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1. Introduction and results

Fix a nonabelian free group F of finite rank and let G be a finitely
generated (or f.g. for short) group with a f.g. subgroup P . In his work
on the Tarski problem, Zlil Sela considers the following question. In
how many ways can a given homomorphism P → F be extended to
G? Of course without further restrictions the answer is often infinitely
many. He goes on to define a natural equivalence relation on the set of
extensions (described below in our setting) and obtains the remarkable
result:

Theorem 1.1 (Sela [5]). Suppose that G is freely indecomposable rel

P . There is a finite set {qi : G → Gi} of proper quotients and a

number f = f(G,P ) so that each homomorphism P → F has at most f
equivalence classes of extensions to G with the property that no element

of the equivalence class factors through some qi.

Not much was known about f(G,P ). For example, Sela asked whether
there was a sequence of examples (Gi, Pi) with lim f(Gi, Pi) = ∞.
Our main result is to show that there is such a sequence. In fact, in
our sequence Gi will be the fundamental group of an orientable sur-
face of genus i with Pi representing its boundary and we show that
f(Gi, Pi) ≥ 2i.

Both authors gratefully acknowledge support of the NSF.
1
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We now describe our results in more detail. For x in the commutator
subgroup [F,F] of F define the algebraic genus of x denoted

a-genusx

as the smallest g ≥ 0 such that x is the product

x = [p1, q1] · · · [pg, qg]

of g commutators. Of course, a-genusx depends only on the conjugacy
class [[x]] of x in F and we define a-genus [[x]] := a-genusx. Topologi-
cally, we can represent the situation by mapping an orientable surface
Sg of genus g and one boundary component to a graph representing F.
Also define

num x

to be the maximal number of different ways in which x ∈ F with
algebraic genus g can be written as the product of g commutators. By
“different” we mean inequivalent under the relation “∼” that we now
define.

Identify F2g = 〈a1, b1, · · · , ag, bg〉 with the fundamental group of Sg

and set ∂g = [a1, b1] · · · [ag, bg]. For x ∈ F a representation of algebraic

genus g for x is a homomorphism ψ ∈ Hom(F2g,F) such that ψ(∂g) = x.
The equivalence relation “∼” on representations is generated by

(1) ψ ◦ θ ∼ ψ where θ ∈ Aut(F2g) satisfies θ(∂g) = ∂g.
(2) ψ ◦ i∂n ∼ ψ, n ∈ Z, where i∂n is conjugation by ∂n.
(3) θ ∼ ψ where θ is a fractional Dehn twist1 of ψ.
(4) iz ◦ ψ ∼ ψ where z or a root of x.

Example 1.2. Let F = 〈u, v〉, F2 = 〈a1, b2〉, and xm = [um, v]. For
m,n ∈ Z, the homomorphism φm,n : F2 → F given by a1 7→ um and
b1 7→ uvn is a representation for xm. The homomorphisms φm,n and
φm,n′ are equivalent by a partial Dehn twist whereas they are equivalent
by a Dehn twist iff n ≡ n′ mod m. This shows the need for including
(3).

Remark 1.3. By (1) and (2), the group of outer automorphisms pre-
serving the conjugacy class of ∂g acts on equivalence classes of rep-
resentations. This in turn may be identified with the modular group
Mod(Sg), see [7]. Mod(Sg) is generated by Dehn twists [1, 2]. So, we
could have defined “∼” using only (3) and (4). In fact, (4) can be
interpreted as a fractional Dehn twist in the the boundary curve.

1A homomorphism θ is a fractional Dehn twist in σ of ψ if there is a simple
closed curve σ on Sg such that θ is given as follows. If σ induces the splitting
F2g = A ∗C B and if z ∈ F centralizes φ(∂g) then θ|A = ψ|A and θ|B = iz ◦ (ψ|B).
If F2g = A∗C then θ|A = ψ|A and θ(t) = ψ(t)z where t is the stable letter.
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Finally, define

fF(g) = sup{numx | a-genusx = g}.

That fF(g) is finite is a consequence of Theorem 1.1. In Corollary 4.7
we show that fF is independent of F.

It is not hard to see that a “generic” element of algebraic genus 1 can
be written as [p, q] in essentially only one way (up to the above opera-
tions). However, it should also be reasonable to expect that fF(1) > 1
– take a “generic” map from the genus 2 surface to F, and then the
image x of the waist curve is written as [p, q] in two ways. It takes
a little bit of work to show that they really are different. This is the
content of Section 3. This reproduces a result of Lyndon and Wicks
[3]2.

For higher genera this conceptual argument fails to show fF(g) > 2.
The reason is that we do not know explicitly the MR-diagram3 for the
group obtained by gluing say 3 surfaces with boundary along their
boundaries. The only “obvious” quotients are obtained by identifying
two of the surfaces or killing the common boundary. To find interesting
examples one would have to show that there are other maximal limit
group quotients of this group.

However, we will argue that fF(g) ≥ 2g. This is the content of
Section 4. For example, to see fF(2) ≥ 4 we form the “boundary
connected sum” of genus 1 examples. Each piece bounds in two ways,
so we expect the sum to bound in 4 ways.

In order to deal with fractional Dehn twists it is convenient to con-
sider more restrictive products of commutators.

Definition 1.4. Say an injective representation ψ : F2g → F given by

x = [p1, q1] · · · [pg, qg]

of element x with algebraic genus g is admissible if the group

Imψ = 〈p1, q1, · · · , pg, qg〉

is a primitive4 subgroup of F.

Proposition 1.5. Let ψ be an admissible representation for x and

suppose θ ∼ ψ. Then θ is also admissible and Im θ is conjugate to

Imψ.

2Thanks to Leo Comerford for pointing us to this article.
3Some comments are meant for those familiar with Sela’s work on the Tarski

problems. The theorems and proofs in this paper do not depend on such a
familiarity.

4closed under taking roots, root-closed in [3]
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Proof. It is clear that the modular group operations and conjugations
preserve the conjugacy class of Imψ. In the presence of primitivity,
simple closed curves represent indivisible5 elements of F and hence frac-
tional Dehn twists are Dehn twists. �

Definition 1.6. For a subgroup H of F, [H] denotes its conjugacy
class. Define

num′ x :=
∣

∣{[Imψ] : ψ is an admissible representation for x}
∣

∣

and
f ′

F
(g) = sup{num′ x | a-genus x = g}

We then have
fF(g) ≥ f ′

F
(g)

We will see that f ′

F
is also independent of F. Our main theorem is:

Theorem 1.7. f ′

F
(1) ≥ 2 and f ′

F
(m+ n) ≥ f ′

F
(m)f ′

F
(n).

Corollary 1.8. fF(g) ≥ f ′

F
(g) ≥ 2g

2. Labeled graphs and geometric genus

F is a non-abelian free group with fixed finite basis B. The cyclic
word obtained by cyclically reducing the B-word w is denoted [[w]].
There is a 1-1 correspondence between cyclically reduced cyclic B-words
and conjugacy classes of elements of F. If x ∈ F, then [[x]] denotes its
conjugacy class. We will sometimes blur the distinction between B-
words (or cyclic B-words) and the elements (or conjugacy classes) that
they represent.

Let RB denote the wedge of |B| oriented circles with fundamental
group identified with F. RB is an example of a labeled graph. More
generally, a labeled graph is a connected non-empty finite graph6 Γ
together with a combinatorial7 map l : Γ → RB called a labeling. We
consider two labelings l and l′ to be the same if for each edge e, the
paths l|e and l′|e are homotopic rel endpoints. Thus, a labeling is
equivalent to a choice of u(e) ∈ B±1 := B t B−1 for each oriented edge
e of Γ such that u(e−1) = u(e)−1 where e−1 is the edge opposite to e.
A labeling also induces labelings of edge paths in Γ.

If l : Γ → RB is an immersion and if Γ has no valence 1 vertices then
we say that l or Γ is tight. A morphism of labeled graphs l1 : Γ1 → RB

and l2 : Γ2 → RB is a combinatorial map f : Γ1 → Γ2 that preserves

5not a proper power
61-dimensional CW -complex
7cellular taking open edges homeomorphically to open edges
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labels, i.e. l1 = l2 ◦f . An injective homomorphism φ : F1 → F2 induces
a cellular map RB1

→ RB2
that immerses each edge. A morphism is

obtained by subdividing edges of RB1
. If l : Γ → RB1

is a labeling then
φ(l) : φ(Γ) → RB2

is the induced labeled graph

Γ
l
→ RB1

→ RB2

Similarly, if f : Γ1 → Γ2 is a morphism then there is an induced
morphism φ(f) : φ(Γ1) → φ(Γ2).

For a labeling l : Γ → RB, Imπ1(l) is a well-defined conjugacy class
H of a subgroup of F and we say that l is a labeling for H or that l
represents H. There is a 1-1 correspondence between tight labelings of
finite graphs and conjugacy classes of f.g. subgroups of F. A labeling l :
Γ → RB of a finite graph can always be folded until it is an immersion,
see [6]. Valence one vertices can then be iteratively pruned until it is
tight. Let τ(l) : τ(Γ) → RB denote the resulting tight labeling. This
tight labeling is unique unless Γ is contractible in which case τ(Γ) will
consist of a single vertex.

We now consider the problem of extending a labeling l : C → RB

of an oriented circle C to a surface. A bounding of l is a morphism
b : C → Γ(b) that is generically 2-to-1 and generically locally of degree
0, i.e. the b -preimage of an open edge consists of two inconsistently
oriented open edges in C. We say the corresponding closed edges are
b-paired. The mapping cylinder S of b is a surface with boundary
C perhaps with some points identified. Let NV(b) denote the set of
natural vertices of Γ(b), i.e. the set of vertices of valence other than 2
and let NE(b) denote the set of natural edges of Γ(b), i.e. the closures
of components of Γ(b)\NV(b). Set v(b) = |NV(b)| and e(b) = |NE(b)|.
The geometric genus of b

g-genus b :=
1

2
·
(

1 − v(b) + e(b)
)

is half the rank of H1(S; Z). If l represents a cyclic B-word w then we
also say that b is a bounding of w (or of [[w]]). The geometric genus of
the conjugacy class ω of an element in [F,F] is

g-genus ω := min{g-genus b | b is a bounding of ω}

The link LkΓ(b)(v) of a vertex v of Γ(b) is a union of points, one for
each oriented edge with initial endpoint v. For each point v̂ in the
b -preimage of v there is an induced map LkC(v̂) → LkΓ(b)(v). The
Whitehead graph of v has vertex set LkΓ(b)(v) and an edge connecting
the vertices in the image of LkC(v̂) → LkΓ(b)(v) for each v̂ ∈ b−1(v).
If the Whitehead graph of v is not connected, then a new bounding
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with smaller geometric genus can be constructed in the obvious way
by “pulling apart v”. If b is a bounding of l with minimal geometric
genus then all Whitehead graphs are connected, the mapping cylinder
S of b is a surface with boundary C (no extra points are identified),
and the genus of S is g-genus b. This is the motivation for the definition
of geometric genus. If C is the concatenation of edge paths p1 · · · p4g

and if the induced edge paths b∗(pj) and b∗(p
−1
j+2) coincide for j ≡ 1 or

2 mod 4, then b is a standard bounding.
The next lemma and corollary are classical. It can be proved, for

example, using cut-and-paste surface techniques and folding.

Lemma 2.1. Let b : C → Γ(b) be a bounding for the labeling l : C →
RB representing the cyclic B-word w.

(1) Recall that τ(l) : τ(C) → RB is the labeling obtained by tight-

ening l. There is a bounding denoted b̂ : τ(C) → Γ(b̂) for τ(l)

with g-genus b̂ ≤ g-genus b.
(2) There is a labeled graph l′ : C ′ → RB representing [[w]] with

a standard bounding b′ : C ′ → Γ(b′) such that g-genus b′ =
g-genus b. �

Warning 2.2. The labeled graph Γ(b̂) in Lemma 2.1(1) need not be

tight. Even though τ(C) is tight and therefore b̂ is an immersion, it

is possible that, after a fold of Γ(b̂), the induced map from τ(C) is no
longer generically 2-to-1 and therefore not a bounding. Folding at a 4-
pronged singularity (see Figure 4) would be an example. Note however

that no folding is possible at a valence two vertex of Γ(b̂).

Here is an example of a bounding for l and a corresponding bounding
for τ(l).

Example 2.3. Suppose B = {u, v, w} and let l : C → RB represent
the cyclic word [uv, wU ]. The labeling l has a standard bounding b :
C → Γ(b) where Γ(b) is a wedge of two circles, one labeled uv and the
other wU . The labeling τ(l) : τ(C) → RB represents the cyclic word
uvwUVW and has the bounding τ(b) illustrated in Figure 1.

Corollary 2.4. For x ∈ [F,F], a-genus x = g-genus x.

Definition 2.5. For x ∈ [F,F], the genus of x denoted genus x is the
number a-genus x = g-genus x. Similarly genus [[x]] := a-genus [[x]] =
g-genus [[x]].

We record the next easy lemma for later use.

Lemma 2.6. Let b : C → Γ(b) be a bounding for the labeling l : C →
RB.
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Figure 1. A bounding of a labeled graph and the cor-
responding bounding of its tightening

(1) Let b′ be a new bounding for a new labeling obtained by col-

lapsing an edge of Γ(b) and its b -preimage. Then, g-genus b′ ≤
g-genus b.

(2) If l represents a cyclically reduced word then Γ(b) has no valence

one vertices. In particular, v(b) ≤ 4 · g-genus b − 2 and e(b) ≤
6 · g-genus b− 3. �

The inequalities in (2) follow from 2 · (g-genus b) = 1 − v(b) + e(b)
and 3v(b) ≤ 2e(b).

3. Genus 1

Here B = {u, v} and so F is a free group of rank 2. We use the
convention that if w is a B-word then W denotes its inverse.

Proposition 3.1 (Lyndon-Wicks[3]). f ′

F
(1) ≥ 2. Specifically, if ψ is

the representation given by

u 7→ uvuvv, v 7→ UUV U
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Figure 2. The tight labelings of Imψ and Im θ.

and if θ is given by

u 7→ vuvv, v 7→ UUV UV

then ψ and iu ◦ θ are inequivalent admissible representations for

uvuvvUUV UV V u = [ψ(u), ψ(v)] = iu([θ(u), θ(v)])

The proof of Proposition 3.1 will rely on two lemmas.

Lemma 3.2. Imψ and Im θ are not conjugate.

Proof. The tight labelings representing the conjugacy classes of Imψ
and Im θ are pictured in Figure 2. Since these labelings are not isomor-
phic, Imψ and Im θ are not conjugate. �

Lemma 3.3. Imψ and Im θ are primitive.

Proof. If φ ∈ Aut(F) interchanges u and v then φ(Imψ) = Im θ. So,
it is enough to argue that ψ is primitive. We will show that Imψ is
malnormal in F, i.e. that if w ∈ F satisfies iw(Imψ) ∩ Imψ 6= {1} then
w ∈ Imψ. This clearly implies that Imψ is primitive. The pullback of
two copies of the tight labeling for Imψ has only one component that is
not contractible–that of the “diagonal”. From [6], it follows that Imψ
is malnormal in F. �

Proposition 3.1 is proved. �

The homomorphisms ψ and θ in Proposition 3.1 were found by a
computer search. The original homomorphisms found by Lyndon and
Wicks were ψ′ given by

u 7→ uvuvUvuvu, v 7→ vuvuvUvuvUvuvuv

and θ′ given by

u 7→ vuvUvuvuvuvuvUvuv, v 7→ UvuvuvU

It is easy to check that [ψ′(u), ψ′(v)] and [θ′(u), θ′(v)] are conjugate.
They argue that Imψ′ and Im θ′ are primitive and point out that the
abelianizations of ψ′ and θ′ are not in the same SL2Z-orbit. Hence ψ′

and θ′ are not equivalent.
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4. Higher genus

Here we prove:

Proposition 4.1.

f ′

F
(m+ n) ≥ f ′

F
(m)f ′

F
(n)

Definition 4.2. Let F1 and F2 be two nonabelian free groups with
fixed finite bases B1 and B2. For a homomorphism φ : F1 → F2, set
m(φ) = min{lengthφ(u) | u ∈ B1} where length is with respect to B2.
We say that φ is an α-map (for some α > 0) if

• for all u ∈ B1, a subword of φ(u) of length ≥ αm(φ) appears
exactly once as a subword of φ(u), and

• for u, v ∈ B±1
1 , if φ(u) and φ(v) have subwords of length ≥

αm(φ) that are isomorphic preserving orientation, then u = v.

The idea of α-maps goes back to Sacerdote [4].

Example 4.3. Say F1 = F2 = 〈u, v〉. Let

φ(u) = uvu2vu3v · · ·unv

and
φ(v) = uv2u2v2u3v2 · · ·unv2

As n→ ∞, this is an α-map for α→ 0.

While working with an α-map φ : F1 → F2 the natural unit of length
is αm(φ). We say that an edge path in a B2-labeled graph or a B2-word
is n-long if it has length at least nαm(φ). Otherwise it is n-short.

Lemma 4.4. Set α = 1/4. For all α-maps φ : F1 → F2, the following

holds.

(1) φ is injective.

(2) For all x, x′ ∈ F1, x and x′ are F1-conjugate if and only if φ(x)
and φ(x′) are F2-conjugate.

(3) For all x ∈ F1 and subgroups S of F1, x is conjugate into S if

and only if φ(x) is conjugate into φ(S).
(4) For all f.g. subgroups S and S ′ of F1, S is F1-conjugate to S ′ if

and only if φ(S) is F2-conjugate to φ(S ′).
(5) For all x ∈ F1, x is indivisible in F1 if and only if φ(x) is

indivisible in F2.

(6) For all subgroups S of F1, φ(S) is primitive in F2 if and only if

S is primitive in F1.

Proof. (1): Here α < 1/2 works. Let x = u1 . . . uN represent a cyclically
reduced cyclic B1-word. The cyclic word φ(x) = φ(u1) · . . . · φ(uN) is
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nearly cyclically reduced in that cancellations only occur in a m(φ)/2-
neighborhood of the “·”’s. Since α < 1/2, for each i, not all of φ(ui)
cancels and φ(x) is not trivial.

(2): The “=⇒” direction is obvious and holds for any homomorphism
F1 → F2. For the other direction, assume [[φ(x)]] = [[φ(x′)]]. Let
l : C → RB1

be a labeling representing x = u1 . . . uN and let l′ : C ′ →
RB1

represent x′ = u′1 . . . u
′

N ′ as cyclically reduced cyclic B1-words.
The labelings φ(l) : φ(C) → RB2

and φ(l′) : φ(C ′) → RB2
represent

respectively the B2-words φ(u1) ·φ(u2) · . . . ·φ(uN) and φ(u′1) ·φ(u′2) · . . . ·
φ(u′N ′). As in the proof of (1), the labelings φ(l) and φ(l′) are nearly
tight in that, in cyclically reducing φ(x) and φ(x′), cancellations occur
only in an m(φ)/4-neighborhood of the “·”s. In particular, there are
2-long subwords pi of φ(ui) and p′j of φ(u′j) that survive the reduction
with τ(φ(l)) and τ(φ(l′)) representing the same cyclic words p1 . . . pN =
p′1 . . . p

′

N ′.

Claim: If pi and p′j share a 1-long subword p then pi = p′j.

Before proving the claim, we show that it implies (2). The pi’s and p′j’s
are 2-long and so some pi shares a 1-long subword with some p′j. By
the claim, pi = p′j. Up to a cyclic permutation, we may assume that
i = j = 1. Then p2 and p′2 share a 1-long subword and p2 = p′2, etc.

We now prove the claim. We may assume that p is chosen to be
maximal, i.e. p is contained in no longer shared subword. We will show
that pi = p = p′j. Set φ(ui) = spt and φ(u′j) = s′pt′. Since p is 1-long,
Definition 4.2 gives ui = u′j, s = s′, and t = t′. Now, pi = sipti (so si

is the subword of s that survives cancellation). Similarly, p′j = s′jpt
′

j.
The claim is that si, s

′

j, ti, and t′j are all trivial. Since p is maximal
one of si and s′j, say si, is the empty word. If s′j is not also empty then
the terminal letter of s′j and the terminal letter of s are the same letter

b and φ(ui−1) contains the subword bB, contradiction8 . See Figure 3.
That ti and t′j are trivial is similar.

(3) is a direct consequence of (2). Indeed, if φ(x) is conjugate into
φ(S) then, for some s ∈ S, φ(x) is conjugate to φ(s). By (2) x is
conjugate to s.

(4): Suppose that S and S ′ are finitely generated subgroups of F1

such that φ(S) and φ(S ′) are conjugate in F2. Let l : Γ → RB1
and

l′ : Γ′ → RB2
be tight labelings representing S and S ′ respectively. (2)

8Recall the convention that corresponding small and capital letters are mutually
inverse.
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b

x = x′b

φ(u′j)

φ(ui−1)

φ(ui)

Figure 3. Adjacent parallel segment should be viewed
as overlapping.

is a special case with Γ = C and Γ′ = C ′. So, we may assume that S
and S ′ are not cyclic.

Consider a natural edge e of Γ viewed as a labeled edge path repre-
senting the word u1 . . . un. The edge path φ(e) is a natural edge of the
graph φ(Γ) representing φ(u1) . . . φ(uN). The edge path τ(φ(e)) nearly
represents a natural edge of τ(φ(Γ)). That is, there are 2-long sub-
words pi of φ(ui) so that p1 · · ·pN is a natural edge of τ(φ(Γ)) agreeing
with τ(φ(e)) except perhaps in 1-short initial and terminal subwords.
It follows exactly as in (2) that there is a corresponding natural edge
of φ(Γ′) representing φ(u1) · · ·φ(uN) and (4) follows.

(5): The “⇐=” direction is obvious. For the other direction, let
l : C → RB1

represent the cyclically reduced non-trivial indivisible
cyclic word x = u1 . . . uN and suppose that τ(φ(l)) : τ(φ(C)) → RB2

represents [[φ(x)]] = yn with n > 1 maximal and y cyclically re-
duced. Rotation by 2π/n induces a (label preserving) isomorphism
ρ : τ(φ(C)) → τ(φ(C)). As in (2), yn = p1 · · ·pN where pi is the 2-long
subword of φ(ui) that survives cancellation. If we set p′i = ρ(pi) then pi

shares a 1-long subword with some p′j. Exactly as in (2), pi = p′j. It fol-
lows that ρ leaves the set of pi’s invariant and that x is not indivisible,
contradiction.

(6) follows directly from (5). �

Example 4.5. We have seen an α-map F1 → F2 with α < 1/3 is
injective and also induces an injection C(F1) → C(F2). Of course, not
all homomorphisms have this property. For example, suppose that
B = {a, b} and let φ(a) = a, φ(b) = baB, then φ is injective and
[[φ(a)]] = [[φ(b)]], yet [[a]] 6= [[b]].

Lemma 4.6. Let x ∈ F1 have genus g. There is α > 0 such that, for

all α-maps φ : F1 → F2, φ(x) has genus g.

Proof. Suppose x = u1 · · ·uM ∈ F1 is cyclically reduced and has genus
g. Represent u1 · · ·uM by a tight labeling l : C → RB1

(so C has
M edges). Choose α < [4M(16g − 8 + M)]−1. This reason for this
choice will become clear later. Let φ : F1 → F2 be an α-map and set



12 MLADEN BESTVINA AND MARK FEIGHN

m := m(φ). Consider the induced labeling φ(l) : φ(C) → RB2
(so φ(C)

has |φ(u1)| + · · · + |φ(uM)| edges). We can identify subwords of φ(ui)
in φ(u1) · · ·φ(uM) with certain edge paths in φ(C). If wi is a subword
of some φ(ui) and if ui equals uj or Uj then there is a corresponding

subword wj of φ(uj) or φ(Uj). More formally, if wi (respectively wj) is
represented by the edge path pi : I → φ(C) (respectively pj) then wi

and wj correspond if the edge paths φ(l) ◦ pi and φ(l) ◦ pj in φ(RB1
) are

equal.
As in Lemma 4.4, φ(l) is almost tight and τ(φ(l)) is obtained by

folding φ(l) in 1-short neighborhoods of at most M of the vertices
of φ(C). Suppose that τ(φ(l)) represents the cyclically reduced word
v1 · · · vM where each vi is the surviving subword of φ(ui) (so τ(φ(C))
has |v1| + · · · + |vM | edges). Since α < 1/4, the length of each vi is
at least m/2. In order to obtain a contradiction, assume that τ(φ(l))
has a bounding bτ(φ(l)) with geometric genus gτ(φ(l)) less than g (see
Lemma 2.1(1)). Our ultimate goal is to obtain a bounding for x of
geometric genus ≤ gτ(φ(l)). By Lemma 2.6(2), Γ(bτ(φ(l))) has no valence
1 vertices, v(bτ(φ(l))) < 4g − 2, and e(bτ(φ(l))) < 6g − 3. The natural
edges of Γ(bτ(φ(l))) are labeled with B2-subwords of v1 · · · vM and, as
above, we can talk of their lengths. We may also identify the vi’s with
edge subpaths of φ(C) via the labeling φ(l). The proof of this lemma
will be more involved than that of Lemma 4.4 primarily because some
of these natural edges may be 1-short and Γ(bτ(φ(l))) need not be tight
(see Warning 2.2). The proof consists of three steps.

Step 1. (Find a bounding bφ(l) of φ(l) with geometric genus at most
gτ(φ(l)) such that bφ(l)-paired edges correspond.) Consider a point y in a
natural edge e of Γ(bτ(φ(l))) whose distance from NV(bτ(φ(l))) is at least
4αm. Since the length of each vi is more than m/2 and α < 1/8, the
bτ(φ(l))-image of some vj meets e in a 2-long maximal subpath p con-
taining y, i.e. if we view vj as a path in Γ(bτ(φ(l)) then p is the maximal
common subpath of vj and e containing y. Further, the bτ(φ(l))-image
of some Vk, k 6= j shares a maximal 1-long subpath q with p. Arguing
exactly as in Lemma 4.4(2), p = q and the maximal common subpaths
of vj and Vk (again viewed as paths in Γ(bτ(φ(l)))) in e and containing
p (equivalently y) correspond. We conclude that an edge of τ(φ(C))
whose bτ(φ(l))-image contains a point outside the 4αm-neighborhood of
NV(bτ(φ(l))) corresponds with its bτ(φ(l))-paired edge. In particular, the
number of edges of τ(φ(C)) not corresponding with their bτ(φ(l))-paired
edge is at most 8αm · v(bτ(φ(l))) < 8αm(4g − 2).

The difference in the number of edges of φ(C) and τ(φ(C)) is at most
2αmM . Viewing the edges of τ(φ(C)) as edges of φ(C) , we have a
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pairing of corresponding edges of φ(C) except for at most 8αm(4g −
2) + 2αmM = 2αm(16g − 8 + M) edges. Edges that are paired by
this partial pairing correspond. We want a saturated partial pairing,
i.e. we want the additional property that if an edge is unpaired then
all corresponding edges are unpaired. This can be obtained by taking
our partial pairing and forgetting pairings of all edges that correspond
to an unpaired edge. Since an edge has at most M corresponding
edges, we now have a saturated partial pairing of corresponding edges
of φ(C) except for at most 2αmM(16g − 8 +M) < m/2 edges. Since
|vi| ≥ m/2, in each φ(ui) there is at least one paired edge. This explains
our choice of α. If we collapse unpaired edges we get a bounding b′

with g-genus b′ ≤ gτ(φ(l)) by Lemma 2.1(2). Since our partial pairing is
saturated, it can be extended to the sought-after bounding bφ(l) of φ(l)
with g-genus bφ(l) = g-genus b′. Here’s how.

Recall that φ(l) represents φ(u1) . . . φ(uM) and we may view the
φ(ui)’s as edge paths in φ(C). Suppose that p is a first maximal un-
paired subpath of some φ(ui). Since φ(ui) contains a paired edge, an
edge w of p shares an endpoint with an edge q of φ(ui) on which our
partial pairing is defined. Our partial pairing is defined on all edges of
φ(C) corresponding to q and determines a pairing on edge paths corre-
sponding to w as follows. If q1 and q2 are paired edges corresponding to
q and if wk corresponds to w and shares an endpoint with qk, k = 1, 2,
then pair w1 with w2. In this way, we extend our partial pairing. The
extended partial pairing is still saturated and has fewer unpaired edges.
Further, if we now collapse unpaired edges then we get a pairing b′′ such
that Γ(b′) is obtained from Γ(b′′) by collapsing disjoint partial natural
edges. In particular, g-genus b′′ = g-genus b′. Continue until there are
no unpaired edges. This completes Step 1.

Step 2. (Find a bounding of φ(l) of geometric genus less than g that
pairs φ(ui)’s with φ(Uj)’s.) We start with bφ(l) found in Step 1 and may
assume that Whitehead graphs of vertices in Γ(bφ(l)) are connected (see
Section 2). If, for each natural vertex v of Γ(bφ(l)), b

−1
φ(l)(v) consists of

initial vertices of φ(ui)’s then bφ(l) would be the desired bounding. A
natural vertex v not having this property is a 2k-pronged singularity

which we now describe. Let U be the set of ui’s such that bφ(l)(φ(ui))
contains v (necessarily as an interior vertex). Restricting bφ(l) gives

a partial pairing on ∪{φ(u) | u ∈ U}. Let Ñ(v) be the domain of
this partial pairing, i.e. the subset of points y in ∪{φ(u) | u ∈ U}
with |b−1

φ(l)(bφ(l)(y))| > 1. Since the Whitehead graph of v is connected,

N(v) := bφ(l)(Ñ(v)) is a closed neighborhood of v that is homeomorphic
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2

1

3

v0

Figure 4. Four corresponding paths fitting together to
form a 4-pronged singularity at vertex v with an induced
cyclic order.

to a cone over an even number, say 2k, of points with cone point v.
This is a 2k-pronged singularity., see Figure 4.

Since the Whitehead graph of v is connected, the pairing imparts a
cyclic order to the natural edges of N(v). There are two choices for
this cyclic order, one the inverse of the other. By choosing a 0th edge,
we may talk of even edges and odd edges. The outgoing even edges
are identically labeled, say by the B2-word w0, as are the outgoing odd
edges, say by w1. We may obtain a new bounding of φ(l) by collapsing
odd edges ofN(v), relabeling outgoing even edges by W1w0, and pulling
apart any vertices with disconnected Whitehead graph. The graph of
the new bounding either has fewer natural edges or the same number
of natural edges and fewer singularities. We then repeat with the new
bounding and continue until there are no singularities.

Step 3. (Conclusion) The bounding of φ(l) found in Step 2 pulls back
to a bounding of l with the same geometric genus which is less than g.
This is the desired contradiction. �

Corollary 4.7. For a fixed x ∈ F1 there is α > 0 such that, for any

α-map φ : F1 → F2,

• genusφ(x) = genus x,
• num′ φ(x) ≥ num′ x, and

• numφ(x) ≥ num x.

In particular, f ′

F
(g) and fF(g) do not depend on F.

Proof. The first item is a restatement of Lemma 4.6. For the second
item, choose α < 1/4 and such that genusφ(x) = genus x. If ψ is an
admissible representation for x then φ ◦ ψ is an admissible represen-
tation for φ(x) by Lemma 4.4(6) and the injectivity of α-maps. By
Lemma 4.4(4), the map induced by φ on conjugacy classes of finite
subgroups is injective. Hence, num′ φ(x) ≥ num′ x.
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For the third item and the same choice of α, let ψ and θ be repre-
sentations for x. Suppose φ ◦ ψ ∼ φ ◦ θ. So, there is a sequence

ψ′

0, ψ
′

1, · · · , ψ
′

k

of boundings for φ(x) where ψ′

0 = φ◦ψ, ψ′

k = φ◦θ, and ψ′

i+1 is obtained
from ψ′

i either by post-composition with iz′ where z′ ∈ F2 centralizes
φ(x) or by a fractional Dehn twist.

Suppose by induction that ψ′

i = φ ◦ ψi for some ψi ∼ ψ. Suppose
also that ψ′

i+1 = iz′ ◦ ψ
′

i where z′ centralizes φ(x), i.e. z′ and φ(x) are
powers of some indivisible ẑ′ ∈ F2. Since α < 1/3, Lemma 4.4(5) can be
applied to show that ẑ′ = φ(ẑ) for some indivisible ẑ ∈ F1 centralizing
x. Thus ψ′

i+1 = φ ◦ iz ◦ ψi = φ ◦ ψi+1 for some z ∈ F1 centralizing x
and some ψi+1 ∼ ψ.

The case where ψ′
i+1 is obtained from ψ′

i by a fractional Dehn twist
is similar and left to the reader. We conclude that ψ ∼ θ. Hence
numφ(x) ≥ num x.

For the final statement, let x ∈ F1 also satisfy fF(g) = num x then

fF1
(g) = num x ≤ numφ(x) ≤ fF2

(g)

Since F1 and F2 were arbitrary, fF1
(g) = fF2

(g). The case of f ′

F
is

similar. �

Proof of Proposition 4.1. Let x ∈ F and y ∈ F, cyclically reduced, have
genera m and n realizing f ′

F
(m) and f ′

F
(n). Consider z = xy ∈ F ∗ F.

Thus genus z = m + n and num′ z ≥ num′ x · num′ y = f ′

F
(m) · f ′

F
(n).

For an α-map φ : F ∗ F → F with small α we have

num′ φ(z) ≥ num′ z ≥ f ′

F
(m)f ′

F
(n)

and thus f ′

F
(m+ n) ≥ f ′

F
(m)f ′

F
(n). �

Remark 4.8. We discovered a new limit group quotient that does not
factor through any of the obvious quotients. For example, take G to
be the union of 4 genus 2 surfaces with one boundary component along
their boundaries. Take L to be the wedge of two genus two surfaces.
Map G → L by sending the common boundary to the product of the
two waist curves, and sending each genus two membrane to the “bound-
ary connected sum” of two halves (there are 4 possible combinations –
use all 4).
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