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Introduction

Out(Fn) = Aut(Fn)/Inn(Fn)

Have epimorphism

Out(Fn) → Out(Zn) = GLn(Z)

and monomorphisms
MCG(S) ⊂ Out(Fn)

for surfaces S with π1(S) ∼= Fn.

Leitmotiv (Karen Vogtmann): Out(Fn) satisfies a mix of properties, some
inherited from mapping class groups, and others from arithmetic groups.



Mapping Out(Fn) GLn(Z) algebraic
class groups (arithmetic groups) properties

Teichmüller Culler-Vogtmann’s GLn(R)/On finiteness properties

space Outer space (symmetric spaces) cohomological dimension

Thurston train track Jordan growth rates

normal form representative normal form fixed points (subgroups)

Harer’s bordification of Borel-Serre Bieri-Eckmann

bordification Outer space bordification duality

measured R-trees flag manifold Kolchin theorem

laminations (Furstenberg boundary) Tits alternative

Harvey’s ? Tits rigidity

curve complex building



Stallings’ Folds

Graph: 1-dimensional cell complex G

Simplicial map f : G→ G′: maps vertices to vertices and open 1-cells
homeomorphically to open 1-cells.

Fold: surjective simplicial map that identifies two edges that share at
least one vertex.





A fold is a homotopy equivalence unless the two edges share both pairs
of endpoints and in that case the effect in π1 is: killing a basis element.

Stallings (1983): A simplicial map f : G → G′ between finite connected
graphs can be factored as the composition

G = G0 → G1 → · · · → Gk → G′

where each Gi → Gi+1 is a fold and Gk → G′ is locally injective (an
immersion). Moreover, such a factorization can be found by a (fast)
algorithm.



Applications: The following problems can be solved algorithmically
(these were known classically, but folding method provides a simple unified
argument). Let F be a free group with a fixed finite basis.

• Find a basis of the subgroup H generated by a given finite collection
h1, · · · , hk of elements of F .

• Given w ∈ F , decide if w ∈< h1, · · · , hk >.

• Given w ∈ F , decide if w is conjugate into < h1, · · · , hk >.

• Given a homomorphism φ : F → F ′ between two free groups of finite
rank, decide if φ is injective, surjective.

• Given finitely generated H < F decide if it has finite index.



• Given two f.g. subgroups H1,H2 < F compute H1 ∩ H2 and also the
collection of subgroups H1 ∩ Hg

2 where g ∈ F . In particular, is H1

malnormal?

• Represent a given automorphism of F as the composition of generators
of Aut(F ) of the following form:

– Signed permutations: each ai maps to ai or to a−1
i .

– Change of maximal tree: a1 7→ a1 and for i > 1 ai maps to one of
a±1
1 ai or to aia

±1
1 .

• Todd-Coxeter process



Culler-Vogtmann’s Outer space

Rn: wedge of n circles. Fix an identification π1(Rn) ∼= Fn.

Any φ ∈ Out(Fn) can be thought of as a homotopy equivalence
Rn → Rn.

A marked metric graph is a pair (G, g) where

• G is a finite graph without vertices of valence 1 or 2.

• g : Rn → G is a homotopy equivalence (the marking).

• G is equipped with a path metric so that the sum of the lengths of all
edges is 1.



Outer space Xn is the set of equivalence classes of marked metric
graphs under the equivalence relation (G, g) ∼ (G′, g′) if there is an
isometry h : G→ G′ such that gh and g′ are homotopic.

R

G

G’

g

g’

~ hn





If α is a loop in Rn we have the length function lα : Xn → R where
lα(G, g) is the length of the immersed loop homotopic to g(α). The
collection {lα} as α ranges over all immersed loops in Rn defines an
injection Xn → R∞ and the topology on Xn is defined so that this injection
is an embedding. Xn naturally decomposes into open simplices obtained by
varying edge-lengths on a fixed marked graph. The group Out(Fn) acts on
Xn on the right via

(G, g)φ = (G, gφ)

Culler-Vogtmann (1986): Xn is contractible and the action of Out(Fn)
is properly discontinuous (with finite point stabilizers). Xn equivariantly
deformation retracts to a (2n− 3)-dimensional complex.

Cor: The virtual cohomological dimension vcd(Out(Fn)) = 2n− 3.

Culler: Every finite subgroup of Out(Fn) fixes a point of Xn.



Outer space can be equivariantly compactified (Culler-Morgan). Points
at infinity are represented by actions of Fn on R-trees.



Train tracks

Any φ ∈ Out(Fn) can be represented as a cellular map f : G→ G on a
marked graph G.



φ is reducible if there is a representative f : G→ G where

• G has no vertices of valence 1 or 2, and

• there is a proper f -invariant subgraph of G with at least one non-
contractible component.

Otherwise, φ is irreducible.

f : G→ G is a train track map if for every k > 0 the map fk : G→ G
is locally injective on every open 1-cell.

E.g., homeomorphisms are train track maps, so Culler’s theorem
guarantees that every φ ∈ Out(Fn) of finite order has a train track
representative.



a c

b

d

a−>B

b−>C

c−>D

d−>AbC .



B.-Handel (1992): Every irreducible outer automorphism φ can be
represented as a train track map f : G→ G.

Perron-Frobenius: there is a metric on G such that f expands every
edge, and also every legal path, by a uniform factor λ ≥ 1.

Cor: If φ is irreducible, then a conjugacy class γ is a either φ-periodic, or
length φk(γ) ∼ Cλk.

The proof uses a folding process that successively reduces the Perron-
Frobenius number of the transition matrix until either a train track
representative is found, or else a reduction of φ is discovered. This
process is algorithmic.



Another application of train tracks is to fixed subgroups.

B.-Handel (1992) Let Φ : Fn → Fn be an automorphism whose associated
outer automorphism is irreducible. Then the fixed subgroup Fix(Φ) is
trivial or cyclic. Without the irreducibility assumption, the rank of Fix(Φ)
is at most n.

It was known earlier by the work of Gersten (1987) that Fix(Φ) has
finite rank. The last sentence in the above theorem was conjectured by Peter
Scott. Subsequent work by Dicks-Ventura (1993), Collins-Turner (1996),
Ventura (1997), Martino-Ventura (2000) imposed further restrictions on a
subgroup of Fn that occurs as the fixed subgroup of an automorphism. To
analyze reducible automorphisms, a more general version of a train track
map is required.
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B.-Handel: Every automorphism of Fn admits a relative train track
representative.

Automorphisms of Fn can be thought of as being built from building
blocks (exponential and non-exponential) but the later stages are allowed to
map over the previous stages. This makes the study of automorphisms of Fn

more difficult (and interesting) than the study of surface homeomorphisms.
Other non-surface phenomena (present in linear groups) are:

• stacking up non-exponential strata produces (nonlinear) polynomial
growth,

• the growth rate of an automorphism is generally different from the growth
rate of its inverse.



Related spaces and structures

Unfortunately, relative train track representatives are far from unique. As
a replacement, one looks for canonical objects associated to automorphisms
that can be computed using relative train tracks. There are 3 kinds of such
objects, all stemming from the surface theory: laminations, R-trees, and
hierarchical decompositions of Fn (Sela).

Laminations. Laminations were used in the proof of the Tits alternative
for Out(Fn). To each automorphism one associates finitely many attracting
laminations. Each consists of a collection of “leaves”, i.e. biinfinite paths
in the graph G. Roughly, they describe the limiting behavior of a sequence
f i(γ). It is possible to identify the basin of attraction for each such
lamination, and this makes ping-pong arguments possible in the presence of
exponential growth.



There is an analog of Kolchin’s theorem that says that finitely generated
groups of polynomially growing automorphisms can simultaneously be
realized as relative train track maps on the same graph (the classical
Kolchin theorem says that a group of unipotent matrices can be conjugated
to be upper triangular, or equivalently that it fixes a point in the flag
manifold).The main step in the proof of the analog of Kolchin’s theorem is
to find an appropriate fixed R-tree in the boundary of Outer space. This
leads to the Tits alternative for Out(Fn):

B.-Feighn-Handel (2000, to appear): Any subgroup H of Out(Fn) either
contains F2 or is virtually solvable.

A companion theorem (B.-Feighn-Handel; Alibegović) is that solvable
subgroups of Out(Fn) are virtually abelian.



R-trees. Points in the compactified Outer space are represented as
Fn-actions on R-trees. The Rips machine, which is used to understand
individual actions, provides a new tool to be deployed to study Out(Fn).

• computed the topological dimension of the boundary of Outer Space
(Gaboriau-Levitt 1995)

• another proof of the fixed subgroup theorem (Sela 1996 and Gaboriau-
Levitt-Lustig 1998)

• the action of Out(Fn) on the boundary does not have dense orbits;
however, there is a unique minimal closed invariant set (Guirardel 2000)

• automorphisms with irreducible powers have the standard north-south
dynamics on the compactified Outer space (Levitt-Lustig 2002)



Cerf theory. (Hatcher-Vogtmann 1998)

Auter Space AXn: similar to Outer Space, but graphs have a base
vertex v

The degree of a graph: 2n− valence(v)

Dk
n: the subcomplex of AXn consisting of graphs of degree ≤ k.

Hatcher-Vogtmann:

• Dk
n is (k − 1)-connected.

• Hi(Aut(Fn)) stabilizes when n is large.

• Explicit computations of rational homology for i ≤ 7 (stably all are 0)



Bordification. The action of Out(Fn) on Outer spaceXn is not cocompact.
B.-Feighn (2000) bordify Xn, i.e. equivariantly add ideal points so that the
action on the new space BXn is cocompact.

Ideal points are marked graphs with hierarchies of metrics.

A distinct advantage of BXn over the spine of Xn (an equivariant
deformation retract) is that the change in homotopy type of superlevel sets
as the level decreases is very simple – via attaching of cells of a fixed
dimension.

B.-Feighn (2000): BXn and Out(Fn) are (2n − 5)-connected at infinity,
and Out(Fn) is a virtual duality group of dimension 2n− 3.



Mapping tori. φ : Fn → Fn is an automorphism, f : G → G a
representative.

The mapping torus M(φ) = π1(G× [0, 1]/(x, 1) ∼ (f(x), 0)) plays the
role analogous to 3-manifolds that fiber over the circle.

• M(φ) is coherent (Feighn-Handel 1999)

• When φ has no periodic conjugacy classes, M(φ) is a hyperbolic group
(Brinkmann 2000).

• When φ has polynomial growth, M(φ) satisfies quadratic isoperimetric
inequality (Macura 2000)

• If φ, ψ have polynomial growth and M(φ) is quasi-isometric to M(ψ),
then φ and ψ grow as polynomials of the same degree (Macura)



• Bridson and Groves announced that M(φ) satisfies quadratic
isoperimetric inequality for all φ.

Geometry. biggest challenge in the field: find a good geometry that goes
with Out(Fn).

payoff (most likely) rigidity theorems for Out(Fn)

Mapping class groups and arithmetic groups act isometrically on spaces
of nonpositive curvature.

The results to date for Out(Fn) are negative.

• Outer space does not admit an equivariant piecewise Euclidean CAT (0)
metric (Bridson 1990)



• Out(Fn) (n > 2) is far from being a CAT (0) group (Gersten 1994,
Bridson-Vogtmann 1995)

An example of a likely rigidity theorem is that higher rank lattices in simple
Lie groups do not embed into Out(Fn). A possible strategy is to follow
the proof in (B.-Fujiwara 2002) of the analogous fact (Kaimanovich-Farb-
Mazur) for mapping class groups. The major missing piece of the puzzle
is the replacement for Harvey’s curve complex; a possible candidate is
described by Hatcher-Vogtmann (1998).




