Week 2 exercises

- 1. (I. Kapovich-Rafi) Let $f : X \to Y$ be a Lipschitz map between two graphs that sends vertices to vertices and is surjective on the vertices. Suppose there is some D such that whenever [x, x'] is a geodesic in Xand $d(f(x), f(x')) \leq 1$ then $diamf([x, x']) \leq D$. If X is hyperbolic, show that Y is also hyperbolic.
- 2. Let a, b be two curves in Σ that intersect once (for concreteness).
 - (a) For large *n* consider $T_a^n(b)$. Show that $d_A(b, T_a^n(b))$ is large (on the order of *n*), where *A* is the annulus around *a*.
 - (b) If Y is any subsurface such that the projections of $a, b, T_a^n(b)$ are all defined, then $d_Y(b, T_a^n(b))$ is bounded independently of n. (In fact, Y = A is the only subsurface with large projection distance but to prove this you would need the following fact: if $Y \subset Z$ are two subsurfaces then $\pi_Y(\gamma) = \pi_Y \pi_Z(\gamma)$; this is clear when Y is not an annulus, but the annulus case requires a proof.)
 - (c) Show that $d_B(a, T_b^n T_a(b))$ is large for the annulus *B* around *b*. There is one more annulus *C* with $d_C(a, T_b^n T_a(b))$ large. Find it. Hint: $d_{f(Y)}(f(\alpha), f(\beta)) = d_Y(\alpha, \beta)$.