Homework on $Out(F_n)$

Mladen Bestvina

KAIST 2018

Problems labeled with an asterisk are more difficult/technical and constitute the take-home final.

1 Folding and applications

H is a finitely generated subgroup of F_n .

1. Find a basis of the subgroup

$$H = \langle b\overline{a}baaba, ab\overline{a}baba, ab\overline{a}b\overline{a}\overline{b}a\overline{b}\rangle < \langle a,b\rangle$$

- 2. Given $w \in F_n$ give an algorithm to decide whether $w \in H$. E.g. show $a \notin H$ of #1.
- 3. Given $w \in F_n$ give an algorithm to decide whether w is conjugate into H.
- 4. Can you tell if H is normal in F_n ?
- 5. Can you tell if H has finite index in F_n ?
- 6. Suppose H is a finitely generated normal subgroup of F_n . Show that either H has finite index in F_n or $H = \{1\}$.
- 7. Given a homomorphism $h: F_n \to F_m$, can you tell if h is injective, surjective, bijective? Answer: Injective iff there are no folds of the second kind. Surjective iff the last map is a homeomorphism. In particular, show that F_n is hoppian, i.e. every epimorphism $F_n \to F_n$ is an automorphism.

- 8. Let $h: \langle a, b \rangle \to \langle a, b \rangle$ be given by h(a) = abbab, h(b) = bababbab. Show that h is an automorphism and compute h^{-1} . (You can do this by messing about. But try to do it algorithmically, that is, decompose h into a product of Nielsen generators and then compose the inverses in opposite order. The point is that this can be programmed on a computer.)
- 9. Show that for every homomorphism $h: F_n \to F_m$ there is a free factorization $F_n = A * B$ such that h kills A and is injective on B.
- 10. Show that for every finitely generated $H \subset F_n$ there is a subgroup $H' \subset F_n$ such that $H \subset H'$, H is a free factor in H', and H' has finite index in F_n . This is called Marshall Hall's theorem. You can find H' algorithmically. Do it for H in the example from #1. Hint: Add some edges to G to turn an immersion $G \to Y$ into a covering map.
- 11. Can you always compute the normalizer

$$N(H) = \{ \gamma \in F_n \mid \gamma H \gamma^{-1} = H \}?$$

What can you say about the index [N(H):H]? (Answer: it is always finite and bounded by the number of vertices in the graph representing H. Recall that N(H)/H is the deck group.) E.g. show that N(H)=H for H as in #1.

- 12. If T and T' are two maximal trees, show that there is a sequence $T = T_0, T_1, \dots, T_k = T'$ of maximal trees such that any two consecutive trees differ in only one edge, as in the lecture.
- 13.* This is a bit more ambitious. Consider the simplicial complex whose vertices are non-closed edges of G, and a collection of edges spans a simplex if their union is a forest. Draw some examples. Can you make a conjecture about the homotopy type of the complex?
- 14.* Read the wonderful paper *Topology of finite graphs* by John Stallings (Inventiones 71 (1983) 551-565.)

2 Outer space

15. Consider a graph with two vertices and four edges, all joining the two vertices. Once a marking is provided, this graph defines a simplex with missing faces in Outer space \mathcal{CV}_3 . How many faces are missing? How many simplices-with-missing-faces in \mathcal{CV}_3 contain this simplex?

- 16. In \mathcal{CV}_2 , sketch an orbit of the automorphism $a \mapsto a, b \mapsto ab$, and also of $a \mapsto b, b \mapsto ab$.
- 17. Prove that \mathbb{Z}^m cannot act freely and properly discontinuously on a contractible complex of dimension < m. Deduce that no subgroup of $Out(F_n)$ is isomorphic to \mathbb{Z}^{2n-2} $(n \ge 2)$ (recall that the dimension of the spine is 2n-3). Find a subgroup isomorphic to \mathbb{Z}^{2n-3} .
- 18. The smallest dimension of a $\Sigma(\Gamma)$ is n-1. (Recall that $\Sigma(\Gamma)$ is the space of normalized nondegenerate metrics on the graph Γ of rank n.)
- 19. The largest dimension of a $\Sigma(\Gamma)$ is 3n-4.
- 20. $Out(F_n)$ has finitely many conjugacy classes of finite subgroups. (Use Nielsen realization.)
- 21. Find a nontrivial element of finite order in the kernel of $Out(F_n) \to GL_n(\mathbb{Z}/2)$. Show that every such element has order 2 and that therefore every finite subgroup of the kernel is abelian (in fact, a direct sum of $\mathbb{Z}/2$'s). Can you find the largest such subgroup?
- 22. Can you find estimates on the size of the largest finite subgroup of $Out(F_n)$? For example, the stabilizer of a rose has order $2^n n!$. Can you find a larger finite group? What about n = 2 and 3? For the answer see Wang-Zimmermann: The maximum order of finite groups of outer automorphisms of free groups. Math Z., 216, 1994, 83-87.

3 Lipschitz metric and train tracks

- 23. For $\epsilon > 0$ find examples of graphs Γ, Γ' such that $d(\Gamma, \Gamma') < \epsilon$ and $d(\Gamma', \Gamma) > 1/\epsilon$.
- 24. Let $R \in \mathcal{CV}_2$ be the rose with identity marking and edges of length 1/2. Let f be given by $a \mapsto a$, $b \mapsto ab$. Show that $d(R, f^k(R)) \sim \log k$. (this means $1/C \log k < d(R, f^k(R)) < C \log k$ for some fixed C > 1 and all large k).
- 25. For the same R and f given by $a \mapsto b$, $b \mapsto ab$, show that $d(R, f^k(R))$ is bounded above and below by a linear function of k. In fact, if R is replaced by a suitable graph in the same simplex, $k \mapsto d(R, f^k(R))$ is a linear function on the nose. Hint: use the train track metric. By connecting consecutive graphs in the orbit with a folding path one gets an axis of f.

- 26. For f in #25, show that axes for f and for f^{-1} are distinct lines.
- 27. For f in #24 find a sequence Γ_k with $d(\Gamma_k, f(\Gamma_k)) \to 0$. Prove that for any such sequence for large k there is going to be a proper invariant subgraph (up to homotopy).
- 28. Show that in any graph with a train track structure with at least two gates at every vertex, there is a legal loop that is either embedded, or it forms a "figure 8" crossing each edge once, or it forms a "dumbbell", crossing edges in the two loops once and edges in the connecting arc twice. See Figure 1.

Figure 1: Possible forms of candidates. Train track structure is suggested by the pictures.

We say that an immersed loop in a graph Γ (without any train track structure) is a *candidate* if it has a form as in Exercise #28.

- 29. Let R_3 be the rose in \mathcal{X}_3 with all edges of length $\frac{1}{3}$ and with inverse marking given by a, b, c, and let Γ be another such rose but with inverse marking given by abA, bacB, a. Find all candidates in each that are witnesses for the distance to the other.
- 30. Consider the automorphism Φ of $\mathbb{F}_4 = \langle a, b, c, d \rangle$ given by $a \to b \to c \to d \to ADCB$ (capital letters are inverses of the lowercase letters).
 - (a) Let R be the rose with the identity marking (so the edges correspond to a, b, c, d) and with all lengths $\frac{1}{4}$. Compute $d(R, R\Phi)$.
 - (b) Find the graph Γ in the same simplex as R (i.e. the same marking, but edge lengths can be arbitrary) so that $d(\Gamma, \Gamma\Phi)$ is minimal.
 - (c) Can you find a graph Γ' in a small neighborhood of Γ so that $d(\Gamma', \Gamma'\Phi) < d(\Gamma, \Gamma\Phi)$?