
Homework on Out(Fn)
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Problems labeled with an asterisk are more difficult/technical and con-
stitute the take-home final.

1 Folding and applications

H is a finitely generated subgroup of Fn.

1. Find a basis of the subgroup

H = 〈babaaba, abababa, abababab〉 < 〈a, b〉

2. Given w ∈ Fn give an algorithm to decide whether w ∈ H. E.g. show
a 6∈ H of #1.

3. Given w ∈ Fn give an algorithm to decide whether w is conjugate into
H.

4. Can you tell if H is normal in Fn?

5. Can you tell if H has finite index in Fn?

6. Suppose H is a finitely generated normal subgroup of Fn. Show that
either H has finite index in Fn or H = {1}.

7. Given a homomorphism h : Fn → Fm, can you tell if h is injective,
surjective, bijective? Answer: Injective iff there are no folds of the second
kind. Surjective iff the last map is a homeomorphism. In particular, show
that Fn is hopfian, i.e. every epimorphism Fn → Fn is an automorphism.
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8. Let h : 〈a, b〉 → 〈a, b〉 be given by h(a) = abbab, h(b) = bababbab. Show
that h is an automorphism and compute h−1. (You can do this by messing
about. But try to do it algorithmically, that is, decompose h into a
product of Nielsen generators and then compose the inverses in opposite
order. The point is that this can be programmed on a computer.)

9. Show that for every homomorphism h : Fn → Fm there is a free factor-
ization Fn = A ∗B such that h kills A and is injective on B.

10. Show that for every finitely generated H ⊂ Fn there is a subgroup
H ′ ⊂ Fn such that H ⊂ H ′, H is a free factor in H ′, and H ′ has fi-
nite index in Fn. This is called Marshall Hall’s theorem. You can find H ′

algorithmically. Do it for H in the example from #1. Hint: Add some
edges to G to turn an immersion G → Y into a covering map.

11. Can you always compute the normalizer

N(H) = {γ ∈ Fn | γHγ−1 = H}?

What can you say about the index [N(H) : H]? (Answer: it is always
finite and bounded by the number of vertices in the graph representing
H. Recall that N(H)/H is the deck group.) E.g. show that N(H) = H
for H as in #1.

12. If T and T ′ are two maximal trees, show that there is a sequence T =
T0, T1, · · · , Tk = T ′ of maximal trees such that any two consecutive trees
differ in only one edge, as in the lecture.

13.∗ This is a bit more ambitious. Consider the simplicial complex whose
vertices are non-closed edges of G, and a collection of edges spans a
simplex if their union is a forest. Draw some examples. Can you make a
conjecture about the homotopy type of the complex?

14.∗ Read the wonderful paper Topology of finite graphs by John Stallings
(Inventiones 71 (1983) 551-565.)

2 Outer space

15. Consider a graph with two vertices and four edges, all joining the two
vertices. Once a marking is provided, this graph defines a simplex with
missing faces in Outer space CV3. How many faces are missing? How
many simplices-with-missing-faces in CV3 contain this simplex?
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16. In CV2, sketch an orbit of the automorphism a 7→ a, b 7→ ab, and also of
a 7→ b, b 7→ ab.

17. Prove that Zm cannot act freely and properly discontinuously on a con-
tractible complex of dimension< m. Deduce that no subgroup ofOut(Fn)
is isomorphic to Z

2n−2 (n ≥ 2) (recall that the dimension of the spine is
2n− 3). Find a subgroup isomorphic to Z

2n−3.

18. The smallest dimension of a Σ(Γ) is n−1. (Recall that Σ(Γ) is the space
of normalized nondegenerate metrics on the graph Γ of rank n.)

19. The largest dimension of a Σ(Γ) is 3n− 4.

20. Out(Fn) has finitely many conjugacy classes of finite subgroups. (Use
Nielsen realization.)

21. Find a nontrivial element of finite order in the kernel of Out(Fn) →
GLn(Z/2). Show that every such element has order 2 and that therefore
every finite subgroup of the kernel is abelian (in fact, a direct sum of
Z/2’s). Can you find the largest such subgroup?

22. Can you find estimates on the size of the largest finite subgroup of
Out(Fn)? For example, the stabilizer of a rose has order 2nn!. Can
you find a larger finite group? What about n = 2 and 3? For the answer
see Wang-Zimmermann: The maximum order of finite groups of outer

automorphisms of free groups. Math Z., 216, 1994, 83-87.

3 Lipschitz metric and train tracks

23. For ǫ > 0 find examples of graphs Γ,Γ′ such that d(Γ,Γ′) < ǫ and
d(Γ′,Γ) > 1/ǫ.

24. Let R ∈ CV2 be the rose with identity marking and edges of length 1/2.
Let f be given by a 7→ a, b 7→ ab. Show that d(R, fk(R)) ∼ log k. (this
means 1/C log k < d(R, fk(R)) < C log k for some fixed C > 1 and all
large k).

25. For the same R and f given by a 7→ b, b 7→ ab, show that d(R, fk(R))
is bounded above and below by a linear function of k. In fact, if R is
replaced by a suitable graph in the same simplex, k 7→ d(R, fk(R)) is
a linear function on the nose. Hint: use the train track metric. By
connecting consecutive graphs in the orbit with a folding path one gets
an axis of f .
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26. For f in #25, show that axes for f and for f−1 are distinct lines.

27. For f in #24 find a sequence Γk with d(Γk, f(Γk)) → 0. Prove that
for any such sequence for large k there is going to be a proper invariant
subgraph (up to homotopy).

28. Show that in any graph with a train track structure with at least two
gates at every vertex, there is a legal loop that is either embedded, or
it forms a “figure 8” crossing each edge once, or it forms a “dumbbell”,
crossing edges in the two loops once and edges in the connecting arc
twice. See Figure 1.

Figure 1: Possible forms of candidates. Train track structure is suggested
by the pictures.

We say that an immersed loop in a graph Γ (without any train track
structure) is a candidate if it has a form as in Exercise #28.

29. Let R3 be the rose in X3 with all edges of length 1

3
and with inverse

marking given by a, b, c, and let Γ be another such rose but with inverse
marking given by abA, bacB, a. Find all candidates in each that are
witnesses for the distance to the other.

30. Consider the automorphism Φ of F4 = 〈a, b, c, d〉 given by a → b → c →
d → ADCB (capital letters are inverses of the lowercase letters).

(a) Let R be the rose with the identity marking (so the edges correspond
to a, b, c, d) and with all lengths 1

4
. Compute d(R,RΦ).

(b) Find the graph Γ in the same simplex as R (i.e. the same marking,
but edge lengths can be arbitrary) so that d(Γ,ΓΦ) is minimal.

(c) Can you find a graph Γ′ in a small neighborhood of Γ so that d(Γ′,Γ′Φ) <
d(Γ,ΓΦ)?
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