by [BCHM10, Corollary
1.3.1]. Hence, the multi-graded section ring⊕

(m,p)∈N×Z

H0(Y,−mµ∗rKX − pE)

must be finitely generated. �

The previous proposition implies lc places of complements induce test configura-
tions. The following theorem shows which test configurations those are.

Theorem 4.8. [BLX19] Let (X ,−KX/A1) be a test configuration of a klt Fano
variety X. The following are equivalent.

(1) The pair (X ,X0) is lc.
(2) The divisorial valuation vX0 := r(ordX0) is an lc place of a complement.

Proof. Add proof �

4.4. Delta invariant and lc places of complements.

Proposition 4.9. If X is a klt Fano variety of dimension n with δ(X) ≤ n+1
n

,
then

δ(X) = inf
E

AX(E)

S(E)
,

where the infimum runs through all divisors E over X that are lc places of comple-
ments.

The theorem was first proven in [BLZ19,BLX19] when δ(X) ≤ 1 and improved
to the δ(X) < n+1

n
case in [LXZ22] using Lemma 3.16.

Proof. By Theorem 3.7, we know the inequality “≤” between the two sides of
the equation holds. To prove the reverse inequality, fix 0 < ε � 1. By Theorem 3.7
and Proposition 3.9, there exists m ∈ rN such that

(1) δm(X) ≤ (1 + ε)δ(X) and
(2) Sm(v) ≤ (1 + ε)S(E) for all valuations v on X of linear growth.

By Proposition 3.6, there exists a divisor E over X such that δm(X) = AX(E)
Sm(E)

. Hence,

AX(E)

S(E)
≤ (1 + ε)

AX(E)

Sm(E)
= (1 + ε)δm(X) ≤ (1 + ε)2δ(X).
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We claim that E is also an lc place of a complement when m is sufficiently large. As-
suming the claim, the “≥” in the statement of the proposition holds, which completes
the proof.

To verify the claim, fix an integer q > 0 such that | − qKX | is very ample and
choose a general divisor H ∈ | − qKX | such that H is irreducible and cX(E) /∈ H.
By Lemma 3.16, there exists a basis {s1, . . . sNm} for H0(X,−mKX) that diagonalizes
both filtrations F •E and F •H . Consider the induced m-basis type divisor

D :=
1

mNm

(
{s1 = 0}+ · · ·+ {sNm = 0}

)
.

By Proposition 3.5,

Sm(E) = ordE(D) and Sm(H) = ordH(D) = coeffH(D).

The latter implies, we can write

D = D′ + Sm(H)H

for some effective Q-divisor D′. Since cX(E) /∈ H, ordE(D) = ordE(D′). Now, observe

δm(X) ≤ lct(X,D) ≤ lct(X,D′) ≤ AX(E)

ordE(D′)
=
AX(E)

Sm(E)
= δm(X).

Thus, above inequalities are equalities. Therefore, (X, δmD
′) is lc and

AX,δmD(E) = AX(E)− δmordE(D′) = 0.

Finally, observe that

δmD
′ = δm(D − Sm(H)H) ∼Q −cmKX ,

where cm := δm(X)(1− kSm(H)). Using Example 3.5, we see

lim
m→∞

cm = δ(X) (1− kS(H)) < 1

Hence, after possibly increasing m, we may assume cm < 1. Since H is general, if we
set

∆ := δm(X)D′ + (1− cm)q−1H,

then (X,∆) is lc, AX,∆(E) = 0, and ∆ ∼Q −KX . Therefore, ∆ is a complement with
lc place E. �

Using a similar style of argument, one can show that divisorial minimizers of the
stability thresholds are lc places of complements.

Proposition 4.10. [BLX19,LXZ22] If X is a klt Fano variety and E a divisor
over X such that

δ(X) =
AX(E)

S(E)
<
n+ 1

n
,

then E is an lc place of a complement.
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4.5. Relation to valuative criterion. Using the results in the previous section,
we can now finish the proof of the valuative criterion for K-stability.

Proof of Theorem 3.6. As we saw in Remark 3.7,

X is K-stable ⇔ AX(E)− SX(E) > 0 for all dreamy divisors E over X

X is K-semistable ⇔ AX(E)− SX(E) ≥ 0 for all dreamy divisors E over X

Additionally, X is K-polystable if and only if AX(E) − S(E) ≥ 0 for all dreamy
divisors E over X and = 0 only when ordE is a product valuation.

To prove the forward implication in the K-semistable case, we argue by contradic-
tion. If

AX(E)− S(E) < 0

for some divisor E over X, then δ(X) < 1 by Theorem 3.7. Hence, Proposition 4.7
and 4.9 implies there exists a dreamy divisor E over X such that

AX(E)− S(E) < 0.

Therefore, the above paragraph implies X is not K-semistable, which completes the
proof in the K-semistable case.

To complete the proof in the K-stable and K-polystable case, note that if X is
K-semistable and E a divisor over X such that AX(E)− S(E) = 0, then 1 = δ(X) =
AX(E)/S(E). Hence, Proposition 4.10 implies E is dreamy. Therefore, the result in
the K-stable and K-polystable case follows from the K-semitable case and the first
paragraph. �



CHAPTER 7

K-moduli of Fano varieties

In this chapter, we survey recent progress on constructing moduli spaces parametriz-
ing K-polystable Fano varieties.

1. Moduli theory in algebraic geometry

2. Moduli of Fano varieties

3. K-moduli of Fano varieties

The K-moduli theorem asserts that K-polystable klt Fano varieties with fixedd
numerical invariatns are parametrized by a projective moduli space. The precise
statement, which uses the language of algebraic stacks, is stated here.

Theorem 3.1 (K-moduli). Fix an integer n > 0 and a rational number v > 0.

(1) (Moduli Stack) There exists a finite type Artin stack

MKss
n,v

parametrizing families of K-semistable klt Fano vartieties of dimension n and
voume v.

(2) (Moduli space) There exists a morphism to a good moduli space

MKss
n,v →MKps

n,v ,

which is a projective scheme parametrizing K-polystable klt Fano varieties of
dimension n and volume v.

Remark 3.2 (History). The above theorem was proven in various stages.

(1) (Del Pezzo surfaces) Odaka, Spotti, and Sun constructed compactifications
of the moduli space of smooth Kähler-Einstein del Pezzo surfaces by adding
in singular Kähler-Einstein Fano varieties at the boundary [OSS16]. (The
degree 4 del Pezzo case was previously completed by Mabuichi and Mukai in
[MM93]). The constructions are explicit and rely on differential geometry
input. The authors conjectured that a similar statement should hold more
generally [OSS16, Conjecture 6.2]

(2) (Smoothable Fano varieties) Li, Wang, and Xu [LWX19] (see also [Oda15a])
constructed a good moduli space parametrizing smoothable K-polystable
Fano varieties of fixed dimension and volume. The construction relies heavily
on differential geometric input, in pariticular, Kähler-Einstein metrics and

79
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results of Donaldsonand Sun on Gromov-Hausdorff limits of Kähler-Einstein
Fano varieties [DS14].

(3) (General case) Using recent progress in understanding the K-stability of Fano
varieties, purely algebraic methods were used to prove Theorem 3.1. This was
acheived in a long list of papers by authors including Alper, Blum Codogni,
Halpern-Leistner, Jiang, Li, Liu, Patakfalvi, Wang, Xu, Zhuang with the final
step completed in a papper of Liu, Xu, and Zhuang.

The proof of Theorem 3.1 requires understanding various properties of K-semitable
Fano varieties and their behaviour in families. The proof can be broken down into the
following steps.

(1) Definition of moduli stack
(2) Boundedness
(3) Openness of K-semistability
(4) Uniqueness of K-polystable degenerations
(5) Construction of good moduli space
(6) Properness
(7) Projectivity

In the rest of this section, we explain each of these statements.

3.1. Defininiton of moduli stack. The first step in the K-moduli theorem is
to precisely define our moduli problem. To do so, we must answer the seemingly
elementary question:

What is a family of Fano varieties X → S?

Clearly, X → S should be a flat proper morphism with fibers that are Fano varieties.
A more subtle, but also desirable, requirement is for the anti-canonical Q-line bundles
to vary in well behaved manner. This is made precise in the following definition, which
is modelled on Kollär’s definition of a family of KSBA-stable varieties.

Definition 3.3. A family of klt Fano varieties is a flat proper morphism X → S
such that

(1) Xs is a klt Fano variety for all s ∈ S and

(2) ω
[m]
X/S commutes with base change for all m ∈ Z.

Remark 3.4 (Kollár’s condition). Statement (2) of Definition 3.3 is often referred
to as Kollár’s condition. As the name suggests, Kollár introduced the condition when
defining a family of KSBA-stable varieties [Kol13b, Section 4].

The sheaf in (2) is defined as the push forward

ω
[m]
X/S := j∗ω

⊗m
U/S,

where U ⊂ X is the open smooth locus of X → S and j : U ↪→ X the natural
inclusion. Note that codX(X \ U) ≥ 2. Indeed, this follows from the observation
that (X \ U) ∩ Xs = Sing(Xs) and codXs(Sing(Xs)) ≥ 2, where the latter is by the
assumption that Xs is klt and, in particular, normal.
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The statement that ω
[m]
X/S commutes with base change means that, for every mor-

phism T → S, the natural map

f ∗Tω
[m]
X/S → ω

[m]
XT /T

is an isomorphis, where fT : XT := X ×S T → X is the pullback of f : X → S.

Remark 3.5 (Normal base). In the case when S is a normal Noetherian scheme,
we can define a relative canonical divisor KX/S on X as a divisor satisfying

ωU/S ' OU(KX/S|U),

where U ⊂ X is the smooth locus of X → S. Note that

ω
[m]
X/S ' j∗OU(mKU/S) ' OX(mKX/S).,

where the last isomorphism is by the normality of X, which follows from the assump-
tion that X → S is flat with normal fibers and S is normal by [?].

In this setting, Definition 3.3.2 can be replaced by the condition that

(2’) The relative canonical divisor KX/S is Q-Cartier.

See [Kol22, Theorem 3.1] for the equivalence of the two definitions.

With Definition 3.3 in hand, we can now define our moduli stack.

Definition 3.6 (K-Moduli stack). MKss
n,v is the fibered category over Schk whose

• objects are families of klt Fano varieties X → S such that Xs is K-semistable
of dimension n and volume v for each s ∈ S.
• maps [X ′ → S ′]→ [X → S] consist of the data of maps X ′ → X and S ′ → S

such that the diagram

X ′ X

S ′ S

is Cartesian.

3.2. Boundedness. The next step is to prove the moduli problem is bounded.

Theorem 3.7. [Jia20,XZ21] The set of klt Fano varieties MKss
n,v (k) is bounded.

The result was first proven by Jiang [Jia20] using Birkar’s proof of the BAB
Conjecture [Bir21]. A few years later, Xu and Zhuang [XZ21] deduced the result
from Hacon, McKernan, and Xu’s solution to the Baytrev Conjecture [HMX14],
which is an input in [Bir21].

Remark 3.8 (Boundedness). The term bounded means that there is a projective
morphism of finite type k-schemes

Y → S
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such that the following holds: if [X] ∈ MKss
n,v (k), then X ' Ys for some s ∈ S. The

key is that S is finite type, and, hence, implies that the set of Fano varieties can be
embedded in a fixed projective space.

In the above definition, it is equivalent to assume assume that Y → S is a family of
klt Fano varieties. Indeed, by an argument similar to the proof of [Kol22, Corollary
3.3], there is a disjoint union of locally closed subsets i : S ′ ↪→ S such that the base
change

Y ′ := Y ×S S ′ → S ′

is a family of klt Fano varieties and if Ys is a klt Fano variety, then s ∈ i(S ′). Hence,
replacing Y → S with Y ′ → S ′ implies the stronger statement holds.

3.3. Openness of K-semistability. The next step is to show that K-semistability
is an open condition in families.

Theorem 3.9 ([BLX19],[Xu20]). If X → S is a family of klt Fano varieties,
then the locus

SKss := {s ∈ S |Xs is K-semistable}
is a Zariski open set of S.

There are two proofs of this theorem: [?Xu19] uses local methods and the charac-
terization of K-semistability uses the normalized volume function, while the proof in
[BLX19] uses global methods and the characterization of K-semistability in terms of
the delta invariant.

Theorem 3.10. [BLX19] If X → S is a family of klt Fano varieties, then the
function S → R sending

s 7→ min{1, δ(Xs)}
is lower semi-continuous and constructible.

Using that SKss = {s ∈ S | δ(Xs) ≥ 1}, the previous theorem immediately implies
the openess of K-semistability. As well, the K-stable locus is open and the K-polystable
locus1 is constructible by [BLX19].

With boundedness and openness complete, a standard argument shows thatMKss
n,v

is a disjoint union of finitely many quotient stacks of the form

[Z/PGLN+1],

where Z ⊂ Hilbh(PN) is a locally closed subset of the Hilbert scheme. This then
implies MKss

n,v is an algebraic stack.

3.4. Uniqueness of degenerations. The next step is to analyze the uniqueness
of degenerations of K-semistable Fano varieties. This was done in a series of works.

1The K-polystable locus is not always open, since there exist strictly K-semistable Fano varieties
and Theorem 3.11 states that they admit degenerations via test configurations to K-polystable Fano
varieties.
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3.4.1. Degenerations along test configurations. Li, Wang, and Xu first analyzed
degenerations of K-semistable Fano varieties along test configurations.

Theorem 3.11. [LWX21] If X is a K-semistable klt Fano variety, then

(1) (Existence) there exists a test configuration degenerating

X  X0

to a K-polystable klt Fano variety and
(2) (Uniqueness) X0 is uniquely determined by X.

The strategy to prove Theorem 3.11 is to first prove the following helpful lemma.

Lemma 3.12. Let X be a special test configuration of a K-semistable klt Fano
variety X. Then X0 is K-semistable if and only if Fut(X ) = 0

Proof. The forward implication is straightforward. Indeed, the test configuration
X induces a Gm-action on X0 and, hence, a map λ : Gm → Aut(X0) satisfying

Fut(X ) = Fut(X0, λ),

where Fut(X0, λ) is the Futaki invariant of the induced product test configuration of
X0. Using that Fut(X0, λ) = −Fut(X , λ−1) and the assumption that X0 K-semistable,
we conclude Fut(X0, λ) = 0.

The proof of the converse is more involved and uses the equivalence between K-
stability and Gm-equivariant K-stability; see [LWX21, Lemma 3.1] for details. �

Now, to prove Theorem 3.11.1, assume X is K-semistable, but not K-polystable.
Then there exists a special test configuration degenerating

X  X0

such that X 6' X0 and Fut = 0. Hence, X0 is K-semistable by the above lemma. If
X0 is again not K-polystable, we can repeat the above argument

X  X0  X1  · · · Xr.

Using the bounded of K-semistable Fano varieties, it follows that this process must
terminate with a K-polystable klt Fano variety Xr. Next, one must show there is a test
configuration degenerating X  Xr, which requires extra work; see [LWX19, page
21].

The proof of Theorem 3.11.2 is harder and requires input from the minimal model
program. In light of the theorem, it makes sense to introduce the following equivalence
relation.

Definition 3.13. (S-equivalence) Two klt Fano varietiesX andX ′ are S-equivalent
if there exists special test configurations of X and X ′ degenerating

X  X0  X ′

to a K-polystable klt Fano variety X0.
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Remark 3.14. This definitions of polystability and S-equivalence are modelled on
the notions for vector bundles on a smooth projective curve C.

(1) A vector bundle E on C is polystable if it can be written as a direct sum of
stable vector bundles.

(2) If E is a semistable vector bundle on C, then tThe Jordan-Holdar filtration
F •JH of E has the property that

gr•FJH
(E) =

⊕
λ∈Z

F λE/F λ+1E

is a direct sum of stable vector bundles. Hence, gr•FJH
(E) is polystable.

Note that the Rees construction for F •JH gives a Gm-equivariant family of
vector bundles on E on C × A1 such that E1 ' E and E0 ' gr•FJH

(E). Thus,
we get a degeneration

E  gr•FJH
(E)

from a semistable vector bundle to a polystable vector bundle.
(3) Two semistable vector bundles E and E ′ on C are S-equivalent if

gr•FJH
(E) ' gr•F ′JH

(E ′).

In the moduli space of semistable vector bundles, two vector bundles are identified if
and only if they are S-equivalent.

3.4.2. Degenerations over curves. Now, the we understand the iniqueness of K-
polystable degenerations via test configurations, we can move on to degenerations
over more general curves.

Theorem 3.15. [BX19] Let 0 ∈ C be the germ of a smooth curve and

X X ′

C

two families of klt Fano varieties with an isomorphism

φ : X|C\0 ' X ′|C\0
over C \ 0.

(1) If X0 is K-stable and X ′0 is K-semistable, then φ extends to an isomorphism
X ' X ′ over C.

(2) If X0 and X ′0 are K-polystable, then X0 ' X ′0.
(3) If X0 and X ′0 are K-semistable, then X0 are X ′0 are S-equivalent.

Roughly, the statement says that moduli space of K-polystable Fano varieties
MKps

n,v . To make this precise, one must first construct it!
An easy application of Theorem 3.15.1 is the following corollary.
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Remark 3.16. It follows from previous results that for a point [X] ∈MKss
n,v (k)

[X] is closed in MKss
n,v ⇔ X is K-polystable..

Indeed, Theorem 3.11.1 implies the forward implication, while Theorem 3.15.2 implies
the reverse implication.

3.5. Construction of K-moduli space. The next step is to show the existence
of a good moduli space parametrizing K-polytable Fano varieties.

Theorem 3.17. [ABHLX20] There exists a morphism to a good moduli space

MKss
n,v →MKps

n,v ,

where MKps
n,v is a separated algebraic space whose k-points are in bijection with iso-

morphism classes of K-polystable klt Fano varieties of dimension n and volume v.

3.5.1. Good moduli spaces. The notion of a good moduli space was introduced by
Alper in order to generalize Mumford’s notion of a good quotient to the setting of
algebraic stacks.

Definition 3.18. [Alp13] A good moduli space is a morphism

φ :M→M

from an algebraic stack to an algebraic space such that

(1) φ∗ is exact on quasi-coherent sheaves
(2) the natural map OM → φ∗OM is an isomorphism.

While the definition is remarkably simple, such maps satisfy many nice properties.

Proposition 3.19. [Alp13, Main Properties] If φ : M → M is a good moduli
space, then

(1) φ is surjective and universally closed,
(2) φ is initial among maps from M to algebraic spaces,

(3) x, x′ ∈M(k) are identified by M→M if and only if {x1} ∩ {x2} 6= ∅.
Example 3.20. We list a few important examples of good moduli spaces

(1) IfM is a Deligne-Mumford stack and φ :M→M is a coarse moduli space2,
then φ is a good moduli space.

(2) If G is a reductive group acting linearly on a projective scheme X ⊂ Pn, then
the morphism

[Xss/G]→ X//G

is a good moduli space
(3) If G is a reductive group acting on a finite type k-scheme Spec(A), then

[Spec(A)/G]→ Spec(AG)

is a good moduli space.
2A mapM→M is a coarse moduli space if it is initial among maps fromM to algebraic spaces

and is a bijection on k-points
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3.5.2. Construction of moduli space. The construction of MKps
n,v relies on a theorem

of Alper, Halpern-Lesitner, and Heinloth, which gives a criterion for when an algebraic
stack admits a good moduli space [AHLH18]. In verifying the condition, one relies
on the birational geometry argument from [BX19,LWX21].

It follows from the construction of MKps
n,v that the good moduli space morphism

MKss
n,v →MKps

n,v

is étale locally at a closed point [X] ∈MKps
n,v of the form

[Spec(A)/G]→ Spec(AG),

where G = Aut(X). As part of the proof, the following statement is shown.

Theorem 3.21. [ABHLX20] If X is a K-polystable Fano variety, then Aut(X)
is reductive.

3.6. Properness. In the previous steps, we constructed MKps
n,v as a separated

algebraic space. The next step is to show properness.

Theorem 3.22. [LXZ22] The algebraic space MKps
n,v is proper.

To verify MKps
n,v is proper, it suffices to show the stackMKss

n,v satisfies the existence
part of the valuative criterion of properness for DVRs [AHLH18, Theorem A].

Theorem 3.23. Let R be a DVR with fraction field K := Frac(R).
If XK is K-semistable klt Fano variety over K, then there exists a finite extension

of DVRS R ⊂ R′ and family of K-semistable klt Fano varieties

X ′ → Spec(R′)

such that X ′K′ ' XK ×K K ′, where K ′ := Frac(R′).

Remark 3.24. We make some brief remarks on the proof this difficult result.

(1) In the special case when the base field k = C, the properness of the smooth-

able locus MKps,sm
n,v has analytic proof due Donaldson and Sun. Indeed, if

0 ∈ C is a smooth pointed curve X → C \ 0 a family of Kähler-Einstein
smooth Fano varieties, then each Xt has the structure of a metric space for
t 6= 0. Roughly, one can consider the Gromov-Hausdorff limit

X0 := lim
t→0

Xt,

which is a priori just a metric space. By [DS14], X0 in fact has the structure
of Kähler-Einstein klt Fano variety.

(2) The proof of Theorem 3.23 by [LXZ22] relies on [?BHLLX19], which states that
the destabilization conjecture implies Theorem 3.23. Recall, the conjecture,
which states that if X is K-unstable klt Fano variety, then

δ(X) = inf
E

AX(E)

S(E)

is a minimum, was verified in [LXZ22].
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3.7. Projectivity. The last remaining step is to show MKps
n,v a projective scheme.

To do so, the strategy is to exhibit an ample line bundle on the moduli space. There
is a natural line bundle to consdier that is motivated by both both algebraic and
analytic considerations.

3.7.1. Chow Mumford line bundle. The CM line bundle associates to any any fam-
ily of polarized schemes a line bundle on the base. As we will see, the definiton is
closely related to K-stability and the Futaki invariant.

To define the line bundle, fix a flat proper morphism of connected schemes X → S
and L a relatively ample line bundle on X. Let n = dimX − dimS.

(1) By a result of Knudsen and Mumford [MFK94, pg 184], there exist line
bundles M0, . . . ,Mn+1 on S such that

det(f∗Lm) =M( m
n+1)
n+1 ⊗M

(m
n)
n ⊗ · · · ⊗M(m

0 )
0

for all m� 0.
(2) By the theory of Hilbert polynomials, there are rational numbers a0, . . . , an

such that
χ(Xs,Lms ) = a0m

n + a1m
n−1 + · · ·+ an,

for all m ≥ 0. By the assumption that f is flat, this is independent of s ∈ S.

The expansion in (1) may be thought of as a Hilbert function with values in Pic(S).

Definition 3.25 (Paul-Tian). The CM-line bundle of f : (X,L)→ S is

λCM,f,L :=Mn(n+1)+µ(L)
n+1 ⊗M−2(n+1)

n ,

where µ(L) = 2a1/a0. Note that it is in fact a Q-line bundle.

The CM-line bundle satisfies the follow natural properties.

Remark 3.26. The CM line bundle satisfies the following natural properties.

(1) If we replace L with Lm for some positive integer m, then

λCM,f,Lm = λm
n

CM,f,L.

This follows from a straightforward computation and gives a natural way to
define the CM line bundle when L is Q-line bundle.

(2) If g : T → S is a morphism of schemes, then there is a canonical isomorphism

g∗λCM,f,L = λCM,fT ,LT
,

where fT : XT := X ×S T → T and L the pullback of L via XT → X. This
follows from functorial properties of the Knudsen-Mumford expansion.

(3) If (X ,L)→ A1 is a test configuration, then

Fut(X ,L) :=
a0

(n+ 1)!
deg λCM,π,L,

where π : (X ,L)→ P1 is the compactified test configuration. 3

3To verify the formula, recall that det(π∗L
m

) ' OP1(wm) for m� 0 by the proof of Proposition
2.7.
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(4) If X and S are normal projective varieties, then

c1(λCM,f,L) = f∗
(
µ(L)c1(L)n+1 + (n+ 1)c1(Ln) · c1(KX/T )

)
,

where the equality is of rational cycles on S (or equivalently, Q-divisors on S
up to linear equivalence). See e.g. [CP21, Lemma A.2]

3.7.2. CM line bundle and Fano varieties. If f : X → S is a family of klt Fano
varieties of relative dimension n, then we set

λCM,f :=
1

rn
λCM,f,L,

where r is a positive integer such that L := ω
[−r]
X/S is a line bundle. Since the line

bundle is functorial, it naturally induces a Q-line bundle λCM on MKss
n,v . Additional

arguments show λCM desdence to a Q-line bundle LCM on MKps
n,v .

In order to verify the ampleness LCM, the key step is to verify the following posi-
tivity statements.

Theorem 3.27. Let f : X → S be a family of K-semistable Fano varieties over a
projective normal scheme S.

(1) (Nefness) [CP21] The Q-line bundle λCM,f is nef.
(2) (Bigness) [CP21,XZ20,LXZ22] If the moduli map g : S →MKps

n,v is gener-
ically finite, then λCM,f is big.

Theorem 3.27.2 was proven in three stages. In [CP21], the statement was verified
when the generic fiber of X → S is uniformly K-stable, and, in [XZ20], under the
assumption that K-polystability is equivalent to a notion called uniform reduced uni-
form K-stability [XZ20, Definition 3.4]. In [LXZ22], the authors showed (reduced)
uniform K-stability is equivalent to K-(poly)stability and, hence, completed the proof
of the bigness statement.

Using the Nakai-Moshezon criterion for ampleness and some additional techinical
arguments, one can then deduce the following corollary that was acheived in its full
form in [LXZ22].

Corollary 3.28. The Q-line bundle LCM on MKps
n,v is ample.

Using that MKps
n,v is a proper algebraic space and the ampleness of LCM, it follows

that

Corollary 3.29. The good moduli space MKps
n,v is a projective scheme.

Remark 3.30 (Analytic interpretation). The CM line bundle on MKps
n,v is closely

related to the Weil-Peterson metric on the locus of MKps
n,v parametrzing smooth Kähler-

Einstein Fano varieties. This connection was utilized in [LWX18] to show LCM is
big and nef on the locus MKps,sm

n,v ⊂ MKps
n,v parametrizing smooth K-polystable Fano

varieties and deduce that MKps,sm
n,v is a quasi-projective variety. The latter was proven

prior to the algebraic advances in understanding K-stability.
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Remark 3.31 (Canonically polarized varieties). Similar to the Fano setting, there
is induced CM Q-line bundle on the KSBA moduli space MKSBA

n,v . Its ampleness was
verified in [PX17] using positivity results from [KP17].

3.8. Examples.
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APPENDIX A

Algebraic groups

In this section, we review notions concerning algebraic groups, group actions, and
linearized line bundles. This material can be found in [MFK94], as well as the lecture
notes [Hos15].

We include this material, since actions and linearizations of the multiplicative
group play a key role in the definition of K-stability. While we mostly only need the
case of the multiplicative group, it is helpful to recall the whole theory.

Conventions: Throughout, all schemes are defined over an algebraically closed field
k of arbitrary characteristic.

1. Algebraic groups

Definition 1.1. An algebraic group G is a scheme with morphisms m : G×G→
G, i : G→ G and e : Spec(k)→ G such that the following diagrams commute:

(1) Associativity

G×G×G G×G

G×G G.

m,idG

idG,m m

m

(2) Identity

G G×G G

G

e×idG

idG

m

idG×e

idG

(3) Inverses

G G×G G

Spec(k) G Spec(k)

idG×i

m

i×idG

e e

As a consequence of the definition, G(k) is endowed with the structure of a group.

93



94 A. ALGEBRAIC GROUPS

Example 1.2. We list some important examples of algebraic groups. In the below
examples G is affine. Hence, defining m : G × G → G and i : G → G amounts to
defining the rings maps

m∗ : O(G)→ O(G)⊗O(G) and i∗ : O(G)→ O(G).

The choice of e : Spec(k)→ G will be clear from context.

(1) the multiplicative group Gm := Spec(k[t, t−1]), where

m∗t = t⊗ t and i∗t = t−1.

Note that Gm(k) = (k×, ·).
(2) the additive group Ga := Speck[t], where

m∗t = 1⊗ t+ t⊗ 1 and i∗ = −t.
Note that Ga(k) = (k,+).

(3) the general linear group GLn = Spec[xi,j : 1 ≤ i, j ≤ n]det(xi,j). We leave it to
the reader to write down m∗ and i∗ so that GLn(k) is the group of invertible
n× n-matrices with values in k.

Definition 1.3. A homomorphism of algebraic groups G→ H is a morphism of
schemes G→ H such that the diagram

G×G G

H ×H H

mG

f,f f

mH

A subgroup of an algebraic group G is a closed subscheme H ⊂ G such that closed
embedding H ↪→ G is a homomorphism of algebraic groups.

Example 1.4. Below are a few examples of group homomorphisms and subgroups.

(1) The morphism det : GLn → Gm is a homomorphism.
(2) A linear representation of an algebraic group G is a homomorphism

G→ GL(V )

for some vector space V .
(3) For each integer λ ∈ Z, the morphism χλ : Gm → Gm, where

χ∗λ : k[t, t−1]→ k[t, t−1] sends t 7→ tλ,

is a group homomorphism. In fact, all group homomorphism Gm → Gm are
of this form.

(4) The group of n-th roots of unity

µn := Spec(k[t, t−1]/(tn − 1)) ⊂ Gm

is a subgroup of Gm. Note that when char(k) = p, the scheme µp is non-
reduced!
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(5) If G is an affine finite type algebraic group, then G is a subgroup of GLn for
some n > 0. [?]

2. Group actions

Definition 2.1. An action of an algebraic group G on a scheme X is a morphism
σ : G×X → X such that the following diagrams commute:

G×G×X G×X

G×X X

m,idX

idG,σ σ

σ

and

Spec(k)×X G×X

X

e,idX

σ

The above data induces a group action G(k) on the set X(k).

Example 2.2. We list two examples of actions of algebraic groups.

(1) The standard action Gm on A1 is the action the sends t · x = tx for all
t ∈ Gm(k) and x ∈ A1(k). This corresponds to the morphism

σ : Gm × A1 → A1

where σ∗ : k[x]→ k[t, t−1]⊗ k[x] is defined by x 7→ x⊗ t.
(2) The algebraic group PGLn+1 acts on Pn.

If a group G acts on a scheme X, then there is an induced action G(k) on the set
of functions O(X) such that

(g · f)(x) = f(g−1 · x)

for all g ∈ G(k), f ∈ OX , and x ∈ X. The inverse appears so that the action is a left
action in the case when G is not abelian.1

Example 2.3. We list two examples of this when G = Gm.

(1) For the standard action of Gm on A1,

a · xm = a−mxm

for all a ∈ Gm(k) and O(A1) = k[x]. Note the minus sign, which is produced
by the inverse in the above definition.

(2) If Gm acts on an affine scheme Spec(A), then A admits a structure of a
Z-graded ring A =

⊕
λ∈ZAλ, where

Aλ := {f ∈ A | a · f = aλf for all a ∈ Gm(k)}.
Here the

⊕
λ∈ZAλ is called the weight decomposition and Aλ the λ-weight

space. Conversely, a Z grading of a ring A induces an action G on Spec(A).2

1Unfortunately, the literature is not consistent on this convention when G is abelian; e.g. when
G := Gm.

2We leave it as an exercise to the reader to check this correspondence.
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In the case of the standard Gm-action on A1 = Spec(k[x]), the weight
spaces are given by k[x]λ = 0 for λ > 0 and k · x−λ for λ < 0. Hence, the
weight decomposition is

k[x] =
⊕
i≤0

k · x−i.

Definition 2.4. Assume an algebraic group G acts on schemes X and Y . A
morphism f : X → Y is equivariant if the diagram commutes:

G×X X

G× Y Y.

σX

idG,f f

σY

Example 2.5. Assume G acts on schemes X and Y . Then the product X × Y
admits a diagonal G-action, where g · (x, y) = (gx, gy) for all g ∈ G(k), x ∈ X(k) and
y ∈ Y (k). The projection morphism

X × Y → Y

is G-equivariant. This simple construction appears frequently in the K-stability liter-
ature, when Y = A1 and G = Gm.

3. Linearized line bundles

A linearization of a line bundle L on a scheme X with a group action is a group
action on L extending the group action on X. This is made precise in the following
two (equivalent) definitions.

Definition 3.1. Let G be an affine algebraic group acting on a scheme X, L a
line bundle on X, by which we mean a rank 1 locally free sheaf, and L := V (L) the
total space of the line bundle.

(1) A linearization of L is bundle isomorphism3 Σ : G × L → L such that the
diagram

G× L L

G×X X

Σ

σ

commutes and Σ induces an action of G on L.
(2) A linearization of L is an isomorphism

σ∗L→ p∗2L,

3The terms bundle isomorphism in this setting may seem unusual, since G×L is a vector bundle
on G×X, while L is a vector bundle on X. The term means that the induced morphism G×L→ σ∗L
is an isomorphism of vector bundles on G×X.
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where σ : G ×X → X and p2 : G ×X → X denote the morphism inducing
the action on X and the second projection, such that the cocycle condition

(σ × idX)∗Φ = p∗23Φ ◦ (idG × µ)∗Φ

holds.

A linearization of a vector bundle E on X can be define in an analogous way.

Remark 3.2. As explained in [MFK94, Section 1.3], the two definitions in Defi-
nition 3.1 are equivalent. To see this, observe that a bundle isomorphism Σ such that
the diagram in (1) commutes is equivalent to an isomorphism

p∗2L := G× L→ σ∗L

of vector bundles on G ×X.4 Hence, the first part of (2) is the dual of the previous
isomorphism. The cocycle condition in (2) is related to the condition in (1) that Σ
induces an action of G on L.

Remark 3.3. In Definition 3.1.1, the commutativity of the diagram implies that
Σ induces a linear map

Lx → Lg·x
for each g ∈ G(k) and x ∈ X(k).

Example 3.4. We consider linearizations of line bundles on Pn.

(1) Consider the action of GLn+1 on Pn induced by the action on An+1. Viewing
the tautological bundle as a sub-bundle

OPn(−1) ⊂ Pn × An+1,

we see OPn(−1) admits a GLn+1-linearization. Hence, its dual OPn(1) admits
a GLn+1-linearization. By taking tensor powers and duals, we conclude O(m)
admits a GLn+1-linearization for any m ∈ Z.

(2) Consider the action of PGLn+1 on Pn. While OPn(1) does not admit a
PGLn+1-linearization, its n + 1 power does! To see the latter, note that
the action of PGLn+1 induces a linearization of the tangent bundle TPn and,
hence, of O(n+ 1) ' ω∗Pn+1 .

Example 3.5. Let X = Spec(k), L = OX = k, and L = A1. A Gm-linearization
of L is equivalent to a linear action Gm on L = A1. Such actions are in bijection with
group homomorphisms Gm → Gm, which are in bijection with Z. Explicitly, λ ∈ Z
induces a linear action Gm on L such that

a · x = aλx

for all a ∈ Gm(k) and x ∈ A1(k).

4Here, we are using that σ∗L is the fiber product of (G×X)×X L via the morphism G×X σ→ X
and L→ X.
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Example 3.6. Consider the action of Gm on A2 by t ·(x, y) = (tx, y). This induces
a Gm-action on P1, via t · [x : y] = [tx : y] and, hence, the tautological bundle viewed
again as a sub-bundle

OP1(−1) ⊂ P1 × A2.

Since 0 := [0 : 1] and ∞ := [1 : 0] are fixed points of the action, it follows that the
restrictions OP1(−1)0 and OP1(−1)∞ are Gm-linearized line bundles on a point. We
can compute

wt(OP1(−1)0) = 0 and wt(OP1(−1)∞) = 1

are Gm-linearized line bundles on a point. Note that the difference is -1.

Proposition 3.7. Let Gm act on P1 by t · [x : y] = [tx : y]. If OP1(m) admits a
Gm-linearization, then

wt (OP1(m)0)− wt (OP1(m)∞) = m,

where 0 := [0 : 1] and ∞ := [1 : 0].

Note that, under the embedding i : A1 ↪→ P1 defined by i(x) = [x : 1], the above
Gm-action on P1 restricts to the standard Gm-action on A1 and i(0) = 0.

Proof. The formula holds when m = 0, since any linearization is determined
by the Gm-action on the nowhere-vanishing section 1 ∈ OP1 . Hence, for any such
linearization, the weights at 0 and ∞ agree.

Next, fix a linearization of OP1(m), where m 6= 0. Consider the linearization of
L := OP1(−1) given in the previous example. Using that M := OP1(m) ⊗ L⊗m is
isomorphic to OP1 and admits an induced Gm-linearization, we compute

wt (OP1(m)0)− wt (OP1(m)∞) = (wt (M0)− wt (M∞))−m (wt (L0)− wt (L∞))

= 0−m(−1) = m.

�



APPENDIX B

Intersection numbers and positivity of line bundles

In this appendix, we review the theory of intersection numbers of line bundles and
various positivity notions.

Conventions: Throughout, all schemes are defined over an algebraically closed field
k of arbitrary characteristic.

1. Intersection numbers

Below, we recall the theory of intersection numbers of line bundles following the
approach of Kleiman [Kle66]. For detailed proofs, we refer the reader to [Kle66]
or [dFEM14, Section 1.2]. For an alternative topological definition of intersection
numbers, see [Laz04, Section 1.1.C].

1.1. Definition. Intersection numbers can be defined using the following theorem
due to Snapper. For a proof see [Kle66, Section 1].

Theorem 1.1. If L1, . . . ,Lr are line bundles on a proper scheme X, then the
function Zr → Z defined by

(m1, . . . ,mr) 7→ χ(X,Lm1 ⊗ · · · ⊗ Lmr)

is a numeral polynomial of total degree ≤ dim(X).

By a numerical polynomial, mean a polynomial in Q[m1, . . . ,mr] that takes integer
values whenever m1, . . . ,mr are integers.

Definition 1.2 (Intersection number). Let L1, . . . ,Lr be line bundles on a proper
scheme X, with dim(X) ≤ r. The intersection number

(L1 · . . . · Lr)

is the coefficient of the monomial m1 · · ·mr in the polynomial χ(X,Lm1 ⊗ · · · ⊗Lmr).
It follows from the general theory of numerical polynomials that (L1 · · · · · Lr) is an
[Kle66, Proposition 0].

Kleiman considers intersection numbers of the form (L1 · · · · · Lr;F), where ad-
ditionally F is a coherent sheaf on X [Kle66]. The latter agrees with the above
definition when F = OX . We will not need the extra level of generality in these notes.

99
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1.2. Properties. The properties that intersection numbers satisfy are often more
important than their actual definition. The following results are proven in Section 2
of [Kle66, Secton 2].

Proposition 1.3. Let L1, . . . ,Lr be line bundles on a proper scheme X, with
dim(X) ≤ r.

(1) If dim(X) < r, then (L1 · · · · · Lr) = 0.
(2) The map Pic(X)r → Z given by

(L1, . . . ,Lr) 7→ (L1 · . . . · Lr)
is symmetric and multilinear.

(3) If Y1, . . . , Ys are the r-dimensional irreducible components of X with reduced
scheme structure, then

(L1 · . . . · Lr) =
s∑
i=1

`(OX,ηi)(L1|Yi · . . . · Lr|Yi),

where ηi ∈ X is the generic point of Yi and `(OX,ηi) denotes the length of the
Artinian ring OX,ηi.

(4) (Projection formula) If f : Y → X is a surjective morphism of proper schemes
that is generically finite of degree d, then

(f ∗L1 · . . . · f ∗Lr) = d(L1 · . . . · Lr).
(5) (Restriction) If Lr = OX(D) for some effective Cartier divisor D on X, then

(L1 · . . . · Lr) = (L1|D · . . . · Lr−1|D).

Remark 1.4. The theory of intersection numbers on curves and surfaces appears
in [Har77].

(1) If C is a smooth curve, then the intersection number of a line bundle L is
deg(L).

(2) If S is a smooth surface and D1 and D2 Cartier divisors on S, then

(OX(D1) · OX(D2)) = D1 ·D2,

where the latter expression is defined in [Har77, V.1].

Notation 1.5. In these notes, we will often work with intersection numbers of
Cartier divisors.

(1) If D1, . . . , Dr are Cartier divisors on a proper scheme X with dim(X) ≤ r,
then we set

D1 · . . . ·Dr := (OX(D1) · . . . · OX(Dr)) .

(2) More generally, if we instead assume D1, . . . , Dr are Q-Cartier Q-divisors,
then we set

D1 · . . . ·Dr :=
1

mr
(OX(mD1) · . . . · OX(mDr)) ,
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where m is a sufficiently divisible positive integer such that mD1, . . . ,mDr

are Cartier divisors. The latter is well defined by Proposition 1.3.2.

Example 1.6. Let X be a projective variety of dimension n. If D1, . . . , Dn are
effective Cartier divisors that meat transversely at smooth points, then Proposition
1.3 implies

D1 · . . . ·Dn = #(D1 ∩ · · · ∩Dn),

where the right hand side denotes the number of points in the intersection.

1.3. Riemann–Roch. A key feature of intersection numbers is that they can be
used to describe coefficients of the Hilbert polynomial.

Theorem 1.7. If X is a proper scheme of dimension n and L a line bundle on
X, then χ(X,Lm) is a polynomial in m of the form

χ(X,Lm) =
(Ln)

n!
mn + lower order terms.

Furthermore, if X is normal, then

χ(X,Lm) =
(Ln)

n!
mn − (Ln−1 ·KX)

2(n− 1)!
mn−1 + lower order terms.

The first part of the theorem can be deduced easily from 1.1 and the definition of
the intersect numbers; see [dFEM14, Remark 1.2.9]. The second part requires more
work and can be proven using Grothendieck–Riemann–Roch Theorem; see [BHJ17,
Theorem A.I]

2. Positivity of line bundles

In this section, we recall various notions of positivity for line bundles. For a more
in depth treatment of this topic, see [Laz04, Chapters 1 and 2].

2.1. Ample, semi-ample, and nef. Recall, a line bundle L on a proper scheme
X is ample if the complete linear system |L⊗m| induces an embeddingX ↪→ P(H0(X,L⊗m)∗)
for m > 0 sufficiently large. The following are weaker notions of this condition.

Definition 2.1. A line bundle L on a proper scheme X is

(1) semi-ample if L⊗m is globally generated for m� 0.
(2) nef if L · C ≥ 0 for all irreducible curves C ⊂ X, where

L · C := deg(L|C),

Remark 2.2 (Divisors). The above definitions also make sense for divisors.

(1) A Cartier divisor D on X is semi-ample or nef if the corresponding property
holds for OX(D), and we set

D · C := deg(OX(D)|C))



102 B. INTERSECTION NUMBERS AND POSITIVITY OF LINE BUNDLES

(2) More generally, a Q-Cartier Q-divisor D on X is semi-ample or nef if the
corresponding properties holds for OX(mD) for some m > 0 such that mD
is a Cartier divisor.

Remark 2.3. It is straightforward to see that

ample ⇒ semi ample⇒ nef ,

where the second implication uses that if L is a semi-ample line bundle on X and
C ⊂ X, then L|C is semi-ample and, hence, has positive degree.

If L is ample, then L · C > 0 for every curve C ⊂ X. While the converse does
not hold in general, the statement can be modified slightly to give a criterion for
ampleness, where one uses certain limits of curve classes[Laz04, Theorem 1.4.29].

Definition 2.4 (Numerical equivalence). Two line bundles L1 and L2 on X are
numerically equivalent, denoted L1 ≡ L2, if L1 ·C = L2 ·C for every irreducible curve
C ⊂ X.

2.2. Bigness. Before defining the notion of a big line bundle, we state the fol-
lowing lemma.

Lemma 2.5. If L is a line bundle on a projective scheme X of dimension n, then
there exists a constant C := C(L) such that

dimH0(X,L⊗m) ≤ Cmn

for all positive integers m.

Proof. Since X is projective, there exist ample Cartier divisors A and B on X
such that L ' OX(A − B). The injection OX(m(A − B)) ↪→ OX(mA) of sheaves
induces an injection

H0(X,L⊗m) ↪→ H0(X,OX(mA)).

Since H0(X,OX(mA)) agrees with a polynomial of degree n when m� 0, the result
follows. �

Definition 2.6. The volume of a line bundle L on a projective variety X of
dimension n is the limsup

vol(L) := lim sup
m→∞

h0(X,L⊗m)

mn/n!
.

We say L is big if vol(L) > 0.

Remark 2.7. We state a number of properties of the volume.

(1) If L is nef, then vol(L) = Ln by [Laz04, Corollary 1.4.41]. Additionally, if L
is ample, then vol(L) > 0.

(2) The limsup in the definition of volume is in fact a limit. This is not immedi-
ately obvious; see e.g. [Laz04, Section 11.4].
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(3) If a is a positive integer, then

vol(L⊗a) = anvol(L).

This follows from the definition and that the volume is a limit.

Remark 2.8 (Divisors). As before, the definitions naturally extends to divisors.

(1) A Cartier divisor D is big vol(D) := vol(OX(D)) > 0.
(2) A Q-Cartier Q-divisor is big if vol(D) := 1

mn vol(OX(mD)), where m is a
positive integer such that mD is a Cartier divisor.

The following lemma shows that bigness of D can be characterized by the map
|mD| for m > 0 sufficiently large [KM98, Lemma 2.60]

Proposition 2.9. Let D be a Cartier divisor on projective variety X. The fol-
lowing are equivalent:

(1) D is big,
(2) there exists an ample divisor A, effective divisor E, and m > 0 such that

mD ∼ A+ E,
(3) The rational map φmD : X 99K P(H0(X,OX(mD))∗) is birational onto its

image for m� 0.

Proof. To see the implication (1) ⇒ (2), fix an effective ample divisor A on X
and consider the exact sequence

0→ H0(X,OX(mD − A))→ H0(X,OX(mD))→ H0(A,OX(mD)|A).

Since D is big and H0(A,OX(mD)|A) = O(mn−1), it follows that H0(X,OX(mD −
A)) 6= 0 for m� 0. Thus, there exists an effective divisor E ∈ |mD−A| when m� 0
and, hence, (2) holds.

The implication (2)⇒ (3) is straightforward. To verify (3)⇒ (1), let Y denote the
closure of the image of φmD. Since h0(Y,OY (k)) agrees with a polynomial of degree
n for k � 0 and φ∗mD induces an injection

H0(Y,OX(k)) ↪→ H0(X,OX(mkD)),

so (1) holds. �

Example 2.10. Let us compute the volume of the line bundles on X := BpP2.
First, note that Pic(X) ' Z2 and is freely generated by OX(H) and OX(E), where
H is the birational transform of a line not passing through p and E is the exceptional
divisor. Note that H ·H = 1, E ·H = 0, and E2 = 0.

(1) xH − yE is nef if and only if x ≥ 0 and y ≥ 0.
To see the forward implication, note that

(xH − yE) ·H = x.

Additionally, if we fix a line p ∈ L ⊂ P2, then H ∼ π∗L = L̃+E and, hence,

(xH − yE) · L̃ = (xH − yE)(H − E) = x− y.
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Thus, if xH − yE, then x ≥ 0 and x− y ≥ 0.
For the reverse implication it suffices to show both H and H −E are nef,

since then any linear combination of the two is nef. The statement is true,
since |H| and |H − E| are base point free.

(2) vol(xH − yE) =

{
x2 − y2 if x ≥ 0 and x− y ≥ 0

x2 if x ≥ 0 and y ≤ 0

If x ≥ 0 and x− y ≥ 0, then xH − yE is nef, and, hence,

vol(xH − yE) = (xH − yE)2 = x2 − y2.

For the next region, note that if a, b ∈ N, then

H0(X,OX(aH + bE)) = H0(X,OX(aH)).

One way to see this is to note that if D ∈ |aH + bE|, then D · E = (aH +
bE) · E = −b, so bE ≤ D. Hence, when x ≥ 0 and y ≤ 0,

vol(xH − yE) = vol(xH) = x2.



APPENDIX C

Singularities

1. Singularities of the Minimal Model Program

In this section, we recall definitions and properties of singularities appearing in
the Minimal Model Program. See [KM98, Section 2.3] for a brief summary of the
relevant definitions. For a more detailed reference, see [dFEM14, Chapter 3].

Conventions: Throughout, all schemes are defined over an algebraically closed field
k of characteristic 0.

1.1. Divisors. We briefly recall some terminology for divisors.
Let X be a normal variety. A divisor D on X is a formal sum D =

∑r
i=1 aiDi,

where each Di is a prime divisor on X and ai ∈ Z. A Q-divisor D on X is a formal
sum D =

∑r
i=1 aiDi, where ai ∈ Q. It is effective if ai ≥ 0 for all i. The support of

D =
∑
aiDi is the closed subscheme

Supp(D) :=
⋃
ai 6=0

Di ⊂ X.

Two Q-divisors D and D′ are Q-linearly equivalent if there exists an integer m >
0 such that mD and mD′ are divisors and mD ∼ mD′, where ∼ denotes linear
equivalence. A Q-divisor D is Q-Cartier if there exists exists an integer m > 0 such
that mD is a Cartier divisor.

Let f : Y → X be a proper birational morphism and D be a Q-divisor on X. If
D is Q-Cartier, we set

f ∗(D) :=
1

m
f ∗(mD),

where m is a positive integer such that mD is Cartier divisor. Note that, even if D
has integral coefficients, f ∗D may have fractional coefficients.

A divisor D on X is simple normal crossing, which is abbreviated snc, if X is
smooth and at each p ∈ Supp(D) and there exists local coordinates1 x1, . . . , xn at p
such that D is locally defined at p by x1 · . . . · xr for some 1 ≤ r ≤ n.

A log resolution of (X,D), where X is a normal variety and D a Q-divisor on X
is a proper birational morphism Y → X such that

• Y is smooth,
• Exc(f) is pure codimension 1, and

1By local coordinates at p, we mean x1, . . . , xn ∈ OX,p such that their images x1, . . . , xn ∈ m/m
2
p

form a basis for mp/m
2
p.

105



106 C. SINGULARITIES

• Exc(f) ∪ Supp(f−1
∗ (D)) is snc.

As a consequence of results of Hironoka [Hir64], log resolutions always exist in char-
acteristic 0.

1.2. Canonical divisor. The singularities notions in the Minimal Model Pro-
gram are defined using the canoncial divisor on a variety and how it transforms under
birational morphisms.

Definition 1.1 (Canonical divisor). Let X be a normal variety. A canonical
divisor on a normal variety X is a divisor KX on X such that

ωU ' ωU(KX |U),

where U is the smooth locus of X. Since codimX(X \ U) ≥ 2 by the normallity
assumption on X, any two canonical divisors of X are linearly equivalent.

Example 1.2. We give two examples of the canonical divisor.

(1) If H ⊂ Pn is a hyperplane, then KPn = −(n+ 1)H.
(2) X ⊂ Pn is a normal hypsurface of degree d, then

KX = −(n+ 1− d)H|X ,
where H ⊂ Pn is a hyperplane. (When d = 1, we assume H 6= X so that the
restriction H|X is a well-defined divisor).

Lemma 1.3. If f : Y → X is a proper birational morphism of normal varieties
and KY is a canonical divisor on Y , then f∗KY is a canonical divisor on X.

Proof. Let Exc(f) ⊂ Y denote the exceptional locus of f . Since the morphism

V := Y \ Exc(f)→ U := X \ f(Exc(f)).

is an isomorphism (f∗KY )|U is a canonical divisor on U . Since codimX(U) ≥ 2 by
[Har77, Proof of Lemma V.5.1], it follows that f∗KY is a canonical divisor on X. �

By the previous lemma, if f : Y → X is a proper birational morphism with X and
Y normal, then we can choose canonical divisors KY and KX such that

KY = f∗KX .

Whenever we are in such a setup, we will always assume this choice has been made.

Definition 1.4 (Relative canonical divisor). Let f : Y → X be a proper birational
morphism of normal varieties with KX Q-Cartier. The relative canonical divisor of f
is the Q-divisor

KY/X := KY − f ∗KX .

Since in the above formula KY and KX are chosen so that f∗KY = KX , it follows
that KY/X is exceptional, by which we mean f∗KY/X = 0.

Example 1.5. We list a few examples of the relative canonical divisor.
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(1) Let X be a smooth variety, Z ⊂ X a smooth subvariety of codimension r,
and

f : Y := BZX → X

denote the blowup of X along Z with exceptional divisor E. Then

KY/X = (r − 1)E.

This formula can be deduced from the following local computation. To
simplify the computation, let us assume Z is a point x ∈ X and, hence,
r = n := dim(X). In this case, choose local coordinates

x1, . . . , xn ∈ OX,x,

and a point y ∈ E such that there are coordinates

y1, . . . , yn ∈ OY,y,

where f ∗x1 = y1 and f ∗xi = y1yi for 2 ≤ i ≤ n. Then we see

f ∗dx1 = dy1 and f ∗dxi = y1dyi + yidy1

and, hence,

f ∗dx1 ∧ . . . ∧ dxn = yn−1
1 dy1 ∧ . . . ∧ dyn.

Therefore, KY/X = (n− 1)E in a neighborhood of y. Since we known KY/X

is exceptional and E is the sole exceptional divisor of f , we conclude the
formula holds.

(2) If f : Y → X be a proper birational morphism of smooth varieties, then
KY/X is effective. Indeed, by [Har77, Proposition 8.11], there is a natural
exact exact sequence

f ∗ΩX → ΩY → ΩY/X → 0.

Since f ∗ΩX → ΩY is an isomorphism over V := Y \ Exc(f), taking the top
exterior powers gives an injective map f ∗ωX ↪→ ωY . Hence, KY/X is effective.

In fact, Supp(KY/X) = Exc(f). This is shown by reducing the problem
to understanding a sequence of blowups along smooth centers as in the first
example. See [KM98, Corollary 2.31] for details.

(3) Let h ∈ k[x0, . . . , xn] be a homogenous polynomial of degree d with n ≥ 3.
Assume H := {h = 0} ⊂ An+1 has an isolated singularity at 0, which implies
H is the cone over a smooth degree d hypersurface in Pn.

Consider the commutative diagram

H̃ Y

H An+1

g f ,
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where f is the blowup of An+1 at 0 and H̃ is the strict transform on H on Y .

Let E ⊂ Y denote the exceptional divisor and note that H̃ ∩E is isomorphic
to the smooth hypsurface in Pn cut out by h

To compute the relative canonical divisor of H̃ → H, we use adjunction.
The latter says that if D ⊂ X is a smooth divisor on a smooth variety, then
the natural map ωX(D)|D → ωD is an isomorphism; see [Har77, Proposition
8.20] for a similar statement. Hence,

(KX +D)|D = KD.
2

Returning to our computation, adjunction gives

(KY + H̃)|H̃ = KH̃ and (KAn+1 +H)|H = KH .

Thus,

KH̃/H = (KY + H̃)|H̃ − g
∗((KAn+1 +H)|H)

= (KY + H̃ − f ∗(KAn+1 +H))|H̃
= (KY/An+1 + H̃ − f ∗H)|H̃
= (n− d)E|H̃ .

Thus, when d > n, KH̃/H fails to be effective. As we will see, this is related
to the fact that the singularity of H gets worse as d gets large.

1.3. Singularities of varieties. The relative canonical divisor gives rise to a
measure of singularities of a variety.

Definition 1.6. A variety X is called klt (resp., lc) if

(1) X is normal,
(2) KX is Q-Cartier,
(3) and KY/X has coefficients > −1 (resp., ≥ 1) for all proper birational mor-

phisms f : Y → X with Y normal.

By Lemma 1.15, (3) is equivalent to the condition that KY/X has coefficients > −1
(resp., ≥ −1) for a single log resolution f : Y → X of X.

Remark 1.7 (Terminology). Klt and lc are abbreviations for Kawamata log ter-
mina and log canonical, respectively. These are classes of singularities that appear
naturally in the Minimal Model Program.

Example 1.8. The following examples show that klt and lc are natural notions
of singularities.

(1) A smooth variety X is klt. This follows from Example 1.5.1 or taking the log
resolution to be the identity morphism.

2For the restriction (KX + D)|D to be a well defined divisor on D, we choose KX so that
D 6⊂ Supp(KX +D).
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(2) Let H ⊂ An+1 be the hypersurface in Example 1.5.3. Since H̃ → H is a log
resolution of H and

KH̃/H = (n− d)E|H̃ ,

H is klt (resp., lc) if and only if d ≤ n (resp., d ≤ n + 1). Note that d ≤ n
precisely when H is the cone over a smooth Fano variety.

(3) Let X be a smooth projective variety and L an ample Cartier divisor on X.
The affine cone over X with respect to L is

Ca(X,L) := Spec
(⊕
m∈N

H0(X,mL).

By [Kol13a, Section 3.1], KCa(X,L) is Q-Cartier if KX ∼Q rL for some r ∈ Q.
Additionally, Ca(X,L) is klt (resp., lc) if and only if r < 0 (resp., < 0).

Thus, the cone over a Fano variety with respect to the anti-canonical divi-
sor is klt. The cone over a Calabi-Yau variety with respect to any polarization
is lc, but not klt.

(4) Let G ⊂ GLn be a finite group. By [Kol13a, pg. 103], the quotient of An by
G, which is defined as

X := An/G := Spec(k[x1, . . . , xn]G),

where k[x1, . . . , xn]G := {f ∈ k[x1, . . . , xn] | g ·f = f for all g ∈ G} is the ring
of invariants.

For a simple example, let G ⊂ GL2 denote the subgroup generated by(
ξ 0
0 ξm−1

)
,

where ξ is a primitive m-th root of unity. Then

A2/G := Speck[x, y]G = Spec(k[xm, ym, xy]),

Note that

k[xm, ym, xy] ' k[a, b, c]/(ab− cm).

(5) If X is a normal toric variety such that KX is Q-Cartier, then X is klt.

Remark 1.9 (Properties of lc and klt). The following diagram shows the relation
between, klt, lc, rational, and CM singularities.

klt rational CM

lc

.
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1.4. Singularities of pairs. The notions of singularities in the MMP are fre-
quently used in the “log” setting in which one considers the data of a variety with an
effective divisor.

Definition 1.10 (Pairs). A pair (X,∆) is a normal variety X and an effective
Q-divisor ∆ on X such that KX + ∆ is Q-Cartier.

Definition 1.11 (Crepant pullback). Let (X,∆) be a pair and f : Y → X be a
proper birational morphism with Y normal. The crepant pullback of ∆ is the Q-divisor
∆Y on Y such that

KY + ∆Y = f ∗(KX + ∆).

Note that if f∗∆Y = ∆.

While KY and KX are only defined up to linear equivalence, ∆Y is in fact uniquely
determined. Indeed, since we alway assume f∗KY = KX , if we were to replace KY

with KY + divY (φ) for some φ ∈ K(Y ), then we would need to replace KX with
KX + divX(φ) and ∆Y would be unchanged.

Example 1.12. We give two examples of the crepant pullback of a pair.

(1) If ∆ = 0, then ∆Y = −KY/X .
(2) Let H ⊂ An+1 be the degree d hypersurface in Example 1.5.3 and set ∆ = cH

for some c ∈ Q≥0. Note that f is a log resolution of (An+1,∆) and

∆Y = −KY/An+1 + f ∗D = −nE + cdH̃.

Hence, ∆Y has coefficients < 1 (resp., ≤ 1) when c ≤ n+1
d

.

The divisor ∆Y can be viewed as a modification of the pullback of ∆ that takes
into account the relative canonical divisor of f . Its coefficients will be used to define
the following singularity notions.

Definition 1.13. A pair (X,∆) is klt (resp., lc) if the crepant pullback ∆Y has
coefficients < 1 (resp., ≤ 1) for all proper birational morphisms f : Y → X with Y
normal.

Example 1.14. We list a number of examples, which show that klt and lc are
reasonable measures of singularities for pairs.

(1) A pair (X, 0) is klt (resp., lc) if and only if X is klt (resp., lc). This follows
immediately from the definition, since ∆Y = −KY/X when ∆ = 0.

(2) Consider a pair (
X,∆ :=

∑
bi∆i

)
,

where X is smooth and Supp(∆) is snc. The pair is klt (resp., lc) if and
only if bi < 1 (resp., ≤ 1) for all i. This follows from a local computation
[KM98, Corollary 2.31], which is similar to Example 1.5.1.

(3) A frequent first example is that (A2, c{x2 − y3 = 0}) is lc if and only if
0 ≤ c ≤ 5/6. We leave the computation as an exercise for the reader.
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(4) If f ∈ C[x1, . . . , xn] be a polynomial with f(0) = 0, then (An
C, c{f = 0}), is

klt in a neighborhood of 0 ∈ An
C if and only if

1

|f |2c

is locally integrable in a neighborhood of 0.
The above relation intuitively makes sense, since if f vanishes to a higher

degree at 0, the singularities of {f = 0} should be “bad” and 1/|f(x)| → ∞
very quickly as x→ 0. To prove the relation, one computes the integral∫

B0(ε)

1

|f |2c

by taking a log resolution Y → X and equating the previous integral to
an integral on Y . The Jacobian term in the integral on Y will involve the
coefficients of KY/X . See for example [Mus11, pg. 7] for a detailed proof.

Definition 1.13 as stated might seem difficult to check, since it requires taking all
birational morphism Y → X with Y normal. Fortunately, it suffices to consider a
single log resolution.

Lemma 1.15. A pair (X,∆) is klt (resp., lc) if and only if there exists a log
resolution f : Y → X such that ∆Y has coefficients < 1 (resp., ≤ 1).

Proof sketch. See [KM98, Corollary 2.31] for a complete proof. Below we
sketch the main idea.

Assume f : Y → X is a log resolution such that ∆Y has coefficients < 1. Let
f ′ : Y ′ → X be a proper birational morphism with Y ′ normal. We aim to show ∆Y ′

has coefficients < 1.
The trick is that we can always find a log resolution Z → X such that the diagram

Z

Y Y ′

X

g′g

f f ′

commutes. Now, note that ∆Z , which denotes the crepant pullback of ∆ under f ◦ g
is the crepant pullback of ∆Y via g, since

KZ + ∆Z = g∗f ∗(KX + ∆) = g∗(KY + ∆Y ).

Since ∆Y has coefficients < 1, Example 1.14.1 implies ∆Z has coefficients < 1. Since
∆Z is also the crepant pullback of ∆Y ′ via g′ (by a similar argument as above),
g′∗∆Z = ∆Y ′ . Hence, ∆Y ′ has coefficients < 1. �
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1.5. Log canonical thresholds. Using the notion of lc pairs, we discuss the
follow measure of singularities for a divisor.

Definition 1.16 (Log canonical threshold). Let X be a klt variety. The log
canonical threshold (lct) of an effective Q-Cartier Q-divisor D on X is

lct(X,D) := sup{c ∈ Q≥0 | (X, cD) is lc}.

Note that lct(X,D) is always positive. To see this, take a log resolution µ : Y → X
of (X,D). Since X is klt, KY − µ∗KX has coefficients > −1. Hence, for 0 < c � 1,
KY − µ∗(KX − cD) has coefficients ≥ −1, and (X, cD) is lc.

Example 1.17. Smaller values for lct(X,D) correspond to worse singularities.
This can be seen in the following examples whose computation follows immediately
from Example 1.14.

(1) If X be a smooth variety and D :=
∑r

i=1 biDi be an effective Q-divisor with
Supp(D1 + · · ·+Dr) snc, then

lct(X,D) = min
i=1,...,r

1

bi
.

(2) The lct of the cusp is

lct(A2, {x2 − y3 = 0}) =
5

6
,

while by the previous examples

lct(A2, {x2 − y2 = 0}) = 1.

This corresponds to the intuition that the cusp {2−y3 = 0} is more singular
than two intersecting lines {x2 − y2 = (x+ y)(x− y) = 0}.

(3) If f ∈ C[x1, . . . , xn] be a polynomial with f(0) = 0, then

lct0(An
C, {f = 0}) = sup

{
c ∈ Q>0 |

1

|f |2c
is locally integrable at 0

}
,

where lct0 denotes the lct in an sufficiently small open neighborhood of 0.

Proposition 1.18. If X is a klt variety and D an effetive Q-Cartier Q-divisor
on X, then

lct(X,D) = min
E

AX(E)

ordE(D)
,

where the minimum runs through all divisors E over X.
Furthermore, it suffices to take the minimum over all prime divisors E ⊂ Supp(µ∗D)

on a single log resolution µ : Y → X of (X,D).

Recall, a divisor E over X is the data of a proper birational morphism Y → X
with Y a normal variety and a prime divisor E ⊂ Y . Additionally,

AX(E) := coeffE(KY/X) and ordE(D) := coeffE(µ∗D).
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Eqivalently, ordE(D) = 1
m

ordE(f), where m is a positive integer such that mD is
Cartier and f ∈ OX,µ(E a local defining equation of mD at the generic point of µ(E).

Note that when E /∈ Supp(µ∗D), then ordE(D) = 0 and AX(E)
ordE(D)

= +∞ by convention.

Proof. Fix a proper birational morphism µ : Y → X with Y a normal variety.
Observe that if E ⊂ Y is a prime divisor, then

coeffE(KY − µ∗(KX + cD)) = coeff(KY/X)− c coeffµ∗D = AX(E) + 1− c ordE(D).

Thus, the following are equivalent:

(1) KY − µ∗(cD) has coefficients ≥ −1

(2) c ≤ AX(E)
ordE(D)

for all prime divisors E ⊂ Supp(µ∗D).

Since (X, cD) is lc if and only if KY − µ∗(cD) has coefficients ≥ −1 for all proper
birational morphism Y → X with Y normal, we see

lct(X,D) = inf
E

AX(E)

ordE(D)
,

where the infimum runs through all prime divisors E over X.
Now, assume Y → X is a log resolution of (X,D). Since (X, cD) is lc if and only

if KY − µ∗(cD) has coefficients ≥ −1 for this specific Y by Lemma 1.15,

lct(X,D) = inf
E⊂Y

AX(E)

ordE(D)

and it is a minimum since we only need to take the prime divisors E ⊂ Supp(µ∗D)
and the latter is a finite collection. �

Remark 1.19. In the setting of Proposition 1.18, it is also the case that

lct(X,D) = inf
v

AX(v)

v(D)
,

where the infimum runs through all valuations v ∈ ValX with AX(v) < ∞ [JM12,
Bou15]. Indeed, this follows from [JM12, Lemma 6.7] when X is smooth and can
be deduced from [Bou15, Theorem 1.1] in general.

Remark 1.20. We list a few simple properties of the log canonical threshold.

(1) It follows immediately from the definition that for any a ∈ Q>0,

lct(X, aD) = a−1lct(X,D).

(2) If p ∈ X is a smooth point, then

1

ordp(D)
≤ lctp(X,D) ≤ n

ordp(D)
,

where n is the dimension of X and

lctp(X,D) := sup{c ∈ Q>0 | (X, cD) is lc in an open neighbhorhood of p}.
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The first inequality follows from a degeneration argument [Kol97, Lemma
8.10]. For the second inequality, let E denote the exceptional divisor of the
blowup BpX → X and note that

lctp(X,D) ≤ AX(E)

ordE(D)
=

n

ordp(D)
,

where the inequality is by Proposition ??.
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Viswanathan, The Calabi problem for Fano threefolds, MPIM Preprint Series (2021).
↑9, 72
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34 (2001), no. 4. ↑65

[DT92] Wei Yue Ding and Gang Tian, Kähler-Einstein metrics and the generalized Futaki in-
variant, Invent. Math. 110 (1992), no. 2, 315–335. ↑21

[Don02] S. K. Donaldson, Scalar curvature and stability of toric varieties, J. Differential Geom.
62 (2002), no. 2, 289–349. ↑7, 10, 11, 13, 21, 50

[DS14] Simon Donaldson and Song Sun, Gromov-Hausdorff limits of Kähler manifolds and
algebraic geometry, Acta Math. 213 (2014), no. 1, 63–106. ↑80, 86

[ELS03] Lawrence Ein, Robert Lazarsfeld, and Karen E. Smith, Uniform approximation of Ab-
hyankar valuation ideals in smooth function fields, Amer. J. Math. 125 (2003), no. 2,
409–440. ↑41

[EGZ09] Philippe Eyssidieux, Vincent Guedj, and Ahmed Zeriahi, Singular Kähler-Einstein met-
rics, J. Amer. Math. Soc. 22 (2009), no. 3, 607–639. ↑32

[Fuj19] Kento Fujita, A valuative criterion for uniform K-stability of Q-Fano varieties, J. Reine
Angew. Math. 751 (2019), 309–338. ↑12, 55, 58, 59

[Fuj16] , On K-stability and the volume functions of Q-Fano varieties, Proc. Lond. Math.
Soc. (3) 113 (2016), no. 5, 541–582. ↑55

http://homepages.math.uic.edu/~ein/DFEM.pdf
http://homepages.math.uic.edu/~ein/DFEM.pdf


REFERENCES 117

[Fuj18] , Optimal bounds for the volumes of Kähler-Einstein Fano manifolds, Amer. J.
Math. 140 (2018), no. 2, 391–414. ↑60, 72

[Fuj19] , K-stability of Fano manifolds with not small alpha invariants, J. Inst. Math.
Jussieu 18 (2019), no. 3, 519–530. ↑9, 73

[FO18] Kento Fujita and Yuji Odaka, On the K-stability of Fano varieties and anticanonical
divisors, Tohoku Math. J. (2) 70 (2018), no. 4, 511–521. ↑67, 68, 70, 73

[Ful98] William Fulton, Intersection theory, Second, Series of Modern Surveys in Mathematics,
vol. 2, Springer-Verlag, Berlin, 1998. ↑15

[Fut83] A. Futaki, An obstruction to the existence of Einstein Kähler metrics, Invent. Math. 73
(1983), no. 3, 437–443. ↑21

[HMX14] Christopher D. Hacon, James McKernan, and Chenyang Xu, ACC for log canonical
thresholds, Ann. of Math. (2) 180 (2014), no. 2, 523–571. ↑81

[HX13] Christopher D. Hacon and Chenyang Xu, Existence of log canonical closures, Invent.
Math. 192 (2013), no. 1, 161–195. ↑

[Har77] Robin Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, No. 52,
Springer-Verlag, New York-Heidelberg, 1977. ↑11, 15, 23, 24, 25, 26, 27, 33, 61, 100,
106, 107, 108

[Hir64] Heisuke Hironaka, Resolution of singularities of an algebraic variety over a field of
characteristic zero. I, II, Ann. of Math. (2) 79 (1964), 205–326. ↑106

[Hos15] Victoria Hoskins, Moduli Problems and Geometric Invariant Theory, 2015. Available at
https://userpage.fu-berlin.de/hoskins/M15_Lecture_notes.pdf. ↑93

[HK00] Yi Hu and Sean Keel, Mori dream spaces and GIT, Michigan Math. J. 48 (2000), 331–
348. Dedicated to William Fulton on the occasion of his 60th birthday. ↑51

[Jia20] Chen Jiang, Boundedness of Q-Fano varieties with degrees and alpha-invariants bounded
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