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Abstract. Let Yn denote compactified Outer Space of rank n. An Fn-tree represents a

point of Yn if and only if it is very small. There exist nongeometric very small (even free)
actions that arise as the attracting fixed points of irreducible outer automorphisms of Fn.

The dimension of Yn is 3n − 4

0. Introduction

Topologists study groups by analyzing spaces on which they act. Interesting compacti-
fications of such spaces often lead to further group-theoretic information. The model case
arises when a group G acts on a contractible space X compactified by ∂X to X satisfying
the following.

(1) The action of G on X is free, properly discontinuous, and cocompact.
(2) The action extends to X .
(3) X is finite dimensional.
(4) X is an absolute retract.
(5) ∂X is a Z-set in X.
(6) The set of translates of a fundamental domain in X forms a null-sequence in X .

Some consequences of these properties are:
• (4) implies cd(G) ≤ dim(∂X) + 1,
• (1)-(6) imply cd(G) = dim(∂X) + 1 [BM],
• (1), (3)-(6) imply the Novikov Conjecture for G [FW].

Also, under the conditions (1), (2), (6), and the contractibility of X, Carlsson and
Pedersen have some results about splitting the assembly maps [CP]. An example of a
situation where (1)-(6) hold is a torsion-free hyperbolic group acting on its Rips complex
compactified with the Gromov boundary [Gr] [BM].
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Many times a natural compactification of a G-space does not satisfy all of the above
properties. For example, SLn(Z) (and many other arithmetic groups) acts on its symmetric
space which compactifies to a ball; the action satisfies all of the above properties, except
that it is neither free nor cocompact. Another example is Mapping Class Group acting on
Teichmüller Space compactified by the space of projectivized measured laminations.

It is from this point of view that in this paper we study the action of Out(Fn) on
the closure Yn of rank n Outer Space Yn in the projectivized space of nontrivial Fn-
trees. (Recall that outer space of rank n may be identified with the subset of the space of
projectivized Fn-trees corresponding to free simplicial actions.) Freeness clearly fails since
the group has torsion. However, the point stabilizers are finite, which is often adequate in
applications. Moreover, the action is not cocompact, but the quotient space is a finite union
of open simplices, a property analogous to finite volume and replacing cocompactness.
Property (2) clearly holds. Property (6) fails in rank 2 [CV2]. Since Out(F2) embeds in
Out(Fn) and Y2 equivariantly embeds in Yn, Property (6) fails. Property (5) fails for
similar reasons. We hope that the extent of the failure of Properties (5) and (6) may be
understood.

After the preliminary results of Section 1, Section 2 is devoted to a main result of this
paper; the characterization of R-trees representing points in Yn; these are precisely the
very small actions of Cohen-Lustig[CL]. The key is to use the techniques of Rips, further
developed in [BF1], to understand geometric actions (roughly, those actions that are dual
to foliated band complexes, see Definition 1.1.) We show that geometric actions split into
simpler actions, and argue inductively.

In section 3, we give an algorithm for deciding whether or not the attracting fixed point
of a given exponentially growing irreducible outer automorphism is geoemtric. This section
is independent of the rest of the paper.

The next goal is the first proof that Yn is finite dimensional and is found in Section 7.
In fact, we show that it has dimension 3n− 4, see Corollary 7.12. A key here is that the
set of nongeometric actions in Yn behaves like a Z-set.

Sections 4-6 contain the technical results needed in Section 7. Of note are Corollary
5.2 and Theorem 6.2 which give splitting results for very small Fn-trees and dual band
complexes.

Outer Space was introduced by Culler and Vogtmann [CV1]. They prove that Yn is
contractible, and use that to show that Out(Fn) is of type V FL and vcd(Out(Fn)) =
2n − 3. Culler and Morgan [CM] show that the projectivized space of small Fn-trees is
compact and contains the space of free actions. Since Outer Space may be identified with
projectivized free simplicial actions, Yn is compact. Steiner[St] and Skora [Sk1] show that
Yn is contractible. The fixed set of a finite subgroup of Out(Fn) acting on Yn (respectively
Yn) is contractible. See White [W] and Krstić-Vogtmann [KV] (respectively White[W]).
Rank two Outer Space is completely understood [CV2]. Cohen and Lustig [CL] show that
Yn is contained in the projectivized space of very small actions and that a free simplicial
action is in Yn if and only if it is very small. Every element of Out(Fn) fixes a point of
Yn.
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The starting point for this work is our previous paper [BF1].

1. Geometric Actions and Splittings of Trees and Band Complexes

The techniques of [BF1] are most easily used to analyze geometric actions. Also, many
band complexes decompose into simpler pieces. In this section we make these remarks
precise. Refer to [BF1] for definitions.

Definition 1.1. Let X be a band complex and T a G = π1(X)-tree. A resolution f :

X̃ → T is exact provided for every G-tree T ′ and equivariant factorization

X̃
f ′

→ T ′ g
→ T

of f with f ′ a surjective resolution it follows that g is an isometry onto its image. In this
case we say that T is geometric.

Remark 1.2. For any band complex X (or more generally any space equipped with a

measured foliation[Sk2]), there is a natural pseudo-metric on the universal cover X̃ induced
by integrating the measure along paths. The associated metric space TX is a π1(X)-tree

called the dual of X . If X resolves some other tree T ′, then the natural map X̃ → TX is
a resolution, and therefore an exact resolution

A decomposition of a band complex will engender a decomposition of the dual tree. Our
decompositions will be of a rather simple nature that we explain now. Let Ti be Gi-trees
for i = 1, 2, and let Ji ⊂ Ti be isometric segments. Following Skora [Sk2], define the free
product T1 ∗J1=J2

T2 to be the G1 ∗ G2-tree obtained as follows. Let Xi be a realization

of Ti, i = 1, 2, i.e. the space K̃i ×Gi
Ti for an Eilenberg-MacLane space Ki for Gi. There

is an obvious equivariant map X̃i → Ti from the universal cover of Xi to the tree Ti, and
the point-preimages induce a measured foliation of X̃i and of Xi. The segment Ji can be
identified with the projection of the segment {pt} × Ji. Now define T1 ∗J1=J2

T2 to be the
tree dual to the foliated space X1 ∪ J × [1, 2] ∪X2 where J × {i} is identified with Ji for
i = 1, 2. Here, the band J × [1, 2] is foliated by segments pt× [1, 2].

Roughly, we can say that T1 ∗J1=J2
T2 arises from gluing T1 and T2 along segments J1

and J2. We may similarly define the result of gluing two segments J1 and J2 of the same
tree T0. This gives rise to the HNN -extension T0∗J1=J2

. See Skora [Sk2] for details.

Definition 1.3. An Fn-tree T splits if either T = T1 ∗J1=J2
T2 or T = T0∗J1=J2

and the
induced splitting of Fn is nontrivial.

Now we define the analogous notion for band complexes. If p is a path in a band complex
X , let lX(p) denote its length with respect to the foliation.

Definition 1.4. Let X i for i = 1, 2 be a band complex. Let Ai be a closed subinterval
of a base of X i. Suppose A1 = A2, i.e. there is given an isomorphism of the measured
graphs A1 and A2. Suppose further that the image of Ai in Dual(X i) (first lift to X̃ i, then
decompose) is an interval of length lAi

(Ai). Define the free product of X1 and X2 (over
A1 = A2), denoted X1 ∗A1=A2

X2, to be the band complex X1∪A1=A2
X2. Similarly define
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an HNN -extension X1∗A1=A2
. We say that a band complex X splits if X is either a free

product or an HNN -extension such that the induced splitting of π1(X) is nontrivial.

Proposition 1.5. Suppose that the resolution f : X̃ → T is exact. If X splits, then so
does T .

Proof. For the sake of notational simplicity, we assume that X = X1 ∗A1=A2
X2. Let

Gi = π1(X
i) for i = 1, 2. Choose a lift Ãi of Ai to X̃ i. Let K1 be the K(G1, 1) formed

from X1 by adding cells of dimension greater than 2. Let T1 = Dual(X1). According to

Remark 1.2, the natural map f1 : X̃1 → T1 is an exact resolution. Set Φ1 : X̃1 → K̃1×G1
T1

by Φ1(x1) = [(x1, f1(x1))]. Similarly define Φ2, etc. Notice that Φi induces an isometry of
dual trees. According to Skora [Sk2], T ′ = T1 ∗f1(Ã1)=f2(Ã2)

T2 is dual to the free product

K of K̃1 ×G1
T1 and K̃2 ×G2

T2 over images of Ãi. By the universal properties of the free
product T ′ naturally maps to T . Further, the maps Φi can be assembled to give a map
from X̃ to K̃. Therefore, f factors as

X̃ → K̃ → T ′ → T.

Since f is an exact resolution, T ′ and T are isometric. �

Definition 1.6. We say that a tree T has a certain attribute if T admits an exact resolu-
tion from the universal cover of a band complex with that attribute. For example, “T has
a thin component” means that T is dual to a resolving complex K with a thin component.

Definition 1.7. Let f : X̃ → T be a resolution. Let b be a base of a band of X . Also, let
b be the decomposition space (an interval) induced by restricting the foliation to b. First

lifting b to X̃ and then applying f engenders a map from b to T . We say that bases of X
inject (via f) if for each base, this map is an embedding.

By subdividing, we may assume that bases inject [BF1,Section 5]. The next proposition
follows easily from the techniques of [BF1].

Proposition 1.8. Suppose X resolves the small Fn-tree T . There are no axial components
in the underlying union of bands Y . All bands of weight 0 in X that meet a minimal
component of Y represent the trivial element of π1(X) = Fn and therefore can be collapsed.
If all bases inject, then there are no weight 1

2 bands that meet minimal components. If
further nondegenerate arc stabilizers in T are primitive then X has no weight 1/2 bands.

Proof. The existence of an axial component forces the existence of a subgroup of Fn that
maps onto a subgroup of Isom(R) of rank greater than one and kernel an edge stabilizer
(hence cyclic). Since Fn has no such subgroups, there are no axial components. Denote
by z the element represented by a weight 0 band. Then z commutes with all elements
of the form xzx−1, where x is represented by a path in a leaf followed by an arc in the
weight 0 base. In a free group this is possible only if z commutes with every such x. In the
presence of minimality, the set of possible x’s generates a nonabelian subgroup of π1(X)
[BF1, Proposition 7.4], so that its centralizer is trivial.
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If z is represented by a weight 1
2 band, the above argument shows that z2 is trivial, and

hence so is z. But, then the base of the band cannot inject into TX . A weight 1/2 band
represents a group element which leaves a nondegenerate arc invariant without fixing it, a
contradiction. �

Remark 1.9. Note that Proposition 1.8 implies, in particular, that if all components of Y
are minimal, then the edge stabilizers in the dual tree TX are trivial.

Definition 1.10. A band B = b × [−1, 1] of a band complex X is naked if the only cells
of X that meet b × (−1, 1) are subdivision annuli [BF1, Section 5]. The band B is very
naked if b× (−1, 1) meets no cell of X .

Remark 1.11. Under the hypothesis of Proposition 1.8, we may collapse the subdivision
annuli along with the weight 0 bands and achieve that all naked bands that are contained
in a thin component are very naked.

Proposition 1.12. Suppose T is a small Fn-tree. If T has a thin component, then T
splits.

Proof. As usual , we may assume that all bases inject. In [BF1, Lemma 14.2] it is shown
that applying the Rips machine to a thin component eventually creates a naked band. The
proposition now follows from Remark 1.11 and Proposition 1.5. �

2. Approximating Very Small Actions of Free Groups

In [CL] the notion of very small actions was introduced. An Fn-action is very small
provided

• the edge stabilizers are either trivial or primitive cyclic, and
• Fix(g) contains no triod when g 6= 1.
A simplicial Fn-action is very small if and only if in the quotient graph of groups,

each edge group is either trivial or cyclic with generator primitive in both incident vertex
groups, and whenever the groups of three distinct edges incident to a vertex are nontrivial,
then they are not all conjugate in the vertex group. Cohen and Lustig go on to prove the
following:

Theorem 2.1[CL].

(1) A simplicial Fn-action can be approximated by a free action if and only if it is very
small.

(2) If an Fn-action can be approximated by free actions, then it is very small.

In this section we prove the following.

Theorem 2.2. Every very small action of a free group Fn on an R-tree T can be approx-
imated by a free simplicial action. Equivalently, an Fn-action represents a point in Yn if
and only if it is very small.

Proof. In view of Theorem 2.1 of Cohen-Lustig, it suffices to approximate T by a very
small simplicial action. Let C be a finite collection of elements of Fn and let ε > 0. We
will find a very small simplicial tree T ′ such that for all γ ∈ C, |lT (γ)− lT ′(γ)| < ε.
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If X is a band complex and γ ∈ π1(X), then let lX(γ) = inf{lX(p)|[p] = γ}. First we
argue that T can be resolved by a finite band complex X so that the tree TX dual to X
satisfies lX(γ) = lT (γ) for all γ ∈ C. Indeed, first choose any resolution X . Then, for each
γ ∈ C, attach an annulus to X along a boundary curve with the attaching map given by γ,
extending the lamination so that the free boundary component of the annulus has length
lT (γ). We assume that all bases inject.

Now, we apply the Rips machine to X . By Proposition 1.8, no component of Y is of
axial type. So we need to analyze the remaining three types. To fix ideas, we first present
the “pure” cases.

Case 1. Each component of Y , the union of bands underlying X , is of thin type. This
is the key case. We assume that only Process I is applied, and (by Proposition 1.8) that
X has no bands of weight less than one. It follows that any band complex obtained from
X by a collapse has no bands of weight less than one. Process I produces band complexes
X = X0, X1, X2, · · · with underlying union of bands Y = Y0, Y1, Y2, · · · . Since Y has no
bands of weight less than 1, Yi+1 ⊂ Yi. The limiting lamination L∞ of Process I was
introduced in [BF1, Lemma 14.1].

Sublemma 2.3. There is an m ≥ 0 and a very naked band B of Xm such that B meets
L∞ in at least one vertical arc.

Proof. By [BF1, Proposition 11.2(2)], we may assume that no isolated (half-)bases appear
in the sequence of Xi’s. By [BF1, Proposition 11.2(4)], there is a band of X such that
the number of components of the intersection of this band with Xi goes to infinity with i.
Each of these components then has nonempty intersection with L∞. �

The proof shows in fact that there is a band that meets L∞ in infinitely many vertical
arcs, but we will not need this. Now we assume that X has a very naked band B =
[0, b]× [−1, 1] as in Sublemma 2.3.

Let x = min{t ∈ [0, b]|{t} × [−1, 1] ⊂ L∞}. Let Bi denote the very naked band of Xi

that contains {x} × [−1, 1]. The band Bi is a subset [t−i, ti]× [−1, 1] of B. If t ∈ [t−i, ti),
then let Xi,t denote the band complex Xi \ ([t−i, t)× (−1, 1)). Notice that the composition
of the inclusion of the universal cover of Xi,t into the universal cover of Xi followed by a
resolving map is again a resolving map. In the case i = 0, we may suppress the 0.

Sublemma 2.4. Let η > 0. If ([0, s)× [−1, 1]) ∩ L∞ = ∅, then there is a number m and,
for each γ ∈ C, a representative loop pγ in Xm such that |lXm

(γ) − lXm
(p)| < η and pγ

misses [0, s)× (−1, 1). In particular, the duals of X and Xs are isometric.

Proof. For each γ ∈ C, choose a representative qγ inX whose length is within η of lX(γ) and
that meets [0, s)× (−1, 1) in finitely many vertical arcs. Let s′ be the maximum t ∈ [0, s)
such that {t}× [−1, 1] is a of some segment of a qγ . Since ([0, s)× [−1, 1])∩L∞ = ∅, there
is an m such that Ym ∩ ([0, s′] × (−1, 1)) = ∅. Set pγ to be the image of qγ in Xm under
the composition of the first m collapses. �
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Sublemma 2.5. There is a δ > 0 and a number m such that lX(γ) ≤ lXm,x+δ
(γ) ≤

lX(γ) + ε
2 for all γ ∈ C. �

Proof. Since X and Xm are related by Rips moves, they have the same length functions.
Since Xm,x+δ ⊂ Xm, the first inequality follows. For the second inequality, take the s in
Sublemma 2.4 to be x and choose pγ to be within ε

4
of lX(γ). This produces the desired

m. Let r be the number of vertical arcs of Bi that are segments of some pγ . Then, in
lXm,x+δ

(pγ) ≤ lXm
(pγ) + 2rδ. So, choose δ = ε

4r
. �

Sublemma 2.6. Let δ > 0. After applying a sequence of Rips moves to Xx+δ, we obtain
a band complex that is either of the form X−1 ∗x−1=t−1

[t−1, t1] ∗t1=x1
X1 or X1 ∗x1=t1

[t1, t2]∗t2=x2
.

Proof. Let N be the first number such that the collapse from XN to XN+1 involves (x, x+
δ)×[−1, 1]. Using the collapses in the sequence X = X0, X1, X2, · · · , we produce a sequence
Xx+ε = X ′

0, X
′
1, X

′
2, · · · , X

′
N . The idea is to try to apply to Xx+ε the collapses performed

on X .
The transition from Xi to Xi+1 is a collapse in a long band. For convenience, we

assume that this long band consists of just one band. (A collapse of a long band is
a composition of collapses of bands, so there is no loss in this assumption.) We now
inductively describe the transition from X ′

i to X ′
i+1. If the collapse from Xi to Xi+1

does not involve [0, x + ε) × (−1, 1), then the collapse may be applied to X ′
i resulting in

X ′
i+1. If this collapse does involve [0, x+ ε) × (−1, 1), then set X ′

i+1=X
′
i. After applying

the Nth collapse, there is a segment J of measured graph of X ′
N whose intersection with

bands is precisely its endpoints. Assume that J ⊂ [0, b] × {1} (the other case is handled
symmetrically). The resulting complex is of the form X−1∗JX

1 or X1∗J . Choose notation
so that (x, 1) ∈ X1. We need only check that the fundamental groups of X i are nontrivial
in the former case. Consider the leaf `∞ of L∞ that contains x × [−1, 1]. Let `1∞ be the
component of `∞ ∩X1 that contains (x, 1). From [BF1, Lemma 14.1(3)], it follows that
there is an arc in `1∞ with endpoints two distinct points of a base of X . Indeed, if `1∞
is not compact this statement is clear, otherwise the endpoints of `1∞ are contained in
[x, x+ ε]×{−1, 1}. If `1∞ has endpoints on both [x, x+ ε]×{−1} and [x, x+ ε]×{1}, then
the arc J is nonseparating, a contradiction. The loop in X1 formed by connecting these
endpoints in the base is nontrivial (since bases inject into T ). The same argument works
for X−1 (where (x, 1) is replaced by (x,−1)). �

We now finish case one. Choose m and δ as in Sublemma 2.5. The band complex
Xm,x+δ is an approximation to X and after a finite number of moves splits as X1 ∗J X

2

or X1∗J . Each X i requires fewer generators for its fundamental group than does X . Also,
the characterization of leaves given in [BF1, Theorem 15.1] shows that the components of
the union of bands Y i underlying X i are simplicial or thin (after splitting compact pushing
saturated subsets of leaves). Since the inclusion Xm,x+δ ⊂ Xm induces a resolution, the
arc stabilizers of TXm,x+δ

are trivial. If Xm,x+δ has a thin component then we apply this
procedure again starting with the complex Xm,x+δ instead of X and ε replaced by ε

2
. After

iterating this procedure at most n = rank(Fn) times, we obtain a simplicial complex whose
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dual approximates T . Since the edge stabilizers of this approximation are trivial, it is very
small.

Case 2. X is of surface type. Then we can assume that X is a surface with boundary
with a measured lamination whose leaves are disjoint from ∂X . It is well-known how
to approximate the lamination by a measured closed 1-manifold (using train-tracks, and
approximating the weights by rational numbers still satisfying the switch equations)[FLP].
The dual simplicial tree is very small.

Case 3. X is of simplicial type. The difficulty is that it might happen that the dual
action is not very small. The dual tree TX can be triangulated equivariantly so that the
resolving map embeds each edge. We argue that there is a very small simplicial action
that can be interpolated between T and TX . We describe the argument in the language of
the quotient graph Λ = TX/Fn. First, by folding (cf. [BF2, Move 2]), we can arrange that
all edge labels in Λ are either trivial or primitive cyclic subgroups of Fn. If TX contains a
triod fixed by a nontrivial group element, then the resolving map must identify the initial
segments of two edges in the triod. Thus we can perform a fold in Λ, which may be
partial (i.e. an edge is identified with a subinterval of another), that identifies edges with
nontrivial labels. We need to argue that after a finite number of such folds, the action
becomes very small.

Since Λ has only finitely many vertices, and their number decreases after a full fold, we
may assume that all folds are partial. There is a natural 1-1 correspondence between the
edges of graphs before and after a partial fold. Let N be the number of edges of Λ with a
nontrivial label, and assume that we performed N2 + 1 partial folds on Λ to obtain a new
quotient graph Λ′. Then some edge e with a nontrivial label served as the ‘short edge’ in a
partial fold at least N+1 times. The naturally induced map Λ → Λ′ has the property that
the preimage of an interior point of e contains at least N+1 points in the interiors of edges
of Λ with nontrivial labels. Thus some edge of Λ with a nontrivial label maps to Λ′ in such a
way that two of its interior points are identified. We now reach a contradiction by observing
that the label of e in Λ′ is nonabelian. Indeed, there are distinct edges E and g(E) in TX

for some g ∈ Fn such that both Stab(E) and Stab(g(E)) = gStab(E)g−1 stabilize e. Since
Stab(E) is primitive cyclic, the group generated by Stab(E) and Stab(g(E)) is nonabelian.

Each fold can be realized in X by attaching a band and a 2-cell killing the extra gener-
ator.

Case 4. The general case. Each component of Y is of surface, thin, or simplicial type.
On each thin component perform the operation as discussed in case 1.

At this stage, X can be viewed as S ∪R, where R is of simplicial type and where S is
a surface (possibly disconnected), the fundamental group of each component of S injects
in π1(X),and the lamination restricts to a geodesic-like lamination on S. Furthermore, we
can assume that the boundary of S is bicollared in X (if necessary, include a collar of the
boundary of S in R).

Next, work on the simplicial components as in case 3, until they all become very small.
Finally, approximate simplicially all surface components making sure that no leaf is parallel
to the boundary. We leave it to the reader to check that the result is very small. �
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3. Geometric vs. Nongeometric Free Actions of Free Groups

In this section we produce examples of nongeometric actions of the free group in the
boundary of Outer Space. Furthermore, we give an algorithm for deciding whether or not
the attracting fixed point of a given exponentially growing irreducible outer automorphism
is geometric. The rest of this paper is independent of this section.

We use some terminology of [BH1]. Let f : Λ → Λ be a stable train-track map defined
on a graph Λ representing an exponentially growing irreducible outer automorphism O of
the free group π1(Λ). The existence of f is shown in [BH1, Proposition 3.3 ]. Immersed
paths α1, α2, . . . , αk in Λ form an orbit of periodic Nielsen paths if f(αi) is homotopic rel
endpoints to αi+1modk. This orbit is indivisible if α1 is not a concatenation of subpaths
that belong to orbits of periodic Nielsen paths. One can argue as in [BH1, Lemma 3.4]
that each path in an indivisible orbit of Nielsen paths has exactly one illegal turn.

Lemma 3.9 of [BH1] shows that Λ supports at most one indivisible (fixed) Nielsen path.
The same argument can be used to show that Λ supports at most one indivisible orbit of
periodic Nielsen paths (up to cyclic reordering and change of orientation).

Using the techniques of [BH1] it is not hard to prove the following.

Proposition 3.1.

(1) If Λ contains no indivisible orbits of periodic Nielsen paths, then for any loop [path]
β in Λ there exists n > 0 such that fn(β) is homotopic [rel endpoints] to a legal
loop [path].

(2) If Λ contains a unique indivisible orbit α1, . . . , αk of periodic Nielsen paths, then
for any loop [path] β in Λ there exists n > 0 such that fn(β) is homotopic [rel
endpoints] to an immersed loop [path] which is a concatenation of legal paths and
αi’s with illegal turns occurring only within the αi’s.

Recall that O acts on Outer Space by change of marking. The sequence {On(Λ)}∞n=1

converges in compactified Outer Space to a point in the boundary represented by an action
of π1(Λ) = Fn on an R-tree TO. Here, Λ is viewed as a metric graph where the lengths of
edges are chosen so that f expands each edge uniformly by λ > 1. The translation length
in T of a conjugacy class α is obtained as the limit of the monotonically nonincreasing
sequence {length(fn(α))/λn}, where length(β) denotes the length in Λ of the curve with no
backtracking representing the conjugacy class β. For legal loops this sequence is constant.
The limiting R-tree TO does not depend on the choice of representative f : Λ → Λ; indeed,
for every H in outer space On(H) → TO as n→ ∞. Furthermore, for any conjugacy class
β we have length(O(β)) = λ length(β).

The purpose of this section is to study when TO is geometric.

Theorem 3.2. TO is geometric if and only if Λ contains an indivisible orbit of periodic
Nielsen paths.

Example 3.3. The automorphism of F3 given by a→ b, b→ c, and c→ ab is represented
on the bouquet of 3 circles labeled a, b, and c by the map given by the above formula.
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This map is a stable train-track map (the only non-degenerate illegal turn is {a, c}) with
no periodic Nielsen paths.

Example 3.4. The obvious representation f : Λ → Λ of the automorphism a → ac,
b→ a, and c→ b on the bouquet of 3 circles is a stable train-track map. The illegal turns
are formed by pairs of edges in {a, b, c}. The fourth power of f maps a to acbaac and
thus has two fixed points in the interior of a. Subdivide at the first fixed point, so that
a = a1a2 where f4(a1) = acba1 and f4(a2) = a2ac. Similarly, we can write c = c1c2 where
f4(c1) = ac1 and f(c2) = c2b. Now a1bac1 is homotopically fixed under f4. Therefore,
this path together with its 3 iterates under f forms an indivisible orbit of periodic Nielsen
paths of period 4. This is the only such orbit. No essential loop is a concatenation of these
4 paths, and therefore the limiting group action on TO is free.

Remark 3.5. If Λ contains a unique indivisible orbit α1, . . . , αk of periodic Nielsen paths
whose concatenation is a loop fixed by f (up to homotopy), then O can be realized as a
pseudo-Anosov homeomorphism on the surface with one boundary component obtained
from Λ by attaching an annulus along this loop [BH1,Proposition 4.5]. More generally, if
the αi’s concatenate to give more than one loop, then O can be realized as a homeomor-
phism of a surface with more than one boundary component. In this case TO is dual to
the unstable lamination of the homeomorphism.

One can construct a sequence of finer and finer simplicial approximations to TO as
follows. Let Λ0 = Λ and, in general for m > 0, Λm = Om(Λ)/λm. Then f followed by
scaling down by λ induces morphisms

Λ̃0
f̃1
→ Λ̃1

f̃2
→ Λ̃2 → . . . .

The tree TO can be described as the Gromov limit [Pa] of this sequence. Notice that every

legal path in Λ̃m is mapped isometrically, and hence there is a limiting map Ψm : Λ̃m → TO.
The proof of one half of Theorem 3.2 follows easily from the next proposition.

Proposition 3.6. Suppose that Λ contains no indivisible orbits of periodic Nielsen paths,
and that a finite band complex K resolves TO. Then the resolution map factors through
Λ̃m for a sufficiently large m. In particular, TO is not geometric.

Proof. Let Ξ : K̃ → TO be a resolution. For notational simplicity, we may assume that
Ξ embeds components of the lifted measured graph Γ̃, which are arcs. For every vertex
v ∈ K̃ (i.e. a vertex of Γ̃, corner of a band, or a 0-cell of K̃) choose a point Φ0(v) ∈ Λ̃0 so
that Φ0 is equivariant, and so that Ψ0Φ0 = Ξ on the vertices. Now find m > 0 so that for
every edge e in K̃ (i.e. a component of Γ̃, a vertical boundary component of a band, or a

1-cell in K̃) the arc in Λ̃m joining the two points in f̃m . . . f̃2f̃1Φ0(∂e) is legal (or constant).

It is now straightforward to extend f̃m . . . f̃2f̃1Φ0 to an equivariant map Φm : K̃ → Λ̃m,
thus yielding a resolution of Λm with ΨmΦm = Ξ. �

Proof of Theorem 3.2. It remains to consider the case when Λ contains an indivisible orbit
α1, . . . , αk of periodic Nielsen paths. To each of the k paths attach a disk along an arc in
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the boundary. The disk is foliated so that the leaves join points on the path equidistant
from the illegal turn. Thus obtained foliated complex K can be given the structure of
a band complex. It resolves TO, and the loops that are concatenations of Nielsen paths
and legal arcs as above have the same length in TO as in K. Furthermore, there is a map

f̂ : K → K sending leaves to leaves and extending f . Now, f : Λ → Λ can be represented
as the composition of maps each of which folds an illegal turn, followed by the uniform
scaling of the metric by factor λ. As in [BH1, Lemma 3.9] one easily argues that every one
of the folds occurs at the illegal turn of a path in the indivisible orbit of Nielsen paths.

This induces a similar factorization of f̂ : K → K, which implies that lK(f̂(β)) = λ lK(β)
holds in K (as well as lTO

(O(β)) = λ lTO
(β)). (For the definition of lK see Section 2.)

Thus, the lengths in K and in TO agree. �

4. A free group decomposition lemma

In this head we prove a technical lemma needed in the sequel.

Lemma 4.1. Suppose that Y is a finite (possibly disconnected) graph, and S a compact
(possibly disconnected) surface. Let f : ∂S → Y be a map that is essential on each boundary
component. Assume that the adjunction space X = S ∪f Y has free fundamental group.
Then there is a homotopy equivalence ψ : Y → S1 ∨ Y ′ to the wedge of the circle and a
graph so that the composition ψf : ∂S → S1 ∨ Y ′ is homotopic to a map that sends one
boundary component homeomorphically onto S1, and sends all other boundary components
into Y ′.

Example 4.2. Suppose a free group is represented as A ∗Z B for finitely generated free
groups A and B, and suppose the generator for Z corresponds to a ∈ A and b ∈ B. Then
either a is a basis element of A or b is a basis element of B.

To see this, start with the disjoint union Y of two finite graphs representing A and B,
and then attach the annulus along its boundary via a and b. Then apply the lemma.

Proof. Let h : X → G be a map to a graph that induces an isomorphism between funda-
mental groups. Replacing Y by a homotopy equivalent graph if necessary, we may assume
that h restricted to Y is an immersion, and that f is an immersion. It suffices to argue
that at least one edge in Y is crossed geometrically exactly once by f . Suppose not. Let
Z be a finite subset of Y that intersects each edge in an interior point. We may assume
that h is transverse to Z. The assumption that no edge of Y is crossed exactly once by f
guarantees that the graph h−1(Z) has no valence 1 vertices. In particular, there is a loop
γ ⊂ h−1(Z) that is not a trivial loop in the interior of S. We will argue that γ is essential,
contradicting the assumption that h is π1-injective.

First, notice that if γ0 ⊂ S is an arc of γ whose endpoints are in ∂S, then γ0 together
with an arc in ∂S could not bound a disk in S. For otherwise, find an innermost arc
in h−1(Z) that together with an arc in ∂S bounds a disk in S, and conclude that the
composition hf : ∂S → G is not an immersion, contrary to the hypotheses.

Next, notice that if γ0 ⊂ S is an arc of γ whose endpoints are in S, and which switches
sheets at a point of Y , then γ0 is not homotopic rel endpoints to an arc contained in the
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interior of S (since f is an immersion).

The above two facts imply that the lift of γ to the universal cover X̃ of X never returns
to the component of the preimage of S it leaves. In particular, γ is essential. �

5. The structure of band complexes

Definition. A measured lamination on a surface is geodesic-like if it admits a hyperbolic
metric such that the lamination is geodesic and filling (i.e., the complement does not
contain an essential nonperipheral loop).

Recall [Ha] that ifX is a band complex that resolves an Fn-tree T , and if S is a laminated
surface component of the union of bands with inessential boundary components capped
off, then the lamination on S is geodesic-like (this uses only the fact that Fn is torsion-free;
there is a straightforward generalization to groups with torsion using orbifolds).

Proposition 5.1(Structure). Let X be a band complex with only surface and simplicial
components and whose universal cover resolves a tree whose arc stabilizers are primitive
cyclic or trivial. Then there is another band complex with the same dual as X of the form
(S ∪A ∪ Γ) ∪f G such that

(1) S is a compact surface with a geodesic-like lamination,
(2) Γ is a finite real graph,
(3) G is a finite graph with no valence 1 vertices and empty lamination,
(4) A is a finite disjoint union of annuli laminated by essential loops, and
(5) f : ∂S ∪ ∂A∪ F → G where F is a finite subset of S ∪A ∪ Γ and f is essential on

each component of ∂S ∪ ∂A.

Proof. By applying the Rips machine we may arrange that the union of bands in each
simplicial component is a real graph with weight 0 bands (i.e., annuli) attached (recall
that by Proposition 1.8 there are no weight 1/2 bands). Subdivide each weight 0 band so
that if two bases overlap, they coincide. Then slide bands with coinciding bases over each
other so that exactly one band in each family with coinciding bases generates the stabilizer
of the edge of the tree corresponding to the base, and the others are trivial. Collapse the
trivial ones. We have now achieved that the annuli have disjoint interiors. Take A to be
the union of these annuli.

We may also arrange that the union of bands in each surface component is a laminated
surface. Take S to be the union of these surfaces and take Γ to be the union of the closures
of the complements of the annuli in the real graphs above. Replace each component C of
the closure of the complement of S ∪A ∪ Γ in X by a bouquet of r(C) circles where r(C)
is the rank of the image of π1(C) in π1(X) (A bouquet of 0 circles is a point). Take G
to be the union of these bouquets of circles. Our band complex now has the desired form
except perhaps for the conditions on f . By enlarging G, we may arrange that f is defined
on all of ∂S. By capping off those boundary components of S that are inessential in X ,
we achieve the desired form. �

A generalized band B is (finite tree)×I laminated by pt×I. A band complex X contains
a very naked generalized band B = Γ×I if it is of the form X = Y ∪B and Y ∩B = Γ×∂I.
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Corollary 5.2. Let X be a band complex whose universal cover resolves a tree whose arc
stabilizers are primitive cyclic or trivial. Then X is equivalent to a band complex that has
one of the following forms.

(1) X contains a point that induces a nontrivial splitting.
(2) X contains a very naked generalized band giving rise to a nontrivial splitting.

Proof. If X has a thin component, see [BF1]. So suppose it does not. We may assume
that X is as in the proposition. Further take F to be of minimal cardinality. In this case,
if F is not empty, then a point in F determines a nontrivial splitting.

If F is empty then X has the form as in Lemma 4.1. There are now three cases. If
there is an edge of G that is not in the image of f , then the action clearly splits. If the
distinguished circle C provided in Lemma 4.1 is not a component of G, then a valence
greater than 2 vertex of G that is on C provides a splitting. The final possibility is that
C is a component of G. In this case C corresponds to a boundary component of S ∪A. If
C ⊂ S, an essential arc with endpoints on C provides a splitting. If C ⊂ A, collapse the
annulus containing C, and use induction on the number of components of A. �

6. Geometric actions split

If T is an Fn-tree and x ∈ T , we can form another Fn-tree T ′ = T ∗x=∂−K K, where we
may view the closed interval K as a tree equipped with the action of the trivial group or,
if Stab(x) = Z, as a trivial Z-tree. The induced (trivial) splitting of Fn is Fn∗ < 1 > in
the former case and Fn ∗Z ∗Z in the latter. We call this operation adding a stick. A tree is
nearly minimal if it can be obtained from a minimal tree by finitely many such operations.

Proposition 6.1. Suppose X is a band complex whose universal cover resolves a tree with
arc stabilizers primitive cyclic or trivial. Then

(1) for any two points in the universal cover of X there is a path joining them so that
the integral of the transverse measure along the path realizes the infimum of such
integrals over all paths joining the two points and

(2) Dual(X) is nearly minimal.

Proof. Note that if X is simplicial, the conclusions are obvious. In particular, if n = 0, by
local injectivity X is simplicial. Now induct on n. By the above corollary, there is either
a point or a very naked generalized band giving rise to a splitting. The hypotheses on X
are inherited by the pieces. By induction on n, the pieces satisfy the conclusion of the
proposition. A routine exercise establishes the conclusions for X . �

This section is devoted to showing that all geometric actions split. See Definition 1.3.
In fact, the pieces into which they split are nearly minimal, so that an inductive scheme
can be used to prove things about geometric actions.

Theorem 6.2. Let X be dual to very small minimal tree T . Then X splits. Furthermore,
T has a splitting of one of the following forms with R and R′ very small geometric minimal
trees or points, r, r̂ ∈ R, r′ ∈ R′, J and J ′ closed intervals, K a closed interval viewed as
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a tree equipped with the action of the trivial group, and L and L′ closed intervals viewed
as trivial Z-trees.

(1) R ∗J=J ′ R′. The corresponding splitting of Fn is Fk ∗ Fn−k.
(2) R∗J=J ′. The corresponding splitting of Fn is Fn−1∗<1>.

(3) (R ∗r=∂−K K)∗J=J ′ where J = K ∗ Ĵ ∗K ′ with K ′ a translate of K in R ∗r=∂−K K

and Ĵ a subinterval of J contained in R. The corresponding splitting of Fn is
(Fn−1∗ < 1 >)∗<1>.

(4) (R ∗r=∂−K K)∗J=J ′ where J = K ∗ Ĵ , J ′ = Ĵ ′ ∗K ′ with K ′ a translate of K in

R ∗r=∂−K K, the gluing done so as to identify the endpoints of J on Ĵ and K

respectively with the endpoints of J ′ on K ′ and Ĵ ′, and length(J) ≥ 2 length(K).
The corresponding splitting of Fn is (Fn−1∗ < 1 >)∗<1>.

(5) R ∗r=∂−K K ∗∂+K=r′ R′. The corresponding splitting of Fn is Fk∗ < 1 > ∗Fn−k.
(6) R ∗r=∂−LL∗∂+L=∂−K K ∗∂+K=r′ R′ where r is an endpoint of an interval stabilized

by Z. The corresponding splitting of Fn is Fk ∗Z Z∗ < 1 > ∗Fn−k.
(7) R ∗r=∂−L L ∗∂+L=∂−K K ∗∂+K=∂−L′ L ∗∂+L′=r′ R′ where r and r′ are endpoints

of intervals stabilized by Z. The corresponding splitting of Fn is Fk ∗Z Z∗ < 1 >
∗Z ∗Z Fn−k.

(8) (R ∗r=∂−K K)∗∂+K=r̂. The corresponding splitting of Fn is (Fn−1∗ < 1 >)∗<1>.
(9) (R ∗r=∂−L L ∗∂+L=∂−K K)∗∂+K=r̂ where r is an endpoint of an interval in R sta-

bilized by Z. The corresponding splitting of Fn is (Fn−1 ∗Z Z∗ < 1 >)∗<1>.
(10) (R ∗r=∂−L L ∗∂+L=∂−K K ∗∂+K=∂−L′ L′)∗∂+L′=r̂ where r and r̂ are endpoints of

intervals stabilized by Z. The corresponding splitting of Fn is (Fn−1 ∗Z Z∗ < 1 >
∗Z)∗Z.

Proof. By Corollary 5.2, either X has a very naked band or a point that induces a splitting.
First suppose that X has a very naked band. In the case that this band is separating,
T = T1 ∗J1=J2

T2 where each Ti are nearly minimal. Let G1 ∗ G2 be the corresponding
splitting for Fn. Since T is minimal, Ti is the convex hull of Ji and a minimal Gi-tree. In
fact, T has a similar splitting where either Ji is degenerate or Ji does not meet a valence 1
point of Ti. Indeed, if say T1 = T ′

1 ∗K and J1 = J ′
1 ∗K, then T = T ′

1 ∗J ′
1
=J ′

2
T ′

2. The tree T
is then of the form as in item (1) or (5). If the band is not separating then T = T1∗J1=J2

.
As above, if some Ji meets a valence 1 point of T1 then we may find subintervals that
also give rise to the splitting except in two cases. One case, corresponding to item (3)
above, is where both endpoints of one of the Ji’s say J1 meets a valence 1 point of T1. The
other case, corresponding to item (4), is where an endpoint of J1 and also one of J2 meet
translates of the same valence 1 point of T1. Thus, T = (T1 ∗K)∗J1=J2

, J1 = K ∗ J ′
1, and

J2 = J ′
2 ∗K

′ where K ′ is a translate of K. If the gluing is done so that the segments of J1

and J2 corresponding to K are identified, then T is not minimal. Further, if the length of
Ji is less than twice the length of K, then the midpoint of Ji is fixed by an element fixing
only the midpoint, but whose square fixes a nondegenerate interval about the midpoint.
This cannot occur in a very small tree. The case where no Ji meets an valence 1 point of
T1 covered by item (2). The case where the splitting guaranteed by Corollary 5.2 is over
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a point is easier and left to the reader. �

7. The Dimension of the Compactified Outer Space

We assume the reader is familiar with the basics of R-trees [CM], band complexes [BF1],
as well as rank n outer space Yn [CV1], and its closure Yn [CM]. This section is devoted
to showing that the dimension of Yn is 3n − 4. In Section 2 we showed that Yn is the
projectivization of the space X n of very small actions. For convenience we work with X n.
We will also use the space An of all Fn-trees and the space Xn of free simplicial actions.
All spaces are separable and metrizable.

Define the universal bundle X̃n over X n to be {(T, x)|T ∈ X n, x ∈ T}, with bundle map

πn : X̃n → X n. See White [W] for the topology and details.

Lemma 7.1. The space X̃n is σ-compact.

Proof. For n = 1, X̃n is homeomorphic to R
2. For n > 1, consider pairs of noncommuting

elements α and β in Fn. Let U = Uα,β be the open subset of X n where these elements

are hyperbolic. The set Ũ = {(T, x)|T ∈ U, x ∈ Axis(α)} is a trivial line bundle over
U . Indeed, a section is constructed by considering the midpoint of the set of points on
Axis(α) that are closest to Axis(β). Thus, Ũ is σ-compact. The space X̃n is a countable
union of such line bundles. �

The rest of this section is devoted to the proof of the following theorem.

Theorem 7.2. dim(X n) = 3n− 3.

Since X n contains Xn, it is clear that dim X n ≥ 3n− 3. The case n = 2 is contained in
[CV2]. For the remainder of this section, we will assume that dim(X k) = 3k−3 for k < n.

Lemma 7.3. dim(X̃n) ≤ dim(X n) + 1.

Proof. The bundle projection X̃n → Xn is a map between σ-compact spaces with 1-
dimensional fiber. The lemma follows by [HW, Theorem VI 7]. �

Next we define spaces that parametrize splittable actions. Once and for all we fix a
basis {x1, . . . , xn} for Fn. We use dk to denote the metric in the appropriate fiber of X̃k.
We also abuse notation slightly and identify a point in the universal bundle with the point
in the tree it determines. There are 10 parameter spaces, each corresponding to a case in
Theorem 6.2. We work out cases (1), (2), (5), and (8) in detail, and leave the others to
the reader.

For 1 ≤ k ≤ n− 1 and l = n− k, define

Pk,l = {(a1, a2, b1, b2) ∈ X̃k × X̃k × X̃l × X̃l|πk(a1) = πk(a2),

πl(b1) = πl(b2), dk(a1, a2) = dl(b1, b2),

if k = 1, then a1 = 0, if l = 1, then b1 = 0}/(a1, a2, b1, b2) (a2, a1, b2, b1),
15



Qk,l = {(a, b, t) ∈ X̃k × X̃l × R≥0},

Pn−1 = {(a1, a2, b1, b2) ∈ X̃n−1 × X̃n−1 × X̃n−1 × X̃n−1|πk(a1) = πk(a2) = πl(b1) = πl(b2),

dk(a1, a2) = dl(b1, b2), if n = 2, then a1 = 0}/(a1, a2, b1, b2) (a2, a1, b2, b1),

and

Qn−1 = {(a, b, t) ∈ X̃n−1 × X̃n−1 × R≥0|π1(a) = π1(b)}.

Lemma 7.4. For k, l < n, Pk,l, Qk,l, Pn−1, Qn−1 are σ-compact and dim(Pk,l) ≤ 3(k +
l) − 3, dim(Qk,l) ≤ 3(k + l) − 3, dim(Pn−1) ≤ 3n− 3, dim(Qn−1) ≤ 3n− 3.

Proof.
dim(Pk,l) ≤ dim(X̃k) + dim(X̃l) + 1,

dim(Qk,l) ≤ dim(X̃k) + dim(X̃l) + 1,

dim(Pn−1) ≤ dim(X̃n−1) + 2,

dim(Qn−1) ≤ dim(X̃n−1) + 2.

�

For k+ l = n, k, l > 0 define φk,l : Pk,l → An by φk,l(a1, a2, b1, b2) = Ta ∗[a1,a2]=[b1,b2] Tb

where Ta = πk(a1) = πk(a2) and Tb = πl(b1) = πl(b2). The group Fn is identified with
Fk ∗ Fl via Fk = 〈x1, . . . , xk〉 and Fl = 〈xk+1, . . . , xn〉.

Similarly, let ψk,l : Qk,l → An be defined by ψk,l(a, b, t) = Ta ∗a=0 [0, t] ∗t=b Tb, φn−1 :
Pn−1 → An by φn−1(a1, a2, b1, b2) = T∗[a1,a2]=[b1,b2] and ψn−1 → An by ψn−1(a, b, t) =
T ∗a=0 [0, t]∗t=b.

Lemma 7.5. φk,l, ψk,l, φn−1, and ψn−1 are 1-1 and continuous.

Proof. Continuity is straightforward. We will show that φk,l is 1-1, the others being similar.
We need a sublemma whose proof is left to the reader. If d is a direction in T , i.e. a germ
of arcs based at a point, then let Td denote the set of all points in T to which d points.

Sublemma 7.6. Suppose T is a minimal, hyperbolic G-tree. Let d be a direction in T .
Then, Td contains an axis of a hyperbolic element.

Let (a1, a2, b1, b2) and (a′1, a
′
2, b

′
1, b

′
2) be two distinct elements in Domain(φk,l). It is

clear that πk(a1) = πk(a2) = πk(a′1) = πk(a′2) and πl(b1) = πl(b2) = πl(b
′
1) = πl(b

′
2). Call

these trees Ta and Tb respectively. We may assume that dk(a1, a2) ≥ dk(a′1, a
′
2), and so

dk(b1, b2) ≥ dk(b′1, b
′
2). Let da be a direction in Ta and db be a direction in Tb such that

• da is based at a1 or a2, db is based at b1 or b2,
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• da points away from the union [a1, a2]∪[a′1, a
′
2], db points away from the union [b1, b2]∪

[b′1, b
′
2]

• either da(d, [a′1, a
′
2]) > 0, or db(d, [b

′
1, b

′
2]) > 0.

Choose α ∈ Fk with axis in Tda
and β ∈ Fl with axis in Tdb

. Now, lφk,l(a1,a2,b1,b2)(αβ) <
lφk,l(a

′

1
,a′

2
,b′

1
,b′

2
)(αβ). �

Corollary 7.7. The subset S of splittable, very small Fn-actions corresponding to cases
(1), (2), (5), and (8) is σ-compact and has dimension 3n− 3.

Proof. The images of φk,l, ψk,l (k + l = n), φn−1, and ψn−1 may not be contained in

X n, but their intersections with X n are σ-compact. (The class of σ-compact spaces is
closed under passing to images and closed subsets.) Furthermore, S is covered by the
countably many Aut(Fn)-translates of these images, hence S is σ-compact. (Countable
union of σ-compact spaces is σ-compact.) The corollary now follows from [HW, Theorem
III.2]. �

Theorem 7.8. The subspace of X n consisting of trees that admit a splitting as in Theorem
6.2 is σ-compact, has dimension 3n− 3, and contains all geometric actions in X n.

Proof. The other cases are treated similarly, and the details are left to the reader. �

Proposition 7.9. Given elements γ1, · · · , γm ∈ Fn, there is a map Φ : An → An such
that

• Φ(T ) is geometric for all T ∈ An,
• lT (γi) = lΦ(T )(γi), and

• Φ(Xn) ⊂ Xn, and so Φ(Xn) ⊂ X n.

Proof. Step 1: Fix a marked rose of rank n. Allowing the lengths of edges to vary describes
a subset ∆ of X n that is a copy of the orthant of R

n minus the origin. For every T ∈
Xn there is a point σ(T ) in ∆ and an equivariant map Σ(T ) : σ(T ) → T which sends
edges of σ(T ) isometrically. Furthermore, Σ(T ) varies continuously with T in the space of
equivariant maps from X n to Xn. See Skora [Sk1].

Step 2: The next goal is to correct the lengths of the γi’s by attaching foliated disks to
the rose σ(T ) in a manner that is continuous in T .

First assume that the collection {γi} of the proposition consists of a single element γ with
lσ(T )(γ) > 0. Consider the graph ΓT of the restricted map Σ(T ) : Axis(γ) → T . Define
the horizontal hull of ΓT , denoted Hull(ΓT ), to be the smallest subset H of Axis(γ) × T
containing ΓT such that Axis(γ) × {y} ∩ H is an interval for every y ∈ T . Notice the
following.

• Hull(ΓT ) is foliated by horizontal lines Axis(γ)× {y} ∩Hull(ΓT ).
• Hull(ΓT ) is invariant under the diagonal Z-action induced by γ, and the quotient

K(γ, T ) = Hull(ΓT )/Z is a finite, foliated 2-complex homotopy equivalent to the circle.
The length with respect to this foliation of the generator of π1(K(γ, T )) is lT (γ).

Now define Φ(T ) to be the dual to the foliated complex L(γ, T ) obtained from the rose
σ(T ) by attaching K(γ, T ) along ΓT /Z. The complex L(γ, T ) resolves T , and its dual,
Φ(T ), is resolved by σ(T ).
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In general, Φ(T ) is the dual to the foliated complex obtained from the rose σ(T ) by
attaching K(γi, T ) for those i = 1, · · · , m for which lσ(T )(γi) > 0.

The techniques of Skora [Sk1] show that Φ is continuous. A helpful observation is that
K(γ, T ) can be given the structure of a band complex, with the number of bands bounded
by a constant times the word length of γ. The rest follows easily. �

Corollary 7.10. For every open cover U of X n, for every compact P , and for every map
f : P → X n, there exists a map f ′ : P → X

geom

n so that f and f ′ are U-close.

Proof. Since P is compact, there exist γ1, · · · , γm ∈ Fn such that if T ∈ X n, p ∈ P , and
lT (γi) = lf(p)(γi) for i = 1, · · · , m, then T and f(p) are U-close. Define f ′ = Φ ◦ f . �

Corollary 7.11. Every compact subset P of X n has dimension less than or equal to 3n−3.

Proof. Recall [HW, Corollary of Theorem V.9] that the dimension of a compact space Y
is ≤ m provided that for every open cover V of Y , there is a map g : Y → Z such that
dim(Z) ≤ m and the point preimages of g refine V. Apply this to Y = P , Z = X

geom

n ,
and g a map approximating the inclusion of P into Xn. �

Proof of Theorem 7.2. The space X n is a countable union of compact sets of dimension
≤ 3n− 3. Hence, [HW, Theorem III.2] X n has dimension ≤ 3n− 3. Since a generic graph
of rank n has 3n − 3 edges, X n contains a subset of dimension 3n − 3. So, dim(X n) =
3n− 3. �

Corollary 7.12. dim(Yn) = 3n− 4.

Proof. Let α ∈ Fn. Let U = Uα be the subset of Yn where α is hyperbolic. The natural
map X n → Yn is a trivial line bundle over U (take as a section the actions where the
length of α is one). The space Yn is a countable union of such σ-compact sets U each of
which has dimension ≤ 3n− 4 since crossing with R increases the dimension by one [HW,
Remark after Theorem III 4]. �
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94 (1988), 53-80.

[Sk1] R. Skora, Deformations of length functions in groups, preprint.
[Sk2] R. Skora, Combination theorem for actions on trees, preprint.

[St] M. Steiner, Gluing data and group actions on Λ-trees, to appear.

[T] W. Thurston, On the geometry and dynamics of diffeomorphisms of surfaces, Bull. AMS 19 (1988),
417-431.

[W] T. White, Fixed points of finite groups of free group automorphisms, preprint, July 1991.

19


