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Abstract

In Chapter 1, we provide some background to the topics discussed throughout the dissertation,

including the method of the closed point sieve employed in Poonen’s Bertini theorem.

In Chapter 2, we extend Poonen’s Bertini theorem over finite fields to Taylor conditions arising

from locally free quotients of the sheaf of differentials on projective space. This is motivated by

a result of Bilu and Howe in the motivic setting that allows for significantly more general Taylor

conditions.

In Chapter 3, we provide a framework that abstracts several instances of implementations of

Poonen’s closed point sieve.

Chapter 4 consists of joint work with Sean Howe. We formulate an abstract notion of equidis-

tribution for families of λ-probability spaces parameterized by admissible Z-sets. Under the

assumption of equidistribution, we show that the σ-moment generating functions of certain

infinite sums of random variables can be computed as motivic Euler products. Combining this

result with earlier generalizations of Poonen’s sieve, we compute the asymptotic Λ-distributions

for several natural families of function field L-functions and zeta functions.
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Rahul Ajit, Petar Bakić, Hannah Hoganson, Peter McDonald, Holland Morris, Keshav Patel, Tyler

Schuessler, Julie Sherman, Misha Sweeney, and Peter Wear.

My family was incredibly supportive of my studies, even when they didn’t understand why

someone would spend six years far away from home studying an arcane subject that few people

understood or cared about. Thank you to my parents, my two brothers, and Alexandra.

Most of all, I’d like to thank my PhD advisor, Sean Howe, for taking me on as a student,

for pushing me to grow mathematically, and for countless useful conversations that led to the

formulation and proof of most of the results in this thesis.

The author was partially supported during the preparation of this thesis by the University of

Utah’s NSF Research Training Grant #1840190.

ix

https://www.nsf.gov/awardsearch/showAward?AWD_ID=1840190


x



Chapter 1

Introduction and background

1.1 Classical Bertini

As many works in this area begin, let us recall a version of Eugenio Bertini’s famous theorem:

Theorem 1.1.1 (Classical Bertini). Let X be a smooth projective subvariety of Pn
k over a field k. Let

(Pn
k )∗ be the dual projective space. Call a hyperplane H ∈ (Pn

k )∗ good if H ∩ X is smooth and and

does not contain X . Then a general element H ∈ (Pn
k )∗ is good.

Recall that by a general element of (Pn
k )∗, we mean the set of such elements form an open,

dense subset of (Pn
k )∗.

As a corollary, if k is algebraically closed, then “almost all” hyperplanes defined over k are

good. Furthermore, if k is not necessarily algebraically closed but is infinite, one can always find a

good hyperplane defined over k.

Remark 1.1.2. There are various stronger versions of Theorem 1.1.1 stated in terms of the base

locus of a linear system on X . Many of these already fail when k is not algebraically closed, or

when k is algebraically closed but char(k) > 0. As we are interested in finite fields, our comparison

is limited to the version that works in the broadest setting.

For a wonderful history of Bertini’s life and theorems, the reader is highly encouraged to

consult [Kle98].

1.2 The situation over finite fields

If k is finite, then the set of k-hyperplanes in Pn
k is also finite; this does not give much room to

work with, and things can go very wrong from a classical perspective.

1



2 Chapter 1. Introduction and background

1.2.1 Failure of classical Bertini

In [Kat99], Katz gave an example of a smooth projective hypersurface over Fq that has no smooth

Fq -hyperplane sections.

Example 1.2.1 ([Kat99, Question 10]). Let Hyp(2n + 1, q) be the smooth hypersurface in P2n+1
Fq

defined by
n∑

i=0
(xi y q

i − xq
i yi )

where x0, . . . , xn , y0, . . . , yn are the homogeneous coordinates on P2n+1. Then there is no Fq -

hyperplane H such that X ∩ H is smooth.

Katz proves this by showing that

(a) Hyp(2n + 1, q)(Fq ) = P2n+1(Fq ), and

(b) Hyp(2n + 1, q) is isomorphic to its own dual variety.

By definition of the dual variety, this means that every Fq -hyperplane in P2n+1 is tangent to

Hyp(2n + 1, q), hence does not intersect it smoothly.

So Theorem 1.1.1 fails over Fq . Katz went on to ask ([Kat99, Question 13]) if some version

of Bertini can be salvaged by considering not only hyperplanes but hypersurfaces of degree d

sufficiently large. This was answered affirmatively by Gabber in [Gab01] when d is divisible by

p = char(Fq ). Around the same time, though, Poonen proved a much stronger result.

Using a technique called the closed point sieve, Poonen showed that, as d → ∞, the probability

that a hypersurface intersects X smoothly factors over the probabilities that it is smooth at every

closed point x of X .

Definition 1.2.2. Let Sd be the polynomials of degree d in variables x0, . . . , xn over Fq , identified

with H 0(Pn
Fq

, OPn (d)). Let d be a subset of Sd . We write

Prob( f ∈ d ) := #d

#Sd
.

Theorem 1.2.3 ([Poo04, Theorem 1.1]). Let X be a smooth quasiprojective subscheme of Pn of

dimension m ≥ 0 over Fq . Define

d := {
f ∈ Sd

∣∣ H f ∩U is smooth of dimension m − 1
}
.

Then

lim
d→∞

Prob( f ∈ d ) = ∏
closed x∈X

(
1 − q−(m+1) deg(x)) = ζX (m + 1)−1

where ζX is the local zeta function of X .
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This is a direct geometric analogue of the classical result in number theory that the probability

that an integer is square-free is

∏
p prime

(1 − p−2) = ζ(2)−1 = 6

π2

where here ζ is the Riemann zeta function. In fact, assuming the abc conjecture, Poonen gives

a shared generalization of Theorem 1.2.3 and this classical result in [Poo04, Theorem 5.1] for

quasiprojective schemes over Z.

Before discussing the proof of Theorem 1.2.3, we give a brief exposition of local zeta functions.

1.2.2 Zeta functions

Definition 1.2.4. Let X be a scheme of finite type over Fq . The local zeta function of X is

ζX (s) = exp

( ∑
m≥1

#X (Fqm )

m
q−ms

)
.

It has an Euler product

ζX (s) = ∏
closed P∈X

(1 − q−s deg P )−1.

By the Weil conjectures (now theorems), ζX is a rational function of q−s . For simple X it is

possible to compute ζX directly using the definition. See [Sil09, Example 2.1] for the example of

Pn .

Example 1.2.5. (a) ζAn
Fq

(s) = 1

1 − qn−s

(b) ζPn
Fq

(s) = 1

(1 − q−s)(1 − q1−s) · · · (1 − qn−s)

When X is an elliptic curve over Fq , it is a consequence of the Grothendieck-Lefschetz trace

formula (proved by Weil for curves) that

ζX (s) = 1 − aq−s + q1−2s

(1 − q−s)(1 − q1−s)
(1.2.1)

where a = 1 + q − #X (Fq ). See [Sil09, V.2] for a discussion and proof.

Example 1.2.6. Suppose p ̸= 2, 3 and p ≡ 2 (mod 3). Let E be the elliptic curve over Fp with

Weierstrass form y2 = x3 − B , B not divisible by p. One can easily show #E(Fp ) = p + 1, so

a = 1 + p − (p + 1) = 2. By Equation (1.2.1), ζE (s) = 1−2q−s+q1−2s

(1−q−s )(1−q1−s ) .

More generally, for p ̸= 2, 3, any supersingular elliptic curve over Fp has p + 1 points in Fp ,

hence has the same zeta function as E above.
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1.2.3 Closed point sieve

Consider the standard proof that the density of square-free integers is
∏

p (1 − p−2). For finitely

many primes p1, . . . , ps , the Chinese remainder theorem says that the probability of not being

divisible by p2
i for i = 1, . . . , s is

∏s
i=1(1 − p−2

i ), i.e. the probabilities are independent. But this

breaks down when considering infinitely many primes. The difficult part of the proof is showing

that the error term vanishes as all primes are included in the computation, meaning showing

lim
e→∞ lim

d→∞
#
{

n ≤ d
∣∣ p2|n for some p > e

}
d

= 0.

Poonen applied this idea to the closed points of a variety. For f homogeneous, H f ∩ X is

smooth at a closed point x ∈ X if and only if a dehomogenization of f at x does not vanish in

OX ,x /𝔪2
x ; equivalently, if and only if the degree zero and one Taylor coefficients of this dehomog-

enization are not all zero. If X has dimension m, then this is m + 1 linear conditions over the

residue field κ(x). Writing deg(x) := [κ(x) : Fq ], this means the probability that H f ∩ X is smooth

at x is 1 − q−(m+1) deg(x). As with square-free integers, these conditions are independent at finitely

many points, but not at infinitely many. The difficult part of the proof is showing that the error

term (when d ≫ deg(x) ≫ 1) vanishes.

In fact, Poonen gives stronger versions of Theorem 1.2.3 that allow for controlling the Taylor

expansions of f at finitely and infinitely many points ([Poo04, Theorems 1.2 and 1.3]).

1.3 Organization

This thesis has three chapters of new material, all with their own introductory sections describing

the motivation for the results therein. At their core, all are motivated by Poonen’s Bertini theorem

and method of the closed point sieve.

Chapter 2 extends Poonen’s Bertini to more general Taylor conditions arising from locally

free quotients of the sheaf of differentials of projective space, including with prescribed Taylor

expansions at infinitely many points. This allows one to compute more exotic probabilities even

related to non-smooth varieties (see Example 2.5.3).

Chapter 3 attempts to unify various implementations of the closed point sieve in the literature

into a generally applicable result (Proposition 3.1.3).

Chapter 4 is joint work with Sean Howe. Using Poonen’s Bertini as the paradigmatic example,

we develop a notion of equidistribution in the setting of admissible Z-sets and show that under

this assumption,σ-moment generating functions of certain infinite sums of random variables can
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be computed as motivic Euler products. We then use this to compute asymptotic Λ-distributions

of families of L-functions and zeta functions.
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Chapter 2

Taylor conditions on varieties over
finite fields

2.1 Introduction

For X a smooth quasiprojective subscheme of Pn over a finite field Fq , Poonen showed in [Poo04]

the existence of smooth hypersurface sections of X and computed the asymptotic density of

smooth hypersurface sections to be ζX (dim X + 1)−1, where ζX is the zeta function of X . He

also allowed for prescribing the first few coefficients of the Taylor expansions of hypersurfaces at

finitely many points. It is natural to extend the problem to more general conditions on the Taylor

expansions. As far as the author knows, questions like the following are not within the scope of

Poonen’s theorem or its existing generalizations1.

Question 2.1.1. Assume char(Fq ) ̸= 2. Choose a finite, reduced, degree 4 subscheme Y of P2
Fq

whose points are geometrically in general position. Let ι : X ,→ P2
Fq

be a curve whose geometric

points are in general position with the points of Y . For each closed point x ∈ X , there is a unique

smooth conic Cx passing through the four points and X . What is the probability that a random

plane curve intersects Cx transversely at x for each closed point x ∈ X ?

This question is answered in Example 2.5.3 and requires considering Taylor conditions arising

from locally free quotients of the sheaf of differentials on projective space. Such Taylor conditions

are addressed in the following theorem which is the main result of this chapter. See Section 2.2.1

for notation and the definition of the sheaf of principal parts P 1.

Theorem A. Let X be a quasiprojective subscheme of Pn
Fq

of dimension m with locally closed

embedding ι. Let Q be a locally free quotient of ι∗Ω1
Pn of rank ℓ ≥ m, and let K denote the kernel

1These include [BK12], [EW15], [GK23], [Gun17], [Poo08], and [Wut14].

7



8 Chapter 2. Taylor conditions

of ι∗Ω1
Pn →→ Q. For each d, define

Ed := (
ι∗P 1(OPn (d))

) /
K (d)

where we view K (d) as a subsheaf of ι∗P 1(OPn (d)) via the exact sequence

0 ι∗Ω1
Pn (d) ι∗P 1(OPn (d)) OX (d) 0.

This defines a 1-infinitesimal Taylor condition d on Pn such that at each closed point x, d ,x ⊆
OPn (d)x /𝔪2

x is given by not vanishing in the fiber of Ed at x. By convention, d is always satisfied if

x ∉ X .

Define

d := {
f ∈ Sd

∣∣ f satisfies d at all closed x ∈ Pn }
.

Then

lim
d→∞

Prob( f ∈ d ) = ∏
closed x∈X

(
1 − q−(ℓ+1) deg(x)) = ζX (ℓ+ 1)−1.

Note that for X smooth, taking Q = Ω1
X recovers Poonen’s Bertini theorem. Regarding

Question 2.1.1, we will define a suitable sheaf Q in Example 2.5.3 whose fiber at a closed point x

is the cotangent space of Cx at x.

Following Poonen, we will prove Theorem A as a special case of the following more general

theorem that allows one to prescribe the first few Taylor expansions at finitely many points.

Theorem B. Let X be a quasiprojective subscheme of Pn
Fq

and Z a finite subscheme of Pn . Fix a

subset T ⊆ H 0(Z , OZ ). On each connected component Zi of Z , fix a nonvanishing coordinate x ji
.

For f ∈ Sd , write f |Z for the element of H 0(Z , OZ ) that on each Zi equals the restriction of x−d
ji

f

to Zi .

Assume U := X − (Z ∩ X ) has dimension m with locally closed embedding ι : U ,→ Pn . For a

locally free quotient Q of ι∗Ω1
Pn of rank ℓ ≥ m, define Ed and d as in Theorem A.

Define

d := {
f ∈ Sd

∣∣ f satisfies d at all closed x ∈ Pn − Z and f |Z ∈ T
}
.

Then

lim
d→∞

Prob( f ∈ d ) = #T

#H 0(Z , OZ )
ζU (ℓ+ 1)−1.

The proof is an adaptation of Poonen’s original proof; the main innovation is observing that

the Taylor condition parameterized by X need not have anything to do with properties of X .
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Again following Poonen, we will prove a stronger version of Theorem B that allows us to

impose Taylor conditions of arbitrary order at infinitely many points so long as the conditions are

no stronger than nonvanishing in locally free quotients of the sheaf of principal parts relative to a

finite set of varieties.

Theorem C. Let X1, . . . , Xu be quasiprojective subschemes of Pn
Fq

of dimensions dim Xi = mi with

locally closed embeddings ι1, . . . , ιu , respectively. For each i , let Qi be a locally free quotient of

ι∗i Ω
1
Pn of rank ℓi ≥ mi . Define the sheaves Ei ,d and Taylor conditions i ,d as in Theorem A.

For each closed point x ∈ Pn , fix a positive integer Mx , a nonvanishing coordinate x j , and a

subset Ax ⊆ OPn ,x /𝔪
Mx
x . For f ∈ Sd , write f |x for the image of x−d

j f in OPn ,x /𝔪
Mx
x . Assume that

the sets Ax have been chosen so that for all but finitely many x, f |x ∈ Ax whenever f ∈ Sd satisfies

i ,d at x for all i .

Define

d := {
f ∈ Sd

∣∣ f |x ∈ Ax for all closed x ∈ Pn }
.

Then

lim
d→∞

Prob( f ∈ d ) = ∏
closed x∈X

#Ax

#OPn ,x /𝔪
Mx
x

.

2.1.1 Motivation

Theorems A, B, and C are motivated by the more general Taylor conditions considered by [BH21]

in the motivic setting, i.e., in the Grothendieck ring of varieties. There the authors ask if an

arithmetic analog of the following theorem holds over Fq (see the paper for notation):

Theorem ([BH21, Theorem B]). Fix f : X → S, a proper map of varieties over a field K , F a

coherent sheaf on X , L a relatively ample line bundle on X , and r, M ≥ 0. Then, there is an

ϵ > 0 such that as T ranges over all r -infinitesimal Taylor conditions on F (d) = F ⊗ L d with

M-admissible complement,

[V( f∗F (d))T - everywhere]

[V( f∗F (d))]
= ∏

x∈X /S

(
1 − [T c ]x

[V(P r
/SF (d))]x

t

)∣∣∣∣
t=1

+ O(L−ϵd )

in ̂̃X .

For Bilu and Howe, a Taylor condition is just a constructible subset of the sheaf of principal

parts (viewed as a scheme) and the M-admissible condition ensures the motivic Euler product

converges. In the arithmetic setting, we also need a good notion of “admissibility” for a Taylor

condition such that the probability that the condition is satisfied everywhere factors into the local
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probabilities at closed points. A counterexample to the most general such Taylor conditions is

given in Example 2.3.1, suggesting more structure, possibly algebraic as in Theorem A, is necessary.

2.1.2 Organization

In Section 2.2 we set up our notation and give some properties of the sheaf of principal parts.

Section 2.3 contains a counterexample for the most general Taylor conditions. In Section 2.4 we

prove Theorems A, B, and C, and in Section 2.5 we give some applications.

2.2 Notation and definitions

Throughout, let q be a power of a prime p and Fq the field with q elements. Let S = Fq [x0, . . . , xn]

and identify Sd := H 0(Pn
Fq

, O (d)) with degree d homogeneous polynomials in S. Let A =
Fq [x1, . . . , xn] and A≤d the polynomials in A of degree at most d . For a closed point

Notation 2.2.1. Let F be an OX -module on a locally ringed space X . Let i : x ,→ X be the

inclusion of a point. We write F |x for the fiber of F at x, i.e. the κ(x)-vector space

F |x = H 0(x, i∗F ) = Fx ⊗OX ,x
κ(x).

Notation 2.2.2. For X a locally ringed space and x ∈ X , we write x(r ) for the r th infinitesimal

neighborhood of x, i.e. x(r ) = Spec(OX ,x /𝔪r+1
x ).

Let j : x(r ) ,→ X be the inclusion and F an OX -module. We write the restriction of F to x(r ) as

F |x(r ) = H 0(x(r ), j∗F ) = Fx ⊗OX ,x
OX ,x /𝔪r+1

x .

Definition 2.2.3. Let F be a coherent sheaf on a proper Fq -scheme X . An r -infinitesimal Taylor

condition on F at a closed point x ∈ X is a subset

x ⊆ F |x(r ) .

An r -infinitesimal Taylor condition  on F is a choice of an r -infinitesimal Taylor condition x at

x on F for each closed point x.

We say that a global section s ∈ H 0(X , F ) satisfies  at x ∈ X if its image in F |x(r ) lies in x ,

and satisfies  if it satisfies  at every closed point x ∈ X .

Definition 2.2.4. Let F be a coherent sheaf on a proper Fq -scheme X . For a subset  of the finite

dimensional Fq -vector space H 0(X , F ), denote by Prob(s ∈ ) the probability that a random

uniformly distributed global section s of F belongs to  , i.e.,

Prob(s ∈ ) := #
#H 0(X , F )

.
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Remark 2.2.5. The definition above differs from that of [EW15]. When they write Prob(s ∈ ),

they mean (in our notation) limd→∞ Prob(sd ∈ d ) where for each d ≥ 0, d ⊆ H 0(X , F (d)) and

sd is a uniform random global section of F (d).

Remark 2.2.6. Our definition of a Taylor condition assumes X is proper over Fq so that H 0(X , F )

is a finitely generated Fq -vector space. This does not contradict allowing quasiprojective X in

Theorem A since there, the Taylor condition is actually on Pn .

2.2.1 Sheaves of principal parts

We recall the definition of sheaves of principal parts and collect some of their relevant properties.

These sheaves were introduced by Grothendieck in [Gro67, §16] and have been the object of

intermittent study since; recently, they’ve received some revived interest in commutative algebra

in the study of higher order differential operators2. Good resources on the subject include the

original work in EGA IV, [Ben70, III, §2], [EH16, §7.2], [LT95, §4], and [Per95, Appendix A].

Definition 2.2.7. Let X → S be a morphism of schemes and F an OX -module. Let ∆(r ) be the

r -th infinitesimal neighborhood of the diagonal ∆ in X ×S X and let δ(r ) : ∆(r ) → X ×S X be the

canonical morphism. Denote by π1,π2 : X ×S X → X the corresponding projections and set

p = π1 ◦ δ(r ) and q = π2 ◦ δ(r ). The sheaf of r -th order principal parts of F on X over S is

P r
X /S(F ) := p∗(q∗F ).

By definition this is an OX -module. If S is clear from context, we write P r
X (F ) for P r

X /S(F ); if X is

also clear, we write P r (F ).

References given below are not necessarily the original source of the result.

Lemma 2.2.8 ([Gro67, Proposition 16.7.3]). If F is quasi-coherent (resp. coherent, of finite type,

of finite presentation), then P r
X /S(F ) is quasi-coherent (resp. coherent, of finite type, of finite

presentation).

Lemma 2.2.9 ([Gro67, Corollary 16.4.12] and [Ben70, III, Lemma 2.1 and Proposition 2.2]). If S =
Spec k for k a field, F is quasi-coherent, and x ∈ X is rational over k, then the fiber P r

X /S(F )|x =
P r

X /S(F )x ⊗OX ,x
κ(x) is canonically isomorphic to FX ,x /𝔪r+1

x .

If k is perfect, then the same is true for any closed point x ∈ X .

2See, for example, [BJNB19], [DNB22], and [LY25].
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Remark 2.2.10. In our notation, Lemma 2.2.9 says that an r -infinitesimal Taylor condition on F

is just a choice of subset of the fiber of P r
X /k (F ) for every closed x ∈ X .

Lemma 2.2.11 ([Per95, A, Proposition 3.4]). If X → S is differentially smooth (see [Gro67, 16.10]),

and F is locally free on X , then there is an exact sequence of OX -modules

0 Symr
OX

(Ω1
X /S) ⊗OX

F P r
X /S(F ) P r−1

X /S (F ) 0.

If X , Y are smooth S-schemes, f : X → Y is a morphism of S-schemes, and G is locally free on Y ,

then there is a map of exact sequences of OX -modules

0 Symr
OX

( f ∗Ω1
Y /S) ⊗OX

f ∗G f ∗P r
Y /S(G ) f ∗P r−1

Y /S (G ) 0

0 Symr
OX

(Ω1
X /S) ⊗OX

f ∗G P r
X /S( f ∗G ) P r−1

X /S ( f ∗G ) 0

Corollary 2.2.12 ([Per95, A, Proposition 3.3]). In the setting of Lemma 2.2.11, if F is locally free of

rank n, then P r
X /S(F ) is locally free of rank n · (dim X+r

r

)
.

2.3 Counterexamples to most general Taylor conditions

The following example shows that arbitrary set-theoretic constructions of Taylor conditions even

on OPn (d), d ≥ 0, can produce local probabilities whose product is not the asymptotic global

probability of the condition being satisfied.

Example 2.3.1 (Diagonal argument). Let X = Pn
Fq

and F = OPn . Both the union of global sections

Sd over all d ≥ 0 and the set of closed points ofPn are countably infinite; let f1, f2, . . . and x1, x2, . . .

be enumerations of them, respectively. For each i , fix an isomorphism OPn (d)|x(1)
i

∼= OPn |x(1)
i

.

Define a 1-infinitesimal Taylor condition d on OPn (d) as follows: for each i , identify OPn (d)|x(1)
i

with OPn |x(1)
i

under the fixed isomorphism and set d ,xi
to be all of OPn |x(1)

i
except the Taylor

expansion of fi (this does not depend on d). Then the local probabilities are pxi
= 1−q−(n+1) deg(xi )

and the product over all closed points is ζPn (n + 1)−1.

Globally, however, no section f ∈ Shomog can satisfy this Taylor condition. Indeed, define

d = { f ∈ Sd | f satisfies d at all closed x ∈ Pn}.

By construction, if f = fi in our enumeration, then d ,xi
excludes the Taylor expansion of f , so f

fails d at xi . Thus d = Ø for all d , and

lim
d→∞

Prob( f ∈ d ) = 0 ̸=
∞∏

i=1
pxi

= ζPn (n + 1)−1.
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Some algebraic nature to the condition is likely necessary in general. In Theorem A, this

manifests as “locally free quotients of the sheaf of differentials”.

2.4 More general Taylor conditions

We now use Poonen’s method of the closed point sieve to prove our main theorems. Throughout

this section, let notation be as in Theorem B.

2.4.1 Points of low degree

The following lemma says that for finitely many closed points, the local probabilities are indepen-

dent.

Lemma 2.4.1 (Points of low degree). Let U<e be the closed points of U of degree less than e. Define

 low
d ,e := {

f ∈ Sd

∣∣ f satisfies d at all x ∈ U<e and f |Z ∈ T
}
.

Then

lim
d→∞

Prob( f ∈  low
d ,e ) = #T

#H 0(Z , OZ )

∏
x∈U<e

(
1 − q−(ℓ+1) deg(x)).

Proof. Let U<e = {x1, . . . , xs}. By definition, f ∈ Sd fails d at xi if and only if it vanishes under the

composition

Sd OPn (d)xi
/𝔪2

xi
Ed |xi

for some i ∈ {1, . . . , s}. Thus  low
d ,e consists of the preimage of T × ∏s

i=1(Ed |xi
− {0}) under the

composition

Sd H 0(Z , OZ (d)) ×
s∏

i=1
OPn (d)xi

/𝔪2
xi

H 0(Z , OZ ) ×
s∏

i=1
Ed |xi

.

The first map is surjective for d ≫ 1 by [Poo04, Lemma 2.1] and the second since ι∗P 1(OPn (d)) →
Ed is surjective and H 0(Z , OZ (d)) ∼= H 0(Z , OZ ), so the composition is surjective.

We have a filtration of κ(xi )-vector spaces 0 ⊂ Q(d)|xi
⊂ Ed |xi

whose quotients Q(d)|xi
and

Ed |xi
/Q(d)|xi

have dimensions ℓ and 1, respectively, hence Ed |xi
− {0} has size q (ℓ+1) deg(xi ) − 1,

and the local probability of vanishing is 1 − q−(ℓ+1) deg(xi ). As this does not depend on d , the result

follows.
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2.4.2 Points of medium degree

Lemma 2.4.2 (Points of medium degree). For e > 0, define

med
d ,e := {

f ∈ Sd

∣∣ f fails d at some x ∈ U with e ≤ deg(x) ≤ d
ℓ+1

}
.

Then

lim
e→∞ lim

d→∞
Prob( f ∈ med

d ,e ) = 0.

Proof. Let x be a closed point of U with e ≤ deg(x) ≤ ℓ+1. We have dimFq
Ed |x = (ℓ+1) deg(x) ≤ d

by assumption. Note the argument in [Poo04, Lemma 2.1] works exactly the same here with the

map Sd → Ed |x , so this map is surjective and identical reasoning as in [Poo04, Lemma 2.3] shows

the fraction of f ∈ Sd that vanish in Ed |x is q−(ℓ+1) deg(x).

Now we follow Poonen’s proof of [Poo04, Lemma 2.4]. By [LW54], there is a constant c > 0

depending only on U such that #U (Fqr ) ≤ cqr m . With the result above, this gives

Prob( f ∈ med
d ,e ) ≤

⌊d/(ℓ+1)⌋∑
r=e

(# of points of degree r ) · q−(ℓ+1)r

≤
⌊d/(ℓ+1)⌋∑

r=e
#U (Fqr ) · q−(ℓ+1)r

≤
∞∑

r=e
cqr m q−(ℓ+1)r

Since ℓ ≥ m, this converges to cqe(m−ℓ−1)

1−qm−ℓ−1 . This is independent of d and goes to zero as e goes to

∞.

2.4.3 Points of high degree

As usual with proofs using the closed point sieve, showing the contribution from high degree

points is negligible is the hardest part of the proof.

Lemma 2.4.3 (Points of high degree). Define

high
d

:= {
f ∈ Sd

∣∣ f fails d at some x ∈ U> d
ℓ+1

}
.

Then limd→∞ Prob( f ∈ high
d ) = 0.

Proof. As in [Poo04, Lemma 2.6], we reduce to the affine case ι : U ,→ An , also dehomogenizing

to identify Sd with A≤d .
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Consider the commutative diagram

0 ι∗Ω1
An /Fq

ι∗P 1(OAn ) OU 0

0 Q E

Given a closed point x ∈ U , the map on fibers ι∗Ω1
An /Fq

|x → Q|x is surjective, and every ele-

ment of ι∗Ω1
An /Fq

|x ∼= 𝔪x /𝔪2
x is the restriction of some d t to x where t is some element of A.

Choose t1, . . . , tℓ ∈ A such that the restrictions of d t1, . . . , d tℓ to x map to a κ(x)-basis of Q|x . By

Nakayama’s lemma, the elements d t1, . . . , d tℓ in the stalk (ι∗Ω1
An /Fq

)x map to an OU ,x -basis for

Qx . Call this basis Q1, . . . , Qℓ and let ∂1, . . . ,∂ℓ be the corresponding dual basis.

Now we mimic the proof of [Poo04, Lemma 2.6].

We have
HomOU ,x

(Qx , OU ,x ) ⊂ HomOU ,x
((ι∗Ω1

An )x , OU ,x )

= HomOAn ,x
(Ω1

An ,x , OU ,x )

= DerFq
(OAn ,x , OU ,x )

where the first inclusion follows since HomOU ,x
(−, OU ,x ) is contravariant left exact. Thus we can

think of the dual basis elements ∂i as Fq -derivations OAn ,x → OU ,x . Choose s ∈ A/I (U ) with

s(x) ̸= 0 to clear denominators so Di = s∂i is a global derivation A → A/I (U ). We can find a

neighborhood Nx of x on which Q1, . . . , Qℓ generate Q and such that s ∈ OU (Nx )×. As we can

cover U with finitely many such Nx , we may assume U ⊂ Nx , and that the Q1, . . . , Qℓ generate Q

globally.

Set τ = maxi {deg ti }, γ = ⌊(d − τ)/p⌋, and η = ⌊d/p⌋. If f0 ∈ A≤d , g1, . . . , gℓ ∈ A≤γ, and

h ∈ A≤η are selected uniformly at random, then the distribution of

f = f0 + g p
1 t1 + · · · + g p

ℓ
tℓ + hp

is uniform over A≤d . We will bound the probability that for such an f , there is a closed point

y ∈ U>d/(ℓ+1) where f is zero in the fiber of E at y . Let 1 be the constant function in ι∗P 1(OAn ),

and R its image in E . Then R, Q1, . . . , Qℓ are a basis for E , giving a trivialization E ∼= Oℓ+1
U . In this

trivialization, the map sending a polynomial f to its first order Taylor expansion in ι∗P 1(OAn )

then to E is given by ( f ,∂1 f , . . . ,∂ℓ f ). Thus f is zero in E |y if and only if f (y) = (D1 f )(y) = · · · =
(Dℓ f )(y) = 0.

Since charFq = p, we have

Di f = Di f0 + g p
1 Di t1 + t1pDi g1 + · · · + g p

ℓ
Di tℓ + tℓpDi gℓ + pDh

= Di f0 + g p
i s
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for i = 1, . . . ,ℓ. By abuse of notation we will consider the Di f as defining hypersurfaces inAn by

choosing a lift to A of minimal degree. Define

Wi = U ∩ {D1 f = · · · = Di f = 0}.

Claim 1. For 0 ≤ i ≤ ℓ − 1, conditioned on a choice of f0, g1, . . . , gi such that dim(Wi ) ≤ m − i ,

the probability that dim(Wi+1) ≤ m − i − 1 is 1 − o(1) as d → ∞.

Let V1, . . . , Ve be the (m − i )-dimensional irreducible components of (Wi )red. By Bézout’s

theorem,

e ≤ (deg U )(deg D1 f ) · · · (deg Di f ) = O(d i )

as d → ∞, where U is the projective closure of U . As dim Vk ≥ 1, there exists a coordinate x j ,

depending on k, such that the projection x j (Vk ) has dimension 1.

We want to bound the set

Gbad
k := {

gi+1 ∈ A≤γ
∣∣ Di+1 f = Di+1 f0 + g p

i+1s vanishes identically on Vk

}
since for any gi+1 ∈ Gbad

k , Vk ⊂ Wi+1 and then dim(Wi+1) would fail to be ≤ m − i − 1.

If g , g ′ ∈ Gbad
k , then on Vk ,

0 = g p s − g ′p s

s

= g p − g ′p

= (g − g ′)p

so if Gbad
k is nonempty, it is a coset of the subspace of functions in A≤γ that vanish on Vk . The

codimension of that subspace is at least γ+ 1 since a nonzero polynomial in x j does not vanish

on Vk . Thus the probability that Di+1 f vanishes on some Vk is at most eq−(γ+1) = o(1) as d → ∞.

Claim 2. Conditioned on a choice of f0, g1, . . . , gℓ for which Wℓ is finite, Prob(H f ∩Wℓ∩U>d/(ℓ+1) =
Ø) = 1 − o(1) as d → ∞.

In fact, we need only show this for H f ∩Wm ∩U>d/(ℓ+1). The same Bézout argument as above

shows #Wm is O(d m). For a given y ∈ Wm , the set H bad of h ∈ A≤η for which H f passes through y

is either empty or a coset of ker(evaly : A≤η → κ(y)).

If deg(y) > d
ℓ+1 , then [Poo04, Lemma 2.5] implies #H bad

#A≤η
≤ q−ν where ν = min(η + 1, d

ℓ+1 ).

Hence

Prob(H f ∩ Wm ∩U>d/(ℓ+1) ̸= Ø) ≤ #Wm q−ν = O(d m q−ν)



2.5. Applications 17

which by assumption is o(1) as d → ∞.

Given the two claims, we have

lim
d→∞

Prob
(
dim Wi = m − i for all 1 ≤ i ≤ ℓ and H f ∩ Wm ∩U>d/(ℓ+1) = Ø

)
=

m−1∏
i=0

(1 − o(1)) · (1 − o(1))

= 1 − o(1).

So the same holds for Wℓ. But now H f ∩ Wℓ is the subvariety of U defined by failing d , so

H f ∩ Wℓ ∩U>d/(ℓ+1) is the set of points of degree > d
ℓ+1 where H f ∩U fails d .

2.4.4 Proofs of Theorems A, B, and C

Proof of Theorem B. We have

d ⊆  low
d ,e ⊆ d ∪med

d ,e ∪high
d

so

Prob(s ∈  low
d ,e ) ≥ Prob(s ∈ d )

≥ Prob(s ∈  low
d ,e ) − Prob(s ∈ med

d ,e ) − Prob(s ∈ high
d ).

By Lemmas 2.4.1 to 2.4.3, letting d , then e go to ∞ gives the result.

Proof of Theorem A. Take Z = Ø in Theorem B.

Proof of Theorem C. The reasoning here is the same as in the proof of [Poo04, Theorem 1.3]. Given

a condition on sections no stronger than nonvanishing in the fiber of a single Ei ,d at all except

finitely many points, the probability of failing this condition goes to 0 as d → ∞ by Lemmas 2.4.2

and 2.4.3. Now considering a condition no stronger than nonvanishing in the fiber of each of

E1,d , . . . , Eu,d at all except finitely many points, the probability of failing is still zero as this is a

finite union of sets with probability zero. Thus we can approximate d by the sets  low
d ,e defined

by satisfying the condition at points of degree at most e. But now the result follows by [Poo04,

Lemma 2.1] and identical reasoning as in the proof of Lemma 2.4.1.

2.5 Applications

Example 2.5.1 (Poonen’s Bertini). To get [Poo04, Theorem 1.1], assume X is smooth and take

Q = Ω1
X /Fq

in Theorem A. Similarly, [Poo04, Theorem 1.2] follows from Theorem B.
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Our Theorem C does not imply [Poo04, Theorem 1.3] since we don’t work with the completed

local rings, however it does imply the weaker version where, at each point, one only controls the

Taylor expansion up to finitely many terms.

Example 2.5.2. Let X be a quasiprojective subscheme of Pn
Fq

of dimension m with locally closed

embedding ι and let ∆ : X ,→ X ×Fq
Pn be the graph of ι. Suppose j : Z ,→ X ×Fq

Pn is a closed

embedding such that the projection ϕ : Z → X is smooth of relative dimension ℓ ≥ m, and such

that ∆ factors as

X Z X × Pnα j

for some morphism α : X → Z .

We have a surjection of sheaves

Ω1
X×Pn /X j∗Ω1

Z /X

which induces a surjection

∆∗Ω1
X×Pn /X ∆∗ j∗Ω1

Z /X .

The left side is isomorphic to ι∗Ω1
Pn ; indeed, let p : X × Pn → Pn be projection onto the second

coordinate. Then by standard base change for the sheaf of differentials,

∆∗Ω1
X×Pn /X

∼= ∆∗p∗Ω1
Pn /Fq

= (p ◦∆)∗Ω1
Pn /Fq

= ι∗Ω1
Pn /Fq

.

Define Q = ∆∗ j∗Ω1
Z /X . This is locally free: by assumption, ∆ = j ◦ α so Q = α∗ j∗ j∗Ω1

Z /X
∼=

α∗Ω1
Z /X . As ϕ is smooth of relative dimension ℓ, Ω1

Z /X is locally free of rank ℓ and thus so is Q.

With Q as above, define Ed , d , and d as in Theorem A. Applying the theorem, we get

lim
d→∞

Prob( f ∈ d ) = ζX (ℓ+ 1)−1.

Example 2.5.3. We now answer Question 2.1.1 as a specific instance of Example 2.5.2. Assume

char(Fq ) ̸= 2. Choose a finite, reduced, degree 4 subscheme Y of P2
Fq

whose points are geomet-

rically in general position. Let ι : X ,→ P2
Fq

be a curve whose geometric points are in general

position with the points of Y . Then for each closed point x ∈ X , there is a unique smooth conic

Cx (defined over κ(x)) passing through x and each point of Y . Let j : C ,→ X ×P2 be the inclusion

of the subscheme C parameterizing the data {(x, y) | x ∈ X , y ∈ Cx }. Then ∆ factors as j ◦α where
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α is the diagonal into C , and ϕ : C → X is smooth of relative dimension 1, so the conditions of the

example are satisfied.

Let f ∈ Sd . With Q defined as in Example 2.5.2, the hypersurface H f intersects Cx transversely

at x if and only if it does not vanish in the fiber of Q at x. Thus the example above shows the

probability that a random plane curve intersects Cx transversely at x for all closed x ∈ X is ζX (2)−1.

Example 2.5.4. Let L be the line at infinity in P2
Fq

; write the homogeneous coordinates on P2

as x0, x1, x2. In the affine chart x0 ̸= 0, choose Fq -points P1 = (0, 0), P2 = (0, 1), P3 = (1, 0),

and P4 = (1, 1). Then the lines through pairs of points in P1, P2, P3, P4 intersect L in four points;

set U to be L with these four points removed and Y := {P1, P2, P3, P4}. Define Cx as above. By

Example 2.5.3, the probability that a random plane curve intersects Cx transversely at x for all

x ∈ U is ζU (2)−1. Recall that for a scheme X of finite type over Fq with closed subscheme Z , we

have ζX \Z (s) = ζX (s)/ζZ (s). Writing Z = {Q1, Q2, Q3, Q4} for the set of four points removed from

L, this implies

ζU (2)−1 = ζZ (2)

ζL(2)
= (1 − q−2)−4

1
(1−q−2)(1−q−1)

= 1 − q−1

(1 − q−2)3 .
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Chapter 3

Axiomatic approach to Bertini
theorems over finite fields

After Poonen’s Bertini theorem, numerous analogous and more general Bertini-type results fol-

lowed. For those generalizations that relate to Taylor conditions (see Definition 2.2.3), we provide

a framework (Proposition 3.1.3) that axiomatizes the general strategy of the proofs and that can,

in theory, be applied to prove similar results.

This chapter is motivated by the results of [CGM86] and [Spr98] that provide powerful ax-

iomatic frameworks for proving Bertini-type theorems over algebraically closed and infinite fields,

respectively. Recent work has used the Cumino-Greco-Manaresi framework to prove Bertini

theorems in the positive characteristic, algebraically closed setting: F -regular and F -pure singu-

larities ([SZ13]), F -signature and Hilbert-Kunz multiplicity assuming normality ([CRST21]), and

Hilbert-Kunz multiplicity along fibers and without assuming normality ([DS22]).

Our framework is not nearly as useful. First, our framework applies only to conditions on

the Taylor coefficients of sections; theirs applies to any condition that satisfies certain axioms.

Second, our result is not particularly useful for proving new theorems since it pushes the difficult

part of the proof, showing part (c) of Proposition 3.1.3, down the road.

Further motivation comes from the work of Margaret Bilu and Sean Howe in the motivic

setting. In [BH21, Theorem B] (also restated and discussed in Section 2.1.1), a very general class

of Taylor conditions were shown to give asymptotic “global probabilities” that factor into the

asymptotic “local probabilities” in a suitable localization and completion of the Grothendieck

ring of varieties. However, neither the results nor methods are applicable in the point-counting

setting. In [BH21, Section 1.3], the authors ask if a similar theorem exists in the point-counting

setting. This chapter does not provide an answer to this question; it does, we hope, provide a

21
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useful framework for thinking about the diverse applications of Poonen’s closed point sieve, often

appearing ad hoc in the literature.

3.1 The framework

Throughout this chapter, we will use the notation and definitions given in Section 2.2. Before

stating the axiomatic framework, we need a lemma.

Lemma 3.1.1. Let Y be a projective scheme over a field k. If Z is a finite subscheme of Y , and F is

a coherent sheaf on Y , then the map

φd : H 0(Y , F (d)) H 0(Z , j∗F (d))

is surjective for d ≫ 0, where j : Z ,→ Y is the inclusion morphism.

Proof. We have a short exact sequence

0 IZ OY j∗OZ 0

which, after tensoring with F , induces an exact sequence

0 Tor1( j∗OZ , F ) IZ ⊗ F F ( j∗OZ ) ⊗ F 0.

By the projection formula, ( j∗OZ ) ⊗ F ∼= j∗ j∗F . Set G = coker
(
Tor1( j∗OZ , F ) → IZ ⊗ F

)
. The

exact sequence above gives a short exact sequence

0 G F j∗ j∗F 0.

Twisting by OY (d) gives

0 G (d) F (d) j∗ j∗F (d) 0

inducing the long exact sequence in cohomology

0 H 0(Y , G (d)) H 0(Y , F (d)) H 0(Z , j∗F (d))

H 1(Y , G (d)) · · ·

φd

Thus coker(φd ) is a sub-vector space of H 1(Y , G (d)). Since G is coherent (see Remark 3.1.2),

H 1(Y , G (d)) = 0 for d ≫ 0 by Serre vanishing ([Har77, Theorem 5.2]). Hence coker(φd ) = 0 for

d ≫ 0, i.e. φd is surjective.
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Remark 3.1.2. The sheaf G above is indeed coherent. The sheaf Tori ( j∗OZ , F ) can be computed

as the homology of the complex L • ⊗ F where L • → j∗OZ is a resolution by finite, locally free

OY -modules (such a resolution always exists in this setting; see [Har77, Example 6.5.1]). This is

coherent since the category of coherent sheaves on a scheme is abelian, so closed under kernels,

cokernels, and images. Since IZ ⊗ F is coherent, the cokernel G is also coherent.

Proposition 3.1.3. Let F be a coherent sheaf on a projective scheme Y over Fq . For d ≥ 0, let

Vd := H 0(Y , F (d)). For each d ≥ 0, let d be an r -infinitesimal Taylor condition on F (d). Fix a

function c : N→ R≥1. Define

 low
e,d := {

s ∈ Vd

∣∣ s satisfies d at all x with deg(x) < e
}

med
e,d := {

s ∈ Vd

∣∣ s fails d at some x with e ≤ deg(x) ≤ c(d)
}

high
d

:= {
s ∈ Vd

∣∣ s fails d at some x with deg(x) > c(d)
}

Suppose that

(a) For each closed point x ∈ Y ,

px := lim
d→∞

#d ,x

#F (d)|x(r )

exists.

(b) lim
e→∞ lim

d→∞
Prob(s ∈ med

e,d ) = 0

(c) lim
d→∞

Prob(s ∈ high
d ) = 0

Then

lim
d→∞

Prob(s satisfies d ) = ∏
x∈Y

px .

Proof. First we show independence at finitely many closed points, namely that

lim
d→∞

Prob(s ∈  low
e,d ) = ∏

x∈Y
deg(x)<e

px .

For a closed point x ∈ Y , let x(r ) be the r th infinitesimal neighborhood of x in Y . Define Z = ⊔
x(r )

where the union is over the finitely many closed points x ∈ Y of degree < e. A section s ∈ Vd

satisfies d at x if and only if its restriction in H 0(x(r ), j∗F (d)) = F (d)|x(r ) lies in d ,x , where

j : Z ,→ X is the inclusion. Thus  low
e,d is the preimage of

∏
x∈Y

deg(x)<e

d ,x
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under

φd : Vd H 0(Z , j∗F (d)) ∼=
∏

x∈Y
deg(x)<e

F (d)|x(r ) .

By Lemma 3.1.1, φd is surjective for d ≫ 0, so

lim
d→∞

Prob(s ∈  low
e,d ) = lim

d→∞
∏

x∈Y
deg(x)<e

#d ,x

#F (d)|x(r )
= ∏

x∈Y
deg(x)<e

px .

To finish the proof, the reasoning is the same as in the proofs of [Poo04, Theorem 1.2] and [EW15,

Theorem 3.1]. Let d be the set of s ∈ Vd that satisfy d . We have

d ⊆  low
e,d ⊆ d ∪med

e,d ∪high
d

so

Prob(s ∈  low
e,d ) ≥ Prob(s ∈ d )

≥ Prob(s ∈  low
e,d ) − Prob(s ∈ med

e,d ) − Prob(s ∈ high
d ).

Applying our assumptions and computation above, letting d , then e go to ∞ gives the result.

Remark 3.1.4. In Proposition 3.1.3, both the function c(d) and splitting the “non-low” degree

points into “medium” and “high” degree are not important to the proof. All that matters is that

the local probabilities px exist and that the probability that a section has a singularity of degree e

goes to zero as d , then e go to ∞. We phrase it like this only to match the existing implementation

of the closed point sieve.

3.2 Observing the framework in action

Now we go through several examples in the literature, observing how the framework of Propo-

sition 3.1.3 is implicitly applied. For simplicity of exposition we will work with versions of the

various theorems that do not impose additional Taylor conditions, however the framework can be

easily modified to apply in those settings as well.

3.2.1 Poonen’s Bertini

Let S = Fq [x0, . . . , xn], Sd the degree d homogeneous elements of S, and Shomog = ⋃
d≥0 Sd . Set

H f = Proj(S/( f )) ⊆ Pn
Fq

.

We restate Poonen’s Bertini theorem given in the introduction:
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Theorem 1.2.3 ([Poo04, Theorem 1.1]). Let X be a smooth quasiprojective subscheme of Pn of

dimension m ≥ 0 over Fq . Define

d := {
f ∈ Sd

∣∣ H f ∩U is smooth of dimension m − 1
}
.

Then

lim
d→∞

Prob( f ∈ d ) = ∏
closed x∈X

(
1 − q−(m+1) deg(x)) = ζX (m + 1)−1

where ζX is the local zeta function of X .

In the context of Proposition 3.1.3, set Y = Pn
Fq

and F = OPn . For each d ≥ 0 and closed

x ∈ Pn , define

d ,x :=
{{

gx ∈ OPn (d)x /𝔪2
x

∣∣ image of gx in OX ,x /𝔪2
x is nonzero

}
x ∈ X

OPn ,x (d)/𝔪2
x x ∉ X

Set c(d) = d
m+1 and define the subsets  low

e,d , med
e,d , and high

d of Sd as in Proposition 3.1.3.

We’ll show conditions (a)-(c).

(a) By (noncanonically) untwisting, one sees the terms
#d ,x

#F (d)|x(1)
do not depend on d , so cer-

tainly their limits px exist, and equal 1 − q−(m+1) deg(x) by [Poo04, Lemma 2.2].

(b) This is [Poo04, Lemma 2.4].

(c) This is [Poo04, Lemma 2.6].

Hence the axiomatic framework applies. Note that this example will be subsumed under all

examples that follow.

3.2.2 Complete intersections

For d = (d1, . . . , dk ) a tuple of positive integers, write Sd for the product Sd1
× . . .×Sdk

and identify

it with the global sections of OPn (d) = ⊕k
i=1 OPn (di ). For each f = ( f1, . . . , fk ) ∈ Sd, write Hf for

H f1
∩ . . . ∩ H fk

.

Define

L(q, m, k) =
k−1∏
j=0

(1 − q−(m− j ))

which is the probability that k randomly chosen vectors in Fm
q are linearly independent.

Theorem 3.2.1 ([BK12, Theorem 1.2 without additional Taylor conditions]). Let X be a smooth

quasiprojective subscheme of Pn of dimension m ≥ 0 over Fq . Let X denote the Zariski closure of
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X in Pn . Choose an integer k ∈ {1, . . . , m + 1} and a tuple d = (d1, . . . , dk ) of positive integers with

d1 ≤ . . . ≤ dk . Define

d := {
f ∈ Sd

∣∣ Hf ∩ X is smooth of dimension m − k
}
.

Then

Prob(f ∈ d) = ∏
x∈X

(
1 − q−k deg(x) + q−k deg(x)L(qdeg(x), m, k)

)
+ O

(
(d1 + 1)−(2k−1)/m + d m

k q−d1/ max{m+1,p})
where the implied constant is an increasing function of n, m, k, and deg(X ). Thus letting

d1, . . . , dk → ∞ such that d m
k q−d1/ max{m+1,p} → 0, we get the probability converging to the product

of the local factors.

Due to limitations in the setup of Proposition 3.1.3, we will only consider that case that

d1, . . . , dk → ∞ at a uniform constant rate for all k. However, one could modify the statement

similar to Definition 4.4.1 to account for nets of Taylor conditions d , d ∈ I for I a directed set.

This is done for this example in Section 4.6.1.

Set Y = Pn
Fq

and F = OPn (d0) where d0 = (d1, . . . , dk ) is any fixed tuple of nonnegative integers

(again, an artifact of our limited setup). We will consider the twists F (d) ∼= ⊕k
i=1 OPn (di + d) as

d → ∞. Note that

(dk + d)m q−(d1+d)/(m+1) → 0 as d → ∞

so in this setting the error term of Theorem 3.2.1 tends to zero.

For each d ≥ 0 and closed x ∈ Pn , let d ,x be the subset of F (d)|x(1) = OPn (d0 + d)x /𝔪2
x where,

for the image of a tuple f = ( f1, . . . , fk ) ∈ F (d)|x(1) in OX (d0 + d)x /𝔪2
x , either not all terms vanish,

or they all vanish and have linearly independent gradients. Set c(d) = d1+d
m+1 and define the subsets

 low
e,d , med

e,d , and high
d of Vd := H 0(Pn , F (d)) as in Proposition 3.1.3.

(a) As for Poonen’s Bertini, the local factors do not depend on d , and equal 1 − q−k deg(x) +
q−k deg(x)L(qdeg(x), m, k) by [BK12, Corollary 2.2].

(b) By [BK12, Lemma 2.5],

Prob(f ∈ med
e,d ) ≤ 2m+1 deg(X )kq−e(2k−1).

This bound does not depend on d and goes to 0 as e → ∞.
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(c) By [BK12, Corollary 2.7],

Prob(f ∈ high
d ) ≤ kmn2m(m + 1) deg(X )m+1(dk + d)m q−min{(d1+d)/(m+1),(d1+d)/p}

which goes to 0 as d → ∞.

3.2.3 Semiample Bertini

Let X be a smooth projective variety (integral but not necessarily geometrically integral) of

dimension m over Fq , with a very ample divisor A and a globally generated divisor E . Let π be the

map given by the complete linear series on E :

π : X PM .
|E |

Let b = dimπ(X ). Define Rn,d := H 0(X , OX (n A +dE )) and write H f for the corresponding divisor

in |n A + dE |.

Theorem 3.2.2 ([EW15, Theorem 3.1 without additional Taylor conditions]). With notation as

above, set n0 := max{b(m + 1) − 1, bp + 1}. For a closed point P ∈ π(X ), define

pP := lim
d→∞

Prob(H f is smooth at all points of π−1(P ))

and

d := {
f ∈ Rn,d

∣∣ H f ∩ X is smooth
}
.

Then for all n ≥ n0, we have

lim
d→∞

Prob( f ∈ d ) = ∏
P∈π(X )

pP .

Let P ∈ π(X ) and P (1) = Spec(Oπ(X ),P /𝔪2
P ) the first-order infinitesimal neighborhood of P .

For x ∈ π−1(P ), define similarly x(1) = Spec(OX ,x /𝔪2
x ). Set XP (1) := X ×π(X ) P (1).

Given a section f ∈ Rn,d , H f is smooth at a closed point x ∈ π−1(P ) if and only if f does not

vanish under the restriction map

Rn,d H 0(x(1), Ox(1) (n A)) ∼= OX ,x /𝔪2
x .

where the latter isomorphism is a noncanonical untwisting. This map factors as

Rn,d H 0(X (1)
P , OX (1)

P
(n A)) OX ,x /𝔪2

x .
g ϕx
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In the context of Proposition 3.1.3, set Y = π(X ) and F = π∗(OX (n A)), so F (d) ∼= π∗(OX (n A +
dE)). There is a natural map ([Har77, III, §11])

F (d)|P (1) = π∗(OX (n A + dE))P ⊗Oπ(X ),P
Oπ(X ),P /𝔪2

P H 0
(
XP (1) , OXP (1)

(n A)
)
.k

Note that g is the composition of the natural restriction map

Rn,d = H 0(π(X ), F (d)) F (d)|P (1)

followed by k. As explained in the proof of [EW15, Lemma 5.2(a)], this restriction is surjective for

d ≫ 0 by Serre vanishing. Thus the asymptotics for Rn,d and F (d)|P (1) at P are the same, and we

may use the latter to compute probabilities.

Define d ,P to be the preimage of
⋂

x∈π−1(P )(kerϕx )c under k. This Taylor condition captures

the property that a section is smooth at all points of π−1(P ).

Let c(d) = d
max{M+1,p} and define the low, medium, and high degree points as usual. Then

conditions (a)-(c) of Proposition 3.1.3 are exactly [EW15, Lemmas 3.2-3.4].

Remark 3.2.3. Combining the methods in Sections 3.2.2 and 3.2.3, one can do the same analysis

for the semiample complete intersection result of [Gru22, Chapter 2].

3.2.4 Containing a closed subscheme

Furthering the comparison with classical Bertini theorem, Poonen showed in [Poo08] that, given

some dimension assumptions, the hypersurfaces H f that intersect X smoothly can be assumed to

contain a given closed subscheme Z of Pn so long as Z ∩ X is smooth. In [Wut14], Wutz removed

the assumption that Z ∩ X be smooth. This material is also contained in the shorter preprint

[Wut16]; independently, the main theorem was also proved by Gunther in [Gun17].

For Z a closed subscheme of Pn , let IZ ,d be the set of f ∈ Sd that vanish on Z . Let IZ be

the ideal sheaf of Z and identify IZ ,d with the global sections H 0(Pn , IZ (d)) (cf. [GW20, Remark

13.26]).

For X a scheme locally of finite type over a field k, write X j for the locally closed subscheme

of X of points with embedding dimension j , i.e. where dimκ(x)(Ω
1
X /k |x ) = j .

Theorem 3.2.4 ([Wut14, Theorem 2.1]). Let X be a quasiprojective subscheme of Pn of dimension

m ≥ 0 over Fq . Let Z be a closed subscheme of Pn and let V := Z ∩ X . Define

d := {
f ∈ IZ ,d

∣∣ H f ∩ X is smooth of dimension m − 1
}
.
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(a) If max0≤ j≤m−1{ j + dim V j } < m and Vm = Ø, then

lim
d→∞

Prob( f ∈ d ) = ζV (m + 1)

ζX (m + 1)
∏m−1

j=0 ζV j
(m − j )

= 1

ζX−V (m + 1)
∏m−1

j=0 ζV j
(m − j )

.

(b) If max0≤ j≤m−1{ j + dim V j } ≥ m or Vm ̸= Ø, then limd→∞ Prob( f ∈ d ) = 0.

In the context of Proposition 3.1.3, set Y = Pn
Fq

and F = IZ . For a section f ∈ IZ ,d , H f ∩ X is

smooth of dimension m − 1 at a closed point x ∈ X if and only if f does not vanish under the map

φd : IZ ,d = H 0(Pn , IZ (d)) H 0(x(1), IZ · Ox(1) )

by [Wut14, Lemma 2.9]. This map is is surjective for d ≫ 0 ([Wut14, Lemma 2.8]) and factors

through the map IZ ,d → IZ (d)x /𝔪2
x .

For each d ≥ 0 and closed x ∈ Pn , define

d ,x :=
{{

gx ∈ IZ (d)x /𝔪2
x

∣∣ image of gx in IZ · OX ,x /𝔪2
x is nonzero

}
x ∈ X

IZ (d)x /𝔪2
x x ∉ X

This Taylor condition captures the property that H f ∩ X is smooth of dimension m − 1 and H f

contains Z . Fix an integer c such that S1IZ ,d = IZ ,d+1 for all d ≥ c (see [Wut14, remarks afer

Lemma 2.7]). Set c(d) = d−c
m+1 . Then in the setting of part (a) of Theorem 3.2.4, conditions (a)-(c)

of Proposition 3.1.3 are exactly [Wut14, Lemmas 2.12, 2.15, 2.16, and 2.19].

In the setting of (b) where max0≤ j≤m−1{ j + dim V j } ≥ m or Vm ̸= Ø, the same computations

above apply. However, in the first case, Wutz shows the partial product resulting from low degree

points is bounded by the inverse of the partial Euler product of a zeta function evaluated at one of

its poles; thus, as e → ∞ and more terms of the product are included, the product goes to zero.

In the second case, the inverse of the zeta function for Vm will contain a term 1 − q−(m−m) deg(x),

hence the entire product is zero.

Remark 3.2.5. This shows that it does not follow from the setup of Proposition 3.1.3 that the

resulting product is zero if and only if one of the terms is zero. Note, though, that this is the case

for all other theorems discussed in this section.

Remark 3.2.6. Capturing the related but slightly different results of [Wut17, Theorems 2.1 and

3.1] under a modified version of Proposition 3.1.3 would be more difficult since there Wutz is

prescribing an additional condition on the dimension of the singular locus (H f ∩ X )sing, which is

not a Taylor condition.
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3.2.5 Smooth-agnostic Taylor conditions

We restate Theorem A from Chapter 2.

Theorem A. Let X be a quasiprojective subscheme of Pn
Fq

of dimension m with locally closed

embedding ι. Let Q be a locally free quotient of ι∗Ω1
Pn of rank ℓ ≥ m, and let K denote the kernel

of ι∗Ω1
Pn →→ Q. For each d, define

Ed := (
ι∗P 1(OPn (d))

) /
K (d)

where we view K (d) as a subsheaf of ι∗P 1(OPn (d)) via the exact sequence

0 ι∗Ω1
Pn (d) ι∗P 1(OPn (d)) OX (d) 0.

This defines a 1-infinitesimal Taylor condition d on Pn such that at each closed point x, d ,x ⊆
OPn (d)x /𝔪2

x is given by not vanishing in the fiber of Ed at x. By convention, d is always satisfied if

x ∉ X .

Define

d := {
f ∈ Sd

∣∣ f satisfies d at all closed x ∈ Pn }
.

Then

lim
d→∞

Prob( f ∈ d ) = ∏
closed x∈X

(
1 − q−(ℓ+1) deg(x)) = ζX (ℓ+ 1)−1.

In the context of Proposition 3.1.3, set Y = Pn and F = OPn on Pn . Then conditions (a)-(c)

are exactly Lemmas 2.4.1 to 2.4.3.

3.2.6 Related results in the literature

Other results that fall under the framework of Proposition 3.1.3 include [Lin17, Theorem 1.1] and

[GK23, Proposition 4.8]. Details are omitted since the steps are nearly identical to the examples

above.

While not strictly related to Taylor conditions, the results in [Ngu05], [Poo13], [CP16], [BE19],

and [GK23, §4 and §5] are worth consideration for future attempts at axiomatization of Bertini-

type theorems over finite fields.



Chapter 4

Equidistribution and arithmetic
Λ-distributions

The following chapter is joint work by the author and Sean Howe.

4.1 Introduction

In [How24], Sean Howe introduced a theory of probability in λ-rings in order to provide a concise

language for describing random variables valued in multisets of complex numbers. The main

application was a comparison between zero distributions for certain families of function field

L-functions and associated eigenvalue distributions in random matrix statistics ([How24, The-

orems B and C]), and the key arithmetic input for the two types of families treated in [How24]

was Poonen’s sieve for hypersurface sections ([Poo04]). The purpose of the present work is to

generalize and abstract the method used in [How24] to compute arithmetic Λ-distributions or,

equivalently, their associated σ-moment-generating functions, and then to apply this generaliza-

tion to compute arithmetic Λ-distributions in new cases.

To that end, we first formulate in Definition 4.4.1 a general notion of equidistribution for a

sequence of families of λ-probability spaces parameterized by an admissibleZ-set (an abstraction

of the Fq -points of an algebraic variety over Fq ). In Theorem 4.4.3 we show that, if equidistribution

holds, then for certain sequences of random variables constructed by integrating over these

families, the associated sequence of σ-moment-generating functions converges to an explicit

motivic Euler product. We apply this abstract result to compute asymptotic Λ-distributions for

L-function and zeta function statistics in more settings where Poonen’s sieve has been generalized

(using the original sieve, one recovers [How24, Theorems B and C]).

In particular, in Theorem D we combine our systematization with the generalization of

31
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Poonen’s sieve given in [BK12] to compute the asymptotic Λ-distributions of the zeroes of the

L-functions of vanishing cohomology of smooth complete intersections and compare these with

the associated random matrix Λ-distributions. This generalizes the case of smooth hypersurface

sections treated in [How24, Theorem C]. We also treat natural families arising from the semiample

version of Poonen’s sieve of [EW15] and the “smooth-agnostic” generalization of Poonen’s sieve

developed in Chapter 2.

The key new tool that allows us to systematize and abstract the arguments of [How24] is a

motivic Euler product adapted to point-counting. We continue the introduction by explaining

how this notion arises naturally in the problems we consider.

4.1.1 Equidistribution, independence, andσ-moment-generating functions

The arithmetic random variables studied in [How24] are of the following form: Fix a finite field

κ and algebraic closure κ. For each d ≥ 1, one defines a λ-probability space where the random

variables are functions on the set Ud of the degree d homogeneous polynomials in n + 1 vari-

ables with coefficients in κ satisfying a transversality condition with respect to a fixed smooth

subscheme of Pn
κ . For each P ∈ Pn(κ), one defines a random variable Xd ,P on Ud whose value

on a homogeneous polynomial F depends only on the Taylor expansion of F at P . One then

obtains a new random variable Xd on Ud by “summing” the random variables Xd ,P over all points

P ∈ Pn(κ), and one would like to understand the asymptotic distribution of Xd as d → ∞ — there

is hope of this because Poonen’s sieve ([Poo04]) implies the Taylor expansions equidistribute in a

certain natural sense.

In this theory, the random variables are valued in W (C), the ring of big Witt vectors of C,

and the right notion of a distribution is a Λ-distribution: when the random variable is valued in

Z≥0[C] ⊆ W (C), i.e. in multisets of complex numbers, the Λ-distribution encodes the averages of

all symmetric functions of the multiset, and convergence in W (C) is simply convergence of all of

these averages.

One of the key ideas in [How24] is to encode the Λ-distribution using the σ-moment-gener-

ating function, defined for a W (C)-valued random variable X as

E[Expσ(X h1)] ∈ Λ∧
W (C)

where Expσ is the plethystic exponential, h1 = t1 + t2 + t3 + . . ., andΛ∧
W (C) is the ring of symmetric

power series with coefficients in W (C). These behave much like the usual moment-generating

functions in classical probability theory: in particular, in the above setting, we expect that, as
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d → ∞, the random variables Xd ,P will all be independent so that their moment-generating

functions should multiply to give

lim
d→∞

E[Expσ(Xd h1)] = ∏
P∈Pn (κ)

lim
d→∞

E[Expσ(Xd ,P h1)].

Moreover, we expect that each of the individual random variables Xd ,P should approach the

distribution of a random variableP defined independently of d on the space of Taylor expansions

at P , so that this should simplify further to

∏
P∈Pn (κ)

E[Expσ(P h1)].

The main difficulty in making this heuristic precise is that it is completely unclear how one

should actually define the product over Pn(Fq ). In [How24], we made an ad hoc argument to get

around this, exploiting that, in the cases treated there, the Λ-distribution of each P is the same.

Under this constraint, one finds a natural candidate for the infinite product by using the pre-λ

power structure (see [How24, §2.6]).

In the present work, we address the problem head-on by using the plethystic exponential and

logarithm to define motivic Euler products for admissible Z-sets — see Definition 4.3.1. This is

motivated by joint work of Sean Howe with Margaret Bilu and Ronno Das ([BDH25]) where it is

shown that, when working with Grothendieck rings of varieties, the same formula recovers the

motivic Euler products of Bilu ([Bil23]). Even when the infinite product can be expressed in the

pre-λ power structure as in [How24], the perspective adopted here gives clearer proofs than the

previous ad hoc method.

Our motivic Euler products can also be treated from the perspective of Eulerian formalisms

developed in [BDH25], but here we give a more direct and independent treatment. A key point

that is specific to the case of admissibleZ-sets is Proposition 4.3.7, which explains how to compute

the motivic Euler products in terms of classical Euler products. This formula is what allows us

to build a bridge between the abstract formulation of equidistribution (Definition 4.4.1), which

is adapted to comparison with Poonen’s sieve, and the computation of σ-moment-generating

functions that carries out the heuristic described above (Theorem 4.4.3).

4.1.2 Applications

Combining Theorem 4.4.3 with generalizations of Poonen’s sieve, we can compute asymptotic dis-

tributions of many zeta function and L-function random variables. As an illustration, we state now

a generalization of [How24, Theorem C] to complete intersections (that uses the generalization
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of Poonen’s sieve in [BK12] to obtain the equidistribution result needed to apply Theorem 4.4.3).

Afterwards we will briefly discuss our other applications.

4.1.2.1 Fix a finite field κ and an algebraic closure κ. For n ≥ 0, r ≥ 1, suppose Y ⊆ Pn
κ is a

smooth closed geometrically connected subscheme of dimension m+r . For d = (d1, . . . , dr ) ∈ Nr ,

let Ud be the set of tuples F = (F1, . . . , Fr ) of homogeneous polynomials of degrees d1, . . . , dr in

n + 1 variables with coefficients in κ such that the subschemes Y , V (F1), . . . , V (Fr ) are transverse

at any point of intersection (i.e., the intersection of their tangent spaces at such a point is m-

dimensional). Then the scheme-theoretic intersection CF = Y ∩ V (F1) ∩ . . . ∩ V (Fr ) is a smooth

complete intersection in Yκ of dimension m. If we write κ(F ) for the subfield of κ generated by

κ and the coefficients of F1, . . . , Fr , then CF is naturally defined over κ(F ), and as such admits a

Hasse-Weil zeta function

ZCF
(t ) = ∏

y∈|CF |

1

1 − t deg y
.

Here |CF | denotes the closed points of CF /κ(F ). It follows from the Grothendieck-Lefschetz trace

formula and the strong Lefschetz theorem in étale cohomology that

ZCF
(t ) = CF

(t )(−1)m
Z0(t )

where Z0(t) depends only on Yκ(F ) and CF
(t) is the characteristic power series of geometric

Frobenius acting on the vanishing cohomology of CF (that is, the part of the cohomology which

does not “come from” Yκ(F )). For qF := #κ(F ), the reciprocal poles of CF
(t ) are qF -Weil numbers

of weight m, i.e., they are algebraic integers whose conjugates all have absolute value q
m
2

F . One

expects the renormalized characteristic series

CF
(t q

−m
2

F )

to behave, on average, like the characteristic power series of a random matrix in an orthogonal

group if m > 0 is even, a compact symplectic group if m is odd, or the symmetric group in its

standard irreducible representation if m = 0.

4.1.2.2 We compute the asymptotic Λ-distribution of the random variable Xd on Ud given by

Xd (F ) = CF
(t q

−m
2

F ) ∈ 1 + tC[[t ]] = W (C)

(equivalently, sending F to the multiset of reciprocal poles as an element of Z≥0[C] ⊆ W (C), i.e. to

the eigenvalues of the associated matrix) and compare it to one of the classical group random

matrix Λ-distributions computed in [How24, Theorem A].



4.1. Introduction 35

To state the result, we introduce some notation: We write [Y (κ)] = ZY (t) ∈ W (C) and

[H i (Y )] ∈ 1 + tC[[t ]] = W (C) for the characteristic power series of the geometric Frobenius

acting on the i th étale cohomology group of Yκ (which are relevant because the persistent factor

Z0(t) of ZCF
(t) can be expressed in terms of [H i (Y )], i ≤ m). For z ∈ C, we write [z] for the

element 1
1−t z in 1 + tC[[t ]] = W (C).

We write ei for the i th elementary symmetric polynomial and hi for the i th complete symmetric

polynomial (see [How24, §2.1] for the general notation and results on symmetric functions that

we use).

We set q := #κ. We write L(a, b, c) = ∏c−1
j=0(1−a−(b− j )); note that L(q, m+r, r ) is the probability

that r vectors in Fm+r
q are linearly independent (cf. [BK12, p.2]).

We write lim
d

∗−→∞
for a limit where each di → ∞ and max(di )m+r q

−min(di )

m+r+1 → 0.

Finally, we write W (C)bdd for the subring of W (C) consisting of elements with bounded ghost

components (which, as in [How24, §9], encodes some big O notation).

When r = 1, the following result is [How24, Theorem C]; we refer the reader to loc. cit. and

the surrounding discussion for more on its classical interpretations.

Theorem D. With notation as above,

lim
d

∗−→∞
E[Expσ(Xd h1)] =

(
1 + p

∑
i≥1

[q−i m/2]ϵi fi

)[Y (κ)] · Expσ(µh1) (4.1.1)

where fi = ei and ϵ = −1 if m is odd and fi = hi and ϵ = 1 if m is even,

p = [q]−r L([q], m + r, r )

1 − [q]−r + [q]−r L([q], m + r, r )
, and

µ = −ϵ
(m−1∑

i=0
(−1)i

(
[q

−m
2 ] + [q

m−2i
2 ]

)
[H i (Y )]

)
− [q−m/2][H m(Y )].

In particular, modulo [q− 1
2 ]Λ∧

W (C)bdd this agrees with:

(a) For n > 0 even, Expσ(h2) (the asymptotic σ-moment-generating function for orthogonal

random matrices ([How24, Theorem A-(1)])).

(b) For n odd, Expσ(e2) (the asymptotic σ-moment-generating function for symplectic random

matrices ([How24, Theorem A-(2)])).

(c) For n = 0, Expσ(h2+h3+. . .) (the asymptoticσ-moment-generating function for the standard

irreducible representations of symmetric groups ([How24, Example 1.2.1])).



36 Chapter 4. Λ-distributions

To obtain the limitingσ-moment-generating function in Theorem D, as in the proof of [How24,

Theorem C], we use formal properties of independence to reduce to a geometric version com-

puting the distribution of the random variable Xd sending F to ZCF
(t). This geometric result

is given in Theorem 4.6.2, and generalizes [How24, Theorem 8.3.1] (we use [How25, Theorem

2.2.1] to handle a negative sign when m is odd instead of carrying out the computation separately

as in [How24]). The comparisons with random matrix statistics are then deduced as in [How24,

Proposition 9.2.2].

4.1.2.3 In Theorem 4.5.4 we give a different generalization of [How24, Theorem 8.3.1], treating

zeta functions of hypersurface sections with more exotic transversality conditions — this is

deduced from Theorem 4.4.3 using the smooth-agnostic extension of Poonen’s sieve in Chapter 2.

In Section 4.5.2 we also explain how the computations in [How24, Theorem B], which gave the

asymptotic Λ-distributions of L-functions of certain families of Dirichlet characters, can be

recovered from the perspective adopted here (this requires only Poonen’s original sieve as input

into Theorem 4.4.3).

In Theorem 4.7.2 we compute the asymptotic Λ-distributions of the zeta functions of degree

(2, d) curves on Hirzebruch surfaces — this computation is deduced from Theorem 4.4.3 using

the semiample extension of Poonen’s sieve in [EW15], and it refines [EW15, Theorem 9.9-(b)] (see

the start of Section 4.7.2 for further discussion).

Remark 4.1.1. Analogous results in the Grothendieck rings of varieties and Hodge structures will

be given in [BH25]. In that setting, the results and methods of [BH21] provide a uniform treatment

of the input that is analogous to that coming from Poonen’s sieve in the point-counting setting.

We recall that results giving asymptotic point-counts or traces of Frobenius and results giving

asymptotics in the Grothendieck ring of varieties with respect to the dimension filtration do not

imply one another, and typically require different methods (see, e.g., [BDH22, §1] for a detailed

discussion).

4.1.3 Organization

In Section 4.2 we set up some basic results on (pre-)λ-rings, admissible Z-sets and their W (C)-

valued functions, and λ-probability spaces. Much of the material is recalled from [How24], but we

also give a few new results and definitions adapted to handling families of λ-probability spaces

parameterized by admissible Z-sets. In Section 4.3 we define motivic Euler products with respect

to a map of admissible Z-sets and establish the basic properties of this operation.
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After these preliminaries, in Section 4.4 we define our notion of equidistribution and establish

the abstract form of our main result, Theorem 4.4.3. In Section 4.5, Section 4.6, and Section 4.7,

respectively, we then use generalizations of Poonen’s sieve to establish equidistribution and obtain

applications of Theorem 4.4.3 for homogeneous polynomials (using the generalization of Poonen’s

sieve of Chapter 2), tuples of homogeneous polynomials (using the generalization of Poonen’s

sieve in [BK12]), and sections of semiample line bundles (using the generalization of Poonen’s

sieve in [EW15]), respectively. In particular, Theorem D is established in Section 4.6.
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Sean Howe was supported by the National Science Foundation through grant DMS-2201112. We
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4.2 Preliminaries

In this section we discuss some basic notions on (pre-)λ-rings, admissible Z-sets and their W (C)-

valued functions, and λ-probability. Except for some new base change properties that will be

useful for working with geometric families of random variables, this material is treated in more

detail in [How24, §2, 3, and 5]. We give citations to [How24]; citations to earlier work on some of

these topics can be found in [How24].

4.2.1 pre-λ-rings

4.2.1.1 We will use the notation for symmetric functions described in [How24, §2.1]. In particular,

we write Λ for the ring of symmetric functions, and hi (resp. ei , resp. pi ) denotes the i th complete

(resp. elementary, resp. power sum) symmetric function. For τ = (τ1,τ2, . . .) a partition, hτ =
hτ1

hτ2
· · ·, and similarly for pτ and eτ. The monomial symmetric function mτ is the formal sum of

all distinct permutations of the monomial tτ1
1 tτ2

2 · · ·. We will frequently use that

h1 = e1 = p1 = m(1,0,0,...) = t1 + t2 + t3 + . . . .

4.2.1.2 Recall from [How24, §2.2 and §2.4] that a (pre-)λ-ring R is a ring equipped with a plethys-

tic action of the ring Λ of symmetric functions, written a ◦ r for a ∈ Λ and r ∈ R , satisfying certain

natural compatibilities.

https://www.nsf.gov/awardsearch/showAward?AWD_ID=2201112
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4.2.1.3 We let W (C) = Homring(Λ,C) denote the ring of big Witt vectors of C. We refer the reader

to [How24, §5.1] for an overview of its properties; here we briefly recall the structures we will use.

As an additive group, W (C) is naturally isomorphic to 1 + tC[[t ]] under multiplication by

w 7→ 1 + w(h1)t + w(h2)t 2 + . . . .

For w ∈ W (C), we write w(t i ) for the element obtained by substituting t i for t in this presentation.

As a ring, W (C) is naturally isomorphic to
∏

k≥1 C by

w 7→ (w(p1), w(p2), . . .).

For w ∈ W (C), and k ≥ 1 we write wk = w(pk ) for its k th component in this product presentation,

called the k th ghost component. There is a λ-ring structure on W (C) determined by the Adams

operations

pi ◦ (w1, w2, . . .) = (wi , w2i , . . .) (4.2.1)

and we have

w(t i )k = i wi /k (4.2.2)

where we take wi /k to be zero if i /k is not a positive integer.

4.2.1.4 Recall from [How24, Section 2.3] that, for any (pre-)λ-ring R, we have a natural (pre-)λ-

ring structure on

R[[tN]] = lim←−−
n

R[[t1, . . . , tn]]

extending the (pre-)λ-ring structure on R and such that pi ◦ t j = t i
j . It is moreover a filtered

(pre-)λ-ring for the filtration by monomial degree. In particular, as in [How24, §2.5], we have the

σ-exponential

Expσ : Fil1 R[[tN]] 1 + Fil1 R[[tN]]

F
∑

k≥0 hk ◦ F

and its inverse (which exists for formal reasons)

Logσ : 1 + Fil1 R[[tN]] Fil1 R[[tN]].

All of these constructions can be restricted to the (pre-)λ-subring Λ∧
R ⊆ R[[tN]] of symmetric

power series.
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4.2.1.5 Recall that, for F ∈ 1 + Fil1 R[[tN]] and N ∈ R[[tN]] we have an associated pre-λ power as

in [How24, Definition 2.6.1],

F N := Expσ(N · Logσ(F )).

4.2.1.6 At certain points, we will also wish to use the coefficient-wise pre-λ-ring structure on

R[[tN]] or Λ∧
R , which we denote by ∗, i.e. f ∗ ∑

ri t i = ∑
( f ◦ ri )t i .

4.2.2 AdmissibleZ-sets

4.2.2.1 Recall from [How24, §5.2] that an admissible Z-set is a set V with an action of Z such

that V = ∪k≥1V kZ and, for any k ≥ 1, V kZ is finite. We write |V | for the set of Z-orbits in V and,

for v ∈ V , we write |v | for the orbit containing v . The degree of a point or orbit is the size of the

orbit; we write this as deg(v) or deg(|v |). We write k = Z/kZ (as an admissible Z-set). For any

admissible Z-set V , we write

[V ] = ∏
|v |∈|V |

1

1 − t deg(v)
∈ 1 + tC[[t ]] = W (C).

In ghost coordinates, we have [V ] = (#V (1), #V (2), . . .) (see [How24, Lemma 5.2.3]).

4.2.2.2 Recall from [How24, Definition 5.2.5] that, if V → B is a map of admissible Z-sets, then,

for any b ∈ B , we equip the fiber Vb with the structure of an admissible Z-set by multiplying the

action on V by deg(b) so that it restricts to an action on Vb .

4.2.2.3 For V an admissible Z-set and k a positive integer, we write Vk for the same set but with

the action of Zmultiplied by k. If ϕ : V → B is a map of admissible Z-sets then we write ϕk for

the induced map Vk → Bk.

We can identify Vk with the fiber of the projection map V × k → k over 1 ∈ k.

4.2.2.4 AdmissibleZ-sets give an abstract formalism for studying the points of algebraic varieties

over finite fields: for Fq a finite field of cardinality q , fix an algebraic closure Fq and write Fqk for

the unique subfield of cardinality qk . Then, the set of Fq -points Y (Fq ) of an algebraic variety over

Y /Fq is an admissible Z-set with 1 acting as the geometric Frobenius; in this case, |Y (Fq )| can be

identified with the closed points of Y , and [Y (Fq )] is an incarnation of the zeta function of Y (see

also [How24, Example 5.2.2]). The set Y (Fq )k is then YFqk
(Fq ), i.e. the set Y (Fq ) but with 1 ∈ Z

acting by the qk -power geometric Frobenius instead of the q-power geometric Frobenius.
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4.2.3 W (C)-valued functions

4.2.3.1 For V an admissible Z-set, we write C (V , W (C)) for the set of functions from V to W (C)

that are constant on Z-orbits. It is a λ-ring with the pointwise λ-ring structure, and, given

ϕ : V → B a map of admissible Z-sets, there is a natural pullback map ([How24, Definition

5.3.4-(1)])

ϕ∗ : C (B , W (C)) C (V , W (C))

that is a map of λ-rings, and a natural integration-over-fibers map ([How24, Definition 5.3.4-(2)])

ϕ! : C (V , W (C)) C (B , W (C))

that is ϕ∗-linear ([How24, Lemma 5.3.7]). When the map ϕ is clear from context, we write
∫

V /B

in place of ϕ!. If B = 1 is the final object, we may also write
∫

V in place of
∫

V /1. We recall the

formulas for ϕ∗ and
∫

V /B , since they will be used below:

• For g ∈ C (B , W (C)),

(ϕ∗g )(v) = p deg(v)
deg(ϕ(v))

◦ g (ϕ(v)).

• For f ∈ C (V , W (C)), (∫
V /B

f

)
(b) =

∫
Vb

f = ∑
|v |∈|Vb |

f (t deg(v)).

Example 4.2.1 (See Example 5.3.5 of [How24]). For V an admissible Z-set,∫
V

1 = [V ]

where here 1 denotes the constant function on V with value the unit in W (C) (the unit in W (C) is

the element 1
1−t in the identification 1 + tC[[t ]] = W (C)).

We will need the following base change formula relating pullback and integration over fibers

that was not made explicit in [How24]:

Lemma 4.2.2. If

V1 V2

B1 B2

ϕ

ψ

is a cartesian diagram of admissible Z-sets then, for f ∈ C (V2, W (C)),

ψ∗
∫

V2/B2

f =
∫

V1/B1

ϕ∗ f .
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Proof. We write V := V2 so that V1 = V ×B2
B1. Then, for b ∈ B1 and a := deg(b)/ deg(ψ(b)),(

ψ∗
∫

V /B2

f

)
(b) = pa ◦

(∫
V /B2

f

)
(ψ(b))

= pa ◦
∫

Vψ(b)

f |Vψ(b)

= ∑
|v |∈Vψ(b)

pa ◦ (
f (|v |)(t deg(v))

)
, (4.2.3)

where the three equalities are immediate from the definition of pullback and integration. On the

other hand, again immediately from the definitions,(∫
V ×B2

B1/B1

ϕ∗ f

)
(b) = ∑

|w |∈(V ×B2
B1)b

(
pdeg(w)/ deg(ϕ(w)) ◦ f (|w |)) (t deg(w)). (4.2.4)

Now, (V ×B2
B1)b is identified with Vψ(b), but with the action multiplied by a. Thus each orbit |v |

in Vψ(b), viewed as a subset of (V ×B2
B1)b , decomposes into µ|v | := gcd(deg(v), a) orbits of size

deg(v)/µ|v |, whose points w satisfy deg(w)/ deg(v) = a/µ|v |. Thus, we can rewrite the sum on the

right of Equation (4.2.4) as

∑
|v |∈Vψ(b)

µ|v |
(
pa/µ|v | ◦ f (|v |)

)
(t deg(v)/µ|v |). (4.2.5)

To see that Equation (4.2.5) agrees with the right of Equation (4.2.3), we use Equation (4.2.1)

and Equation (4.2.2) to compute ghost coordinates of the terms appearing as

(
pa ◦ (

f (|v |)(t deg(v))
))

i = deg(v) f (|v |)ai / deg(v)

and ((
pa/µ|v | ◦ f (|v |)

)
(t deg(v)/µ|v |)

)
i
= deg(v)

µ|v |
f (|v |)ai / deg(v).

Since a multiple of µ|v | appears in Equation (4.2.5), we conclude.

4.2.3.2 Recall from 4.2.2.3 that, for V an admissible Z-set and k a positive integer, we have

defined Vk by multiplying the Z-action by k.

If f ∈ C (V , W (C)) and k ≥ 1 then from f we obtain fVk
∈ C (Vk, W (C)) by identifying Vk =

(V × k)1 as in 4.2.2.3, and pulling back first to V × k then restricting. Concretely, if x is a point

of degree d in V then it is a point of degree d/ gcd(d , k) in Vk, and fVk
(x) = pk/ gcd(d ,k) ◦ f (x). We

will often write f in place of fVk
when the domain is clear; we emphasize that this is not the same

as transporting f naively along the identification of the underlying sets of V and Vk .
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4.2.4 Someλ-probability spaces

4.2.4.1 We recall from [How24, Definition 3.1.1] that a (pre-)λ-probability space is a (pre-)λ-

ring R equipped with a Z-linear expectation functional E : R → C to another ring C such that

E[1R ] = 1C .

Given a (pre-)λ-probability space (R,E), we refer to the elements of R as random variables.

Given a random variable X ∈ R, we recall from [How24, Lemma 3.2.2] that the Λ-distribution

of X as in [How24, Definition 3.1.2] is determined by the σ-moment-generating function of X

([How24, Definition 3.2.1]). The latter is defined as

E[Expσ(X h1)] ∈ Λ∧
C

where h1 = p1 = e1 = t1 + t2 + t3 + . . . is the first complete, power sum, and elementary symmetric

function, Expσ(X h1) is computed in Λ∧
R (or equivalently in R[[tN]]) and the expectation is applied

coefficient-wise to produce an element of Λ∧
C .

4.2.4.2 Suppose V is an admissible Z-set and V (1) ̸= Ø. Then, V (k) ̸= Ø for all k ≥ 1, so

[V ] = (#V (1), #V (2), . . .) is an invertible element of W (C). As in [How24, §5.5], we can thus

consider the λ-probability space

(C (V , W (C)),E)

where the expectation functional E is defined by

E : C (V , W (C)) W (C)

f
∫

V f
[V ] .

4.2.4.3 Given a pre-λ-probability space with expectation E valued in W (C), we write Ek for the

C-valued expectation obtained by projecting to the k th ghost component. We recall that, for the

λ-probability space (C (V , W (C)),E) as above, Ek can be computed naturally on a classical finite

probability space ([How24, Lemma 5.5.1]). We now give a modified formulation that is more

convenient for our purposes.

To state it, note that we can view Vk(1) as the subset of Z-fixed points in Vk.

Lemma 4.2.3. Let V be an admissible Z-set with V (1) ̸= Ø. Restriction as in 4.2.3.2 from V to Vk

followed by naive restriction from Vk to Vk(1) induces a map of λ-probability spaces

resk : (C (V , W (C)),Ek ) (C (Vk(1), W (C)),E1).
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In particular, for any random variable X ∈ C (V , W (C)),

Ek

[
Expσ(X h1)

] = E1

[
Expσ(resk (X )h1)

]
.

Proof. Noting that evaluation at 1 ∈ k gives a canonical identification V (k) = Vk(1), this is a

reformulation of [How24, Lemma 5.5.1].

Remark 4.2.4. The map resk is a map of W (C)-algebras when C (V , W (C)) is equipped with the

algebra structure of pullback from a point and C (Vk(1), W (C)) is equipped with the algebra

structure sending a ∈ W (C) to the constant function with value pk ◦ a. In the statement of

[How24, Lemma 5.5.1], this twist in the algebra structure is included in the notation by writing

C (V (k), W (C))(k) in place of C (V (k), W (C)).

4.2.4.4 We will also need to consider “families” of λ-probability spaces: if V → B is a morphism

of admissible Z-sets admitting a section B → V , then the class [V /B ] ∈ C (B , W (C)) of [How24,

Example 5.3.5] sending b ∈ V to [Vb] (for Vb as in 4.2.2.2) is invertible and we can consider the

λ-probability space

(C (V , W (C)),EV /B )

where the expectation functional EV /B is defined by

EV /B : C (V , W (C)) C (B , W (C))

f
∫

V /B f
[V /B ] .

Lemma 4.2.5. For f ∈ C (V , W (C)),

(
EV /B [ f ]

)
(b) = EVb

[ f |Vb
].

Proof. This follows from the analogous properties in the definitions of
∫

V /B ([How24, Definition

5.3.4]) and [V /B ] ([How24, Example 5.3.5]):

(
EV /B [ f ]

)
(b) =

(∫
V /B f

)
(b)

[V /B ](b)
=

∫
Vb

f |Vb

[Vb]
= EVb

[ f |Vb
].

Lemma 4.2.6. Consider a cartesian diagram of admissible Z-sets

V1 V2

B1 B2

ϕ

ψ
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and suppose V2 → B2 admits a section. Then, for f ∈ C (V2, W (C)),

ψ∗E[ f ] = E[ϕ∗ f ].

Proof. We have

ψ∗EV2/B2
[ f ] =

ψ∗ ∫
V2/B2

f

ψ∗[V2/B2]
=

∫
V1/B1

ϕ∗ f

[V1/B1]
= EV1/B1

[ϕ∗ f ],

where the second equality is by Lemma 4.2.2 (note [V /B ] = ∫
V /B 1).

Lemma 4.2.7. For f ∈ C (V , W (C)),

(
EV /B [ f ]

)
Bk

= EVk/Bk
[ fVk

].

Proof. Identifying Bk = (B × k)1 as in 4.2.2.3 and recalling the definition in 4.2.3.2, we apply

Lemma 4.2.6 to see

(
EV /B [ f ]

)
Bk

= (
π∗

BEV /B [ f ]
)∣∣

(B×k)1
= (

EV ×k/B×k[π∗
V F ]

)∣∣
(B×k)1

where πB : B × k → B and πV : V × k → V are the projections. We then conclude by comparing

the values at points with EVk/Bk
[FVk

] using Lemma 4.2.5.

4.3 Point counting motivic Euler products

In this section, we define motivic Euler products for morphisms of admissible Z-sets and then

explain how to compute them using classical Euler products.

4.3.1 Motivic Euler products

Recall from Section 4.2.2 that, for V an admissibleZ-set, we have the associatedλ-ring C (V , W (C)).

Recall from Section 4.2.1 that we can then construct the filtered λ-ring of formal power series

C (V , W (C))[[tN]] with its associated σ-exponential Expσ and σ-logarithm Logσ.

Definition 4.3.1 (Motivic Euler products). For V → B a morphism of admissible Z-sets and

H ∈ 1 + Fil1 C (V , W (C))[[tN]], we define

∏
V /B

H := Expσ

(∫
V /B

Logσ(H)

)
∈ C (B , W (C))[[tN]].

When V → 1 is the final morphism we write

∏
V

H = ∏
V /1

H = Expσ

(∫
V

Logσ(H)

)
.
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Remark 4.3.2. The relation between this formula and the motivic Euler products of [Bil23] will be

detailed in [BDH25], explaining the nomenclature. In the present work, we do not need to make

this connection explicit since it will suffice for our purposes to have the formula relating motivic

Euler products to classical Euler products given in Proposition 4.3.7 below (which is reproved

from a different perspective in [BDH25]).

Example 4.3.3. Let H ∈ W (C)[[tN]] with constant coefficient 1. Then we find∏
V

H = Expσ

(∫
V

Logσ(H)

)
by definition

= Expσ

(
Logσ(H)

(∫
V

1

))
by linearity of

∫
V

= Expσ
(
Logσ(H)[V ]

)
by Example 4.2.1

= H [V ] by definition

as one hopes by the notation! Note that we have implicitly pulled back the coefficients of H from

the final object 1 to get an element of C (V , W (C))[[tN]] — in particular, when we are viewing

H as an element of C (V , W (C))[[tN]] here, it is not as the constant function on V with values

H , but rather the function that takes value pi ∗ H on each degree i point, where ∗ denotes the

coefficient-wise pre-λ-ring structure as in 4.2.1.6 (see also [How24, Example 5.3.6 and subsequent

warning]).

Motivic Euler products can be computed fiberwise (recall we defined fibers in 4.2.2.2):

Lemma 4.3.4. Let V → B be a morphism of admissible Z-sets. For any b ∈ B and H ∈ 1 +
Fil1 C (V , W (C))[[tN]], ( ∏

V /B
H

)
(b) = ∏

Vb

(H |Vb
),

where evaluation at b and restriction on power series are evaluated coefficient-wise.

Proof.( ∏
V /B

H

)
(b) = Expσ

(∫
V /B

Logσ(H)

)
(b) by definition

= Expσ

((∫
V /B

Logσ(H)

)
(b)

)
because evaluation is a map of pre-λ-rings

= Expσ

(∫
Vb

Logσ(H)|Vb

)
because integration is defined fiberwise

= Expσ

(∫
Vb

Logσ(H |Vb
)

)
because the restriction is a map of pre-λ-rings

= ∏
Vb

H |Vb
by definition.
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Motivic Euler products also behave well with respect to cartesian pullback.

Lemma 4.3.5. Consider a cartesian diagram of admissible Z-sets

V1 V2

B1 B2

ϕ

ψ

For H ∈ C (V2, W (C))[[tN]],

ψ∗ ∏
V2/B2

H = ∏
V1/B1

ϕ∗H ,

where the pullback functors are applied to power series coefficient-wise.

Proof. We have

ψ∗
( ∏

V2/B2

H

)
= ψ∗

(
Expσ

(∫
V2/B2

Logσ(H)

))
by definition

= Expσ

(
ψ∗

∫
V2/B2

Logσ(H)

)
because ψ∗ is a map of pre-λ-rings

= Expσ

(∫
V1/B1

ϕ∗ Logσ(H)

)
by Lemma 4.2.2

= Expσ

(∫
V1/B1

Logσ(ϕ∗H)

)
because ϕ∗ is a map of pre-λ-rings

= ∏
V1/B1

ϕ∗H by definition.

Combing these two lemmas, we deduce:

Lemma 4.3.6. Let V → B be a map of admissible Z-sets, and let H ∈ C (V , W (C))[[tN]]. For any

k ≥ 1, ( ∏
V /B

H

)
Bk

= ∏
Vk/Bk

HVk

where the restriction HVk
is formed coefficient-wise as in 4.2.3.2.

Proof. Identifying Bk = (B × k)1 as in 4.2.2.3 and using the definition in 4.2.3.2, we apply

Lemma 4.3.5 to see ( ∏
V /B

H

)
Bk

=
(
π∗

B

∏
V /B

H

)∣∣∣∣
(B×k)1

=
( ∏

V ×k/B×k
π∗

V H

)∣∣∣∣∣
(B×k)1

where πB : B × k → B and πV : V × k → V are the projections. We then conclude by comparing

the values at points with
∏

Vk/Bk
FVk

using Lemma 4.3.4.
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4.3.2 Evaluation of motivic Euler products using classical Euler products

The following proposition gives a description of motivic Euler products in terms of classical Euler

products of series in C[[tN]]. In light of Example 4.3.3, it is a generalization of [How24, Proposition

5.2.7]. To state it, for H a power series with coefficients in W (C) and i ≥ 1, we write Hi for the

power series C[[tN]] obtained by taking the i th ghost coordinate of all coefficients (note H 7→ Hi is

a ring homomorphism).

In the following, we use the convention for restriction from V to Vk as in 4.2.3.2 (applied

coefficient-wise to power series).

Proposition 4.3.7. Let V be an admissible Z-set and let H ∈ C (V , W (C))[[tN]].(∏
V

H

)
k

= ∏
|v |∈|Vk|

H(|v |)1(t deg(v)) (4.3.1)

= ∏
|v |∈|V |

(
H(|v |)k/ gcd(k,deg(v))(t deg(v)/ gcd(k,deg(v))

)gcd(k,deg(v))
.

Remark 4.3.8. Comparing the expressions in Proposition 4.3.7 for
(∏

V H
)

k and
(∏

Vk
H

)
1
, one

finds that they agree. This is implied already by Lemma 4.3.6.

Example 4.3.9. In the case that the admissible Z-set is Y (Fq ) for Y /Fq a variety and H is a power

series whose coefficients are the classes associated to varieties X j /Y , [X j (Fq )/Y (Fq )] as in [How24,

Example 5.3.5], Proposition 4.3.7 says ∏
Y (Fq )

∑
j

[X j (Fq )/V (Fq )]t j


k

= ∏
y∈|YF

qk
|

∑
j

#X j ,κ(y)(κ(y))t j deg(y)

where κ(y) denotes the residue field at the closed point y of YFqk
.

Proof of Proposition 4.3.7. The equality of the two infinite products on the right of Equation (4.3.1)

follows from the definition of the restriction of the coefficients of H in 4.2.3.2 and the fact that

each orbit of degree d in V splits into gcd(d , k) orbits of degree d/ gcd(d , k) in Vk .

We now show these infinite products agree with the k th component of the motivic Euler

product. We first note

Expσ

(∫
V

Logσ(H)

)
= Expσ

( ∑
|v |∈|V |

(Logσ(H(|v |))(t deg(v))

)
= ∏

|v |∈|V |
Expσ

(
Logσ(H(|v |))(t deg(v))

)
.

= ∏
|v |∈|V |

(∏
|v |

H ||v |
)
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where, in the final line, the first product is a usual infinite product over the countable set of

orbits |V |, and the second product is a motivic Euler product over the orbit |v |, viewed itself as an

admissible Z-set.

Thus it suffices to assume V = d is a single orbit. In this case we are trying to compute the k th

component of ∏
d

H = Expσ

(∫
d

Logσ(H)

)
= Expσ

((
Logσ(H(d))

)
(t d )

)
where the substitution of t d for an element of W (C) is as in 4.2.1.3 and here it is performed

coefficient-wise (note that we are writing t for the variable in W (C) = 1 + tC[[t ]] while we write ti

for the power series variables!), and the computation of
∫

d follows from the definition ([How24,

Definition 5.3.2]).

Thus, for L := Logσ(H(d)) and M := L(t d ), we are trying to compute Expσ(M). We note that,

by Equation (4.2.2), M j = dL j /d — in particular, this is zero for d −| j . Let µ = lcm(k,d)
k = d

gcd(k,d)

and let ν = lcm(k,d)
d = k

gcd(k,d) . Using the expansion of Expσ in [How24, Lemma 2.5.4], we find

(below we note that ∗ is the coefficient wise pre-λ structure as in 4.2.1.6):

Expσ
(
L(t d )

)
k = ∏

j≥1
exp

( p j ◦ M

j

)
k

= ∏
j≥1

exp

( (p j ◦ M)k

j

)

= ∏
j≥1

exp

( (p j ◦ pk ∗ M)1

j

)

= ∏
i≥1

exp

( (piµ ◦ pk ∗ M)1

iµ

)
.

Here in the second equality we have used that passing to ghost components commutes with ring
operations, and in the fourth equality we have used that Mn = 0 if d −| n. Continuing by factoring
out a pi◦ in each term, we obtain

= ∏
i≥1

exp

( (pi ◦ (pµ ◦ pk ∗ M))1

iµ

)
= ∏

i≥1
exp

( (pi ◦ (pkµ ∗ M(tµ)))1

iµ

)
= ∏

i≥1
exp

( (pi ◦ (pkµ/d ∗ L)(tµ))

iµ/d

)
1

= ∏
i≥1

exp

(
d

µ

pi ◦ (pν ∗ L)(tµ)

i

)
1
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where on the second line we have used that pµ◦ acts as pµ∗ followed by substitution of tµi for ti .
Continuing by pulling out the integer multiple from the exponential as a power, we obtain

= ∏
i≥1

exp

(
pi ◦ (pν ∗ L)(tµ)

i

) d
µ

1

= (
Expσ(pν ∗ L(tµ))d/µ)

1

= (
pν ∗ Expσ(L)(tµ)d/µ)

1

= (
pν ∗ H(d)(tµ)

)d/µ
1

= (H(d)ν(tµ))d/µ.

Now, dk consists of d/µ = gcd(k, d) orbits of degree µ, and ν = k/ gcd(k, d), so we conclude.

4.4 Equidistribution and independence

In this section, we define our notion of equidistribution (Definition 4.4.1), then prove our main

abstract result on the computation of asymptotic moment-generating functions in the presence

of equidistribution, Theorem 4.4.3.

4.4.1 Equidistributing families

Definition 4.4.1. Let A → B be a morphism of admissible Z-sets admitting a section B → A. Let

I be a directed set, and for each d ∈ I , suppose given an admissible Z-set Ud and a morphism

evd : Ud × B → A of admissible Z-sets over B .

• For any positive integer k and admissible Z-subset B ′ ⊆ Bk, we define

evd ,B ′ : Ud ,k(1) HomBk
(B ′, Ak) = ∏

|b|∈|B ′|
HomBk

(|b|, Ak)

u
(
b 7→ evd ,k(u, b)

)
.

where, in the bottom formula, u is viewed as an element of Ud ,k.

• We say (Ud , evd ) equidistributes on A/B if, for any k ≥ 1 and any non-empty admissible

Z-subset B ′ ⊆ Bk of finite cardinality,

lim
d∈I

(
(evd ,B ′)∗µUd ,k(1)

)
= µHomBk

(B ′,Ak) (4.4.1)

where, for any finite set Z , µZ is the uniform probability measure on Z .
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Example 4.4.2 (Poonen’s Bertini). Let Y be a smooth, quasi-projective subscheme of Pn
Fq

. Write

S for Fq [x0, . . . , xn] and Sd for the set of degree d homogeneous polynomials in S. For any field

extension L/Fq , write S(L) and Sd (L) for S ⊗Fq
L and Sd ⊗Fq

L, respectively. For each point

P ∈ Pn(Fq ), we fix a jP such that x jP
does not vanish at P ; we make this choice so that jP is

constant on orbits. For F ∈ Sd (Fq ), we write FP for the image of F /xd
jP

in OPn
Fq

,P /𝔪2
P .

Set B = Pn
Fq

(Fq ) and for each P ∈ B , let AP be the subset of OPn
Fq

,P /𝔪2
P such that

AP =


{gP ∈ OPn

Fq
,P /𝔪2

P | image of gP in OYFq
,P /𝔪2

P is nonzero} P ∈ Y

OPn
Fq

,P /𝔪2
P P ∉ Y

Set A = ⊔
P∈B AP . Let Ud be the set of F ∈ Sd (Fq ) such that for all P ∈ B , the image of F in

OPn
Fq

,P /𝔪2
P lies in AP ; in other words, these are the polynomials such that their scheme-theoretic

vanishing set V (F ) intersects Y transversely. Each of A, B , and Ud are admissible Z-sets with the

geometric Frobenius action.

Let A → B be the map FP 7→ P . For an admissible Z-subset B ′ ⊆ Bk of finite cardinality, we

have

HomBk
(B ′, Ak) = ∏

|P |∈|B ′|
A|P |

where |B ′| is naturally viewed as a subset of |Pn
Fqk

| and A|P | is canonically identified with a subset

of OPn
F

qk
,|P |/𝔪2

|P |.

Viewing Ud ,k(1) as the set of F ∈ Sd (Fqk ) such that the image of F in OYF
qk

,|P |/𝔪2
|P | is nonzero

for all |P | ∈ |YFqk
|, the map evd ,B ′ sends F to the tuple (F|P |)|P |∈|B ′|. It is a consequence of Poonen’s

sieve as in [Poo04] that (Ud , evd ) equidistributes on A/B ; this will be explained in greater generality

in Section 4.5.1.

4.4.2 Asymptoticσ-moment-generating functions

Suppose (Ud , evd ) equidistributes in A/B as in Definition 4.4.1. Given a function  ∈ C (A, W (C)),

for any b ∈ B , we obtain a random variable on the fiber Ud × b (with Z-action multiplied by

k = deg(b), i.e. Ud ,k) by restricting d := ev∗d  . Thus we may view d as a family of random

variables on Ud parameterized by B , and then take their “sum” by integrating over B to obtain

Xd := ∫
B×Ud /Ud

d . The term equidistribution suggests that, as d → ∞, the random variables in

the family d will behave as if they are independent, so that one expects the moment-generating

function of this “sum” Xd to approach the “product” of the moment-generating functions of the

random variables in the family. Moreover, one expects to be able to compute the terms in this
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“product”: the moment-generating functions of the random variable d |Ud×b should converge

as d → ∞ to the moment-generating function of  |Ab
. The following result makes this intuition

precise using the point-counting motivic Euler products of Section 4.3:

Theorem 4.4.3. Let A → B be a morphism of admissible Z-sets admitting a section. Suppose

given a directed set I and for each d ∈ I , suppose given an admissible Z-set Ud and a morphism

evd : Ud ×B → A of admissible Z-sets over B. If (Ud , evd ) equidistributes on A/B (Definition 4.4.1)

then, for any  ∈ C (A, W (C)), letting

d := ev∗d  ∈ C (Ud × B , W (C)) and Xd :=
∫

Ud×B/Ud

d ∈ C (Ud , W (C)),

we have

lim
d∈I

EUd
[Expσ(Xd h1)] = lim

d∈I
EUd

[ ∏
Ud×B/Ud

Expσ(d h1)

]
(4.4.2)

= ∏
B

lim
d∈I

EUd×B/B [Expσ(d h1)] (4.4.3)

= ∏
B
EA/B

[
Expσ(h1)

]
. (4.4.4)

Proof. We first note that

Expσ(Xd h1) = Expσ

(∫
Ud×B/Ud

d h1

)
= Expσ

(∫
Ud×B/Ud

Logσ(Expσ(d h1))

)
= ∏

Ud×B/Ud

Expσ(d h1).

In particular, from this identity we obtain the first equality Equation (4.4.2).

To obtain the next two equalities, Equation (4.4.3) and Equation (4.4.4), we argue on the k th

component for each k. It follows from Lemma 4.2.3 that we can compute the k th ghost component

as (
EUd

[ ∏
Ud×B/Ud

Expσ(d h1)

])
k

= EUd ,k(1)

[(
resk

∏
Ud×B/Ud

Expσ(d h1)

)
1

]
.

For u ∈ Ud ,k(1), we have(
resk

∏
Ud×B/Ud

Expσ(d h1)

)
(u) =

( ∏
Ud×B/Ud

Expσ(d h1)

)
Ud ,k

(u)

=
( ∏

Ud ,k×Bk/Ud ,k

Expσ(d ,Ud ,k×Bk
h1)

)
(u)

= ∏
Bk

Expσ(evd ,k(u,−)∗Ak
h1).
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where the first equality is by definition, the second equality is by Lemma 4.3.6, and the third

equality follows from writing d ,Ud ,k×Bk
= ev∗d ,k Ak

and Lemma 4.3.4.

Passing to the first ghost component, we obtain, by Proposition 4.3.7,(
resk

∏
Ud×B/Ud

Expσ(d h1)

)
1

(u) = ∏
|b|∈|Bk|

Expσ(Ak
(evd ,k(u, b))pdeg(b))1,

where to obtain the power sum monomial pdeg(b) we have used that h1(t n) = pn .

Now, note that for each monomial symmetric function mτ ∈ Λ, only the finitely many |b| ∈ |Bk|
of degree less than |τ| can contribute to the coefficient of mτ in the product on the right. Let B ′ be

the set of these, so that the coefficient of mτ in this product is the same as its coefficient in

∏
|b|∈|B ′|

Expσ(Ak
(evd ,k(u, b))pdeg(b))1.

Now, since (Ud , evd ) equidistributes on A/B ,

lim
d∈I

EUd ,k(1)

[ ∏
|b|∈|B ′|

Expσ(Ak
(evd ,k(u, b))pdeg(b))1

]

= EHomBk
(B ′,Ak)

[ ∏
|b|∈|B ′|

Expσ
(
Ak

(ϕ(|b|))pdeg(b)

)
1

]
, (4.4.5)

where ϕ on the right denotes the varying element of HomBk
(B ′, Ak) with respect to which we are

taking expectation. Since

HomBk
(B ′, Ak) = ∏

|b|∈|B ′|
HomBk

(|b|, Ak),

the right-hand side of Equation (4.4.5) is equal to

∏
|b|∈|B ′|

EHomBk
(|b|,Ak)

[
Expσ

(
Ak

(ϕ(|b|))pdeg(b)

)
1

]
. (4.4.6)

Note that we have a natural identification

HomBk
(|b|, Ak) = Hom(1, (Ak)b).

Applying the k = 1 case of Lemma 4.2.3 to each term, we thus find that Equation (4.4.6) is equal to

∏
|b|∈|B ′|

(
E(Ak)b

[
Expσ(Ak

|(Ak)b
pdeg(b))

])
1

. (4.4.7)

By Lemma 4.2.5, this is equal to

∏
|b|∈|B ′|

(
EAk/Bk

[
Expσ(Ak

pdeg(b))
]

(|b|))
1

. (4.4.8)
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Note that, again for the coefficient of any fixed mτ, Equation (4.4.8) agrees with the corresponding

product over |Bk| whenever |B ′| is a sufficiently large subset of finite cardinality. Putting this all

together, we obtain the desired equality:

lim
d∈I

(
EUd

[ ∏
Ud×B/Ud

Expσ(d h1)

])
k

= ∏
|b|∈|Bk|

(
EAk/Bk

[
Expσ(Ak

pdeg(b))
]

(|b|))
1

= ∏
|b|∈|Bk|

((
EA/B

[
Expσ(pdeg(b))

])
Bk

(|b|)
)

1

=
(∏

B
EA/B

[
Expσ(h1)

])
k

where the second equality is by Lemma 4.2.7 and the third is by Proposition 4.3.7.

Remark 4.4.4. Let H ∈ 1 + Fil1Z[[tN]]. Then, either by the same argument as in the proof, or

as a formal consequence of the equivalence of Λ-distributions deduced from the equality of

σ-moment-generating functions (cf. [How24, §3.2]), in the setting of Theorem 4.4.3 one also

obtains:

lim
d∈I

EUd
[H Xd ] = lim

d∈I
EUd

[ ∏
Ud×B/Ud

H Xd

]
= ∏

Ud×B/Ud

lim
d∈I

EUd×B/B [H Xd ]

= ∏
B
EA/B

[
H ]

.

The σ-moment-generating function corresponds to H = Expσ(h1) = 1 + h1 + h2 + . . ., while the

falling moment-generating function of [How24, Example 3.2.3-(2)] corresponds to H = 1 + h1.

Similarly, the proof can be extended to show one can compute joint moment-generating functions:

e.g., for  and  two families,

lim
d∈I

EUd

[
H(t )Xd H(s)Yd

] = ∏
B
EA/B

[
H(t )H(s)

]
.

4.5 Equidistribution for homogeneous polynomials

In this section we first use Theorem C of Chapter 2 to show equidistribution holds for homoge-

neous polynomials with certain natural conditions on their Taylor expansions (generalizing those

accessible using [Poo04, Theorem 1.3]) — see Proposition 4.5.1. In Section 4.5.2 we explain how

the computation of the σ-moment-generating functions for L-functions of Dirichlet characters

made in [How24, Theorem B] can be handled by combining Proposition 4.5.1 and Theorem 4.4.3.

In Section 4.5.3 we apply Proposition 4.5.1 and Theorem 4.4.3 to compute the asymptotic σ-

moment-generating functions for zeta functions of hypersurfaces in a quasi-projective variety
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satisfying some exotic transversality conditions as in Example 2.5.2 of Chapter 2 — see Theo-

rem 4.5.4.

4.5.1 Establishing equidistribution

Let Y1, . . . , Yu be quasi-projective subschemes of Pn
Fq

of dimensions mi = dim Yi with locally

closed embeddings ι1, . . . , ιu , respectively. For each i , let Qi be a locally free quotient of ι∗i Ω
1
Pn of

rank ℓi ≥ mi , and let Ki = ker(ι∗i Ω
1
Pn → Qi ). Define

Ei =
(
ι∗i P 1(OPn

Fq
)
)
/Ki and Ei ,d = (

ι∗i P 1(OPn
Fq

(d))
)
/Ki (d)

where P 1(F ) is the sheaf of 1-principal parts of an OPn -module F .

We write x0, . . . , xn for the homogeneous coordinates on Pn . For every point P ∈ Pn(Fq ), fix

a nonnegative integer MP and a jp such that x jP
is non-vanishing at P ; we make these choices

so that MP and jP are constant on orbits in Pn(Fq ). Given F ∈ Sd (Fq ), write FP for the image of

F /xd
jP

in OPn
Fq

,P /𝔪MP+1
P .

Let φ : Pn
Fq

→ Pn
Fq

be the natural map.

Proposition 4.5.1. With notation as above, set B = Pn
Fq

(Fq ). For each P ∈ B, let AP be a subset of

OPn
Fq

,P /𝔪MP+1
P such that for all but finitely many P, AP contains FP for all homogeneous F ∈ S(Fq )

such that the image of FP in φ∗Ei |P is nonzero for all i .

Set A = ⊔
P∈B AP . Let Ud be the set of F ∈ Sd (Fq ) such that for all P ∈ B, the image FP of F in

OPn
Fq

,P /𝔪MP+1
P lies in AP . Each of A, B, and Ud are admissible Z-sets with the geometric Frobenius

action.

Let A → B be the map FP 7→ P and evd : Ud × B → A the map (F, P ) 7→ FP . Then (Ud , evd )

equidistributes on A/B in the sense of Definition 4.4.1.

Proof. For an admissible Z-subset B ′ ⊆ Bk of finite cardinality, we have

HomBk
(B ′, Ak) = ∏

|P |∈|B ′|
HomBk

(|P |, Ak).

If we identify each orbit |P | ⊆ B ′ ⊆ Pn(Fq ) with a closed point of Pn
Fqk

, then we obtain a canonical

identification of HomBk
(|P |, Ak) with a subset A|P | of OPn

F
qk

,|P |/𝔪
MP+1
|P | . Viewing Ud ,k(1) as the set

of F ∈ Sd (Fqk ) such that the image F|P | of F /xd
j|P |

in OPn
F

qk
,|P |/𝔪

M|P |+1
|P | lies in A|P | for all |P | ∈ |Pn

Fqk
|,

the map evd ,B ′ sends F to the tuple (F|P |)|P |∈|B ′|.

To establish Equation (4.4.1) it suffices to show equality for each singleton {(F|P |)|P |}. On the

right side we have

µHomBk
(B ′,Ak)({(F|P |)|P |}) = ∏

|P |∈|B ′|

1

#A|P |
.
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The left side can be viewed as a conditional probability:

(
(evd ,B ′)∗µUd ,k(1)

)
({(F|P |)|P |})

= µUd ,k(1)(ev−1
d ,B ′({(F|P |)|P |})

=
#{G ∈ Sd (Fqk ) | G|P | = F|P | for all |P | ∈ |B ′| and G ∈ Ud ,k(1)}/#Sd (Fqk )

#Ud ,k(1)/#Sd (Fqk )
.

By Theorem C of Chapter 2, as d → ∞, this converges to(∏
|P |∈|B ′|

1

#
(
OPn

F
qk

/𝔪
M|P |+1

|P |
))(∏

|P |∉|B ′|
#A|P |

#
(
OPn

F
qk

/𝔪
M|P |+1

|P |
))

∏
|P |∈|Pn

F
qk

|
#A|P |

#
(
OPn

F
qk

/𝔪
M|P |+1

|P |
) = ∏

|P |∈|B ′|

1

#A|P |
.

So Equation (4.4.1) is satisfied, and thus (Ud , evd ) equidistributes on A/B .

Remark 4.5.2. When each of the Yi is smooth and Qi = ΩYi
, one can invoke [Poo04, Theorem

1.3] instead of its generalization Theorem C of Chapter 2.

4.5.2 Example: L-functions of characters

We now explain how this framework leads to a more transparent computation of the asymptotic

σ-moment-generating functions for L-functions of Dirichlet characters as in [How24, Theorem

B].

Let κ be a finite field of cardinality q and fix a prime ℓ coprime to q , and a non-trivial order ℓ

character χ of µℓ(κ). Let Ud be the space of ℓ-power free degree d polynomials in the variable x.

As in [How24, §7.1], for f ∈ Ud , we obtain a Kummer character χ f of Gal(κ( f )(x)/κ( f )(x)) sending

σ to χ(σ( f 1/ℓ)/ f 1/ℓ). One can compute the L-function (with no factor at ∞) as an Euler product

(χ f , t ) = ∏
|z|∈|A1

κ( f )|

1

1 − χ( f (z)(#κ( f ,z)−1)/ℓ)t deg(z)
, (4.5.1)

where κ( f , z) is the extension generated by z and the coefficients of κ and where we set χ(0) = 0.

We define a random variable Xd on Ud sending f to (χ f , t ).

We explain how this fits into the context of Proposition 4.5.1: for each P ∈ A1(κ) ⊆ P1(κ), we

set MP = ℓ − 1, jP = 1, and AP = OPn
κ

,P /𝔪ℓ
P − {0}. For ∞ = [1 : 0], we set M∞ = 0, j∞ = 0, and

A∞ = {1} ⊆ OPn
κ

,∞/𝔪∞ = κ. Then dividing by xd
1 identifies the Ud appearing in Proposition 4.5.1

with the set of ℓ-power free monic polynomials in x = x0/x1 that we have called Ud here, and

under this identification the map evd is the natural map.
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Now, for P ∈ A1(κ), we define P to send a germ g ∈ AP to

1

1 − χ(g (P )(#κ(g )−1)/ℓ)t
= [χ(g (P )(#κ(g )−1)/ℓ)]

where κ(g ) is the extension of κ(P ) in κ generated by the coefficients of g . We define ∞ to be the

trivial random variable. It is a straightforward computation from Equation (4.5.1) that

Xd =
∫

Ud×A1(κ)/Ud

ev∗d  ,

thus Proposition 4.5.1 and Theorem 4.4.3 imply

lim
d→∞

E[Expσ(Xd h1)] = ∏
A1(κ)

EA/A1(κ)[Expσ(P h1)],

where the term at ∞ has gone away because it is identically 1.

Now, we compute E[Expσ(P h1)] for P ∈ A1(κ): let χP denote the C-valued function on AP

sending a germ g to χ(g (P )(#κ(g )−1)/ℓ) so that P = [χP ]. Now, since h j ◦ ([a]h1) = [a j ]h j for any

a ∈ C (see [How24, Lemma 2.2.4]),

Expσ(P h1) = ∑
j≥0

[χ j
P ]h j .

We can compute the k th component of E[[χn
P ]] using Lemma 4.2.3. The restriction of [χP ] to

(AP )k(1), i.e. to the set of germs with coefficients in the degree k extension of κ(P ) in κ, sends g to

[χ(g (P )(qk
P−1)/ℓ)], where qP = #κ(P ). Taking the first component, we find, [χn

P ]1 = [χP ]n
1 sends g to

χ(g (P )n(qk
P−1)/ℓ).

Thus the expectation is zero unless ℓ|n (since if ℓ −| n then every ℓth root of unity value is equally

likely and the only other value it takes is zero), and when ℓ|n it is

(qk
P )ℓ−1(qk

P − 1) − 1

(qk
P )ℓ − 1

= 1

1 + q−k
P + . . . + q (1−ℓ)k

P

since the function is identically 1 when g (P ) ̸= 0 and 0 when g (P ) = 0. Thus,

E[Expσ(P h1)] = 1 + 1

1 + [q−1
P ] + . . . + [q (1−ℓ)

P ]

∑
j≥1

hℓ j .

It follows that

EA/A1(κ)[Expσ(h1)]

is the pullback from a point of

1 + 1

1 + [q−1] + . . . + [q (1−ℓ)]

∑
j≥1

hℓ j .
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Thus, applying Example 4.3.3,∏
A1(κ)

EA/A1(κ)[Expσ(h1)] =
(
1 + 1

1 + [q−1] + . . . + [q (1−ℓ)]

∑
j≥1

hℓ j

)A1(κ)

=
(
1 + 1

1 + [q−1] + . . . + [q (1−ℓ)]

∑
j≥1

hℓ j

)[q]
.

In particular, if we

(a) replace  with its reciprocal (as a power series in 1 + tC[[t ]], which is the negative for the

additive structure of the Witt vectors), and

(b) scale the variables by [q−1/2],

then we recover the σ-moment-generating function described in [How24, Theorem B]. Indeed, by

[How25, Theorem 2.2.1], replacing  with its reciprocal will replace the hℓ j ’s with (−1)ℓ j eℓ j ’s in

the σ-moment-generating function, and scaling the random variable by [z] for z ∈ C changes the

σ-moment-generating function by scaling each of the variables ti by [z].

When ℓ ≥ 3, the more refined joint σ-moment-generating function between Xd and the

random variable X d obtained from the complex conjugate character to χ is of the most interest;

this can be recovered similarly by using the natural extension of Theorem 4.4.3 to jointσ-moment-

generating functions described in Remark 4.4.4.

4.5.3 Application: Zeta functions of hypersurface sections with exotic transversality
conditions

We consider the setup of Example 2.5.2 of Chapter 2. Let κ be a finite field of cardinality q , let

Y ,→ Pn
κ be a quasi-projective subscheme, let W ,→ Y ×κ Pn

κ be a closed subscheme such that

the projection from W to Y is smooth of relative dimension ℓ ≥ dim Y and such that the graph

of Y ,→ Pn
κ , Y → Y ×κ Pn

κ , factors through W . In other words, W → Y is a smooth family of

subvarieties of Pn
κ of at least the same dimension as Y such that, at each point P ∈ Y (κ), the fiber

WP contains P .

We let Ud be the set of degree d homogeneous polynomials F in n +1 variables such that V (F )

is transverse to WP at all points P ∈ Y (κ) ∩ V (F )(κ). We write Xd for the random variable on Ud

sending F to the zeta function

ZV (F )∩Yκ(F )/κ(F )(t ).

Example 4.5.3. If Y is smooth and W = Y ×Pn
κ , then Xd is the random variable sending a smooth

hypersurface section to its zeta function. On the other hand, Example 2.5.2 of Chapter 2 shows

there are other geometrically interesting examples.
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In light of Example 4.5.3 and [How25, Theorem 2.2.1], the following is a generalization of

[How24, Theorem 8.3.1].

Theorem 4.5.4. With notation as above, as d → ∞, the Λ-distribution of Xd converges to a

binomial Λ-distribution as in [How24, Definition 3.3.2] with parameters

p = [q−1] − [q−(ℓ+1)]

1 − [q−(ℓ+1)]
= [qℓ] − 1

[qℓ+1] − 1
and N = [Y (κ)].

Equivalently,

lim
d→∞

E[Expσ(Xd h1)] = (1 + p(h1 + h2 + . . .))N .

Proof. We are in the setup of Proposition 4.5.1 with MP = 1 for all P , with u = 1 and Q = Q1 =
γ∗ΩW /Y , where γ is the map Y → W induced by the graph of the immersion Y → Pn

κ . The jP can

be chosen arbitrarily; it will not affect the conditions below.

For P ∈ Y (κ), we consider the random variable P on AP sending a germ g to 1
1−t if g (P ) = 0

and 0 otherwise, and for P ∈ Pn(κ) − Y (κ), we set P to be the trivial random variable.

Then

Xd =
∫

Ud×Pn (κ)/Ud

ev∗d  .

By Proposition 4.5.1, (Ud , evd ) equidistributes on A/Pn(κ), thus, by Theorem 4.4.3, the asymptotic

σ-moment-generating function is∏
Pn (κ)

EA/Pm (κ)[Expσ(h1)] = ∏
Y (κ)

EAY (κ)/Y (κ)[Expσ(h1)]

where the factor corresponding to Pn(κ) − Y (κ) disappeared because the moment-generating

function of the trivial random variable is identically 1.

For P ∈ Y (κ) of degree k, P is a Bernoulli random variable equal to 1
1−t (the unit in W (C))

with probability
[q−k ] − [q−(ℓ+1)k ]

1 − [q−(ℓ+1)k ]
.

This can be checked on each ghost component using Lemma 4.2.3; the numerator is the probabil-

ity of a section vanishing at P and being transverse to WP at P , whereas the denominator is the

probability of a section either not vanishing or vanishing and being transverse.

It follows that Expσ(h1)|Y (κ) is the pullback of (1 + p(h1 + h2 + . . .)) from 1 to Y (κ). Thus, by

Example 4.3.3,∏
Y (κ)

EAY (κ)/Y (κ)[Expσ(h1)] = ∏
Y (κ)

(1 + p(h1 + h2 + . . .)) = (1 + p(h1 + h2 + . . .))[Y (κ)].
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Remark 4.5.5. For F ∈ Ud as above, V (F ) may not intersect Y transversely, so there is not

an obvious L-function to extract in order to give a result analogous to Theorem D. However,

Proposition 4.5.1 is robust enough to allow one to additionally impose the condition that V (F )

intersect Y transversely, giving an interesting L-function. We leave the computation of the L-

function Λ-distribution in this case to the interested reader, but note that the motivic Euler

product for the zeta function random variable in this setting will not typically be expressible

as a single pre-λ power: the pointwise moment-generating function at P will depend on the

dimension of the intersection of the tangent space of Y at P and the tangent space of WP at P .

4.6 Equidistribution for tuples of homogeneous
polynomials

In this section we use the results of [BK12] to show equidistribution holds for tuples of homo-

geneous polynomials intersecting a fixed smooth quasi-projective variety transversely (Proposi-

tion 4.6.1), then combine this with Theorem 4.4.3 to prove Theorem D. As in the proof of [How24,

Theorem C], we first study the geometric random variable that sends a complete intersection to

its zeta function (Theorem 4.6.2; cf. [How24, Theorem 8.3.1]), then argue with basic properties

of independence to obtain the computation of the asymptotic moment-generating function in

Theorem D.

4.6.1 Establishing equidistribution

4.6.1.1 For d = (d1, . . . , dr ) a tuple of positive integers, write Sd for the product Sd1
× . . . × Sdr

and identify it with the global sections of OPn
Fq

(d) = ⊕r
i=1 OPn

Fq
(di ).

4.6.1.2 Fix non-negative integers m and r . Set Im,r = Nr with an ordering described as fol-

lows: for tuples a = (a1, . . . , ar ) and b = (b1, . . . , br ), a ≤ b if and only if ai ≤ bi for all i and

max(bi )−m qmin(bi )/(m+1) ≤ max(ai )−m qmin(ai )/(m+1).

4.6.1.3 For every point P ∈ Pn(Fq ), fix a non-vanishing coordinate x jP
, 0 ≤ jp ≤ n; we

make this choice so that jP is constant on orbits. Given F ∈ Sd (Fq ), write F P for the image

of (F1/xd1
jP

, . . . , Fr /x
dr

jP
) in (OPn

Fq
,P /𝔪2

P )⊕r .

4.6.1.4 Define

L(a, b, c) =
c−1∏
j=0

(1 − a−(b− j ))
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which, when a = q , is the probability that c randomly chosen vectors in Fb
q are linearly indepen-

dent.

Proposition 4.6.1. Let Y be a smooth, quasi-projective subscheme of Pn
Fq

of dimension m.

Set B = Pn
Fq

(Fq ) and for each P ∈ B, let AP be the subset of (OPn
Fq

,P /𝔪2
P )⊕r such that

AP =




g

P
∈ (OPn

Fq
,P /𝔪2

P )⊕r

∣∣∣∣∣∣∣∣∣∣∣∣

for g i the image of gi in YFq
,P and

𝔪 the maximal ideal in YFq
,P ,

not all g i lie in 𝔪 or all g i lie in 𝔪

and are linearly independent in 𝔪/𝔪2


P ∈ Y

(OPn
Fq

,P /𝔪2
P )⊕r P ∉ Y

where by gi we mean the image of the i th component of g
P

in OYFq
,P /𝔪2

P .

Set A = ⊔
P∈B AP . Let Ud be the set of F ∈ Sd (Fq ) such that for all P ∈ B, F P lies in AP . Let

A → B be the map F P 7→ P and evd : Ud × B → A the map (F , P ) 7→ F P . Then (Ud , evd )d∈Im,r

equidistributes on A/B in the sense of Definition 4.4.1.

Proof. For an admissible Z-subset B ′ ⊆ Bk of finite cardinality, we have

HomBk
(B ′, Ak) = ∏

|P |∈|B ′|
HomBk

(|P |, Ak).

If we identify the orbit |P | ⊆ B ′ ⊆ Pn(Fq ) with a closed point of Pn
Fqk

, then we obtain a canonical

identification of HomBk
(|P |, Ak) with a subset A|P | of (OPn

F
qk

,|P |/𝔪2
|P |)

⊕r . Viewing Ud ,k(1) as the set

of F ∈ Sd (Fqk ) such that the image of F in (OPn
F

qk
,|P |/𝔪2

|P |)
⊕r lies in A|P | for all |P | ∈ |Pn

Fqk
|, the map

evd ,B ′ sends F to the tuple (F |P |)|P |∈|B ′|.

To establish Equation (4.4.1) it suffices to show equality for each singleton {(F |P |)|P |∈|B ′|}. On

the right side we have

µHomBk
(B ′,Ak)({(F |P |)|P |})

= ∏
|P |∈|B ′|

1

#A|P |

=
( ∏
|P |∈|B ′|−|YF

qk
|
q−kr deg(P )(n+1)

)( ∏
|P |∈|B ′|∩|YF

qk
|

q−kr deg(P )(n+1)

1 − q−kr deg(P ) + q−kr deg(P )L(qk deg(P ), m, r )

)
.
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The left side of Equation (4.4.1) can be viewed as a conditional probability:

(
(evd ,B ′)∗µUd ,k(1)

)
({(F |P |)|P |})

= µUd ,k(1)(ev−1
d ,B ′({(F |P |)|P |})

=
#{G ∈ Sd (Fqk ) | G |P | = F |P | for all |P | ∈ |B ′| and G ∈ Ud ,k(1)}/#Sd (Fqk )

#Ud ,k(1)/#Sd (Fqk )
.

By [BK12, Theorem 1.2], as d → ∞ such that max(d)m q−min(d)/(m+1) → 0 (guaranteed by our

choice of Im,r ), this converges to

(∏
|P |∈|B ′| q−kr deg(P )(n+1)

)(∏
|P |∈|YF

qk
|−|B ′|

(
1 − q−kr deg(P ) + q−kr deg(P )L(qk deg(P ), m, r )

))
∏

|P |∈|YF
qk

|
(
1 − q−kr deg(P ) + q−kr deg(P )L(qk deg(P ), m, r )

)
=

( ∏
|P |∈|B ′|−|YF

qk
|
q−kr deg(P )(n+1)

)( ∏
|P |∈|B ′|∩|YF

qk
|

q−kr deg(P )(n+1)

1 − q−kr deg(P ) + q−kr deg(P )L(qk deg(P ), m, r )

)
.

So Equation (4.4.1) is satisfied, and thus (Ud , evd ) equidistributes on A/B .

4.6.2 Application: Zeta functions and L-functions of complete intersections

Let κ be a finite field of order q and fix an algebraic closure κ. Let Y ⊆ Pn
κ be a smooth quasi-

projective subscheme of dimension m + r . With notation as in Proposition 4.6.1, for F ∈ Ud we

write CF for the scheme-theoretic intersection Y ∩V (F1) ∩ . . . ∩V (Fr ), a smooth quasi-projective

subscheme of Pn
κ(F ), where κ(F ) is the subfield of κ generated by the coefficients of F1, . . . , Fr .

Let Xd be the random variable on Ud sending F to

ZCF
(t ) = ∏

y∈|CF |

1

1 − t deg y
.

The following (combined with [How25, Theorem 2.2.1]) generalizes [How24, Theorem 8.3.1],

which is the case of r = 1.

Theorem 4.6.2. With notation as above, as d goes to ∞ in Im+r,r (see 4.6.1.2), the Λ-distribution of

Xd converges to a binomial Λ-distribution with parameters

p = [q]−r L([q], m + r, r )

1 − [q]−r + [q]−r L([q], m + r, r )
and N = [Y (κ)],

i.e.,

lim
d∈Im+r,r

E[Expσ(Xd h1)] = (1 + p(h1 + h2 + . . .))N .
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Proof. We will use the notation of Proposition 4.6.1. For P ∈ Y (κ), we consider the random

variable P on AP that sends a germ f to{
1

1−t if fi (P ) = 0 for all i

0 otherwise.

For P ∈ Pn(κ) − Y (κ), we set P to be the trivial random variable. Then

Xd =
∫

Ud×Pn
κ

/Ud

ev∗d  .

By Proposition 4.6.1, (Ud , evd ) equidistributes on A/Pn(κ), thus, by Theorem 4.4.3, the asymptotic

σ-moment-generating function is

∏
Pn (κ)

EA/Pn (κ)[Expσ(h1)] = ∏
Y (κ)

EAY (κ)/Y (κ)[Expσ(h1)]

where the equality is because the moment-generating function of the trivial random variable over

Pn(κ) − Y (κ) is identically 1.

For P ∈ Y (κ) of degree k, P is a Bernoulli random variable equal to 1
1−t (the unit in W (C))

with probability

[qk ]−r L([qk ], m + r, r )

1 − [qk ]−r + [qk ]−r L([qk ], m + r, r )
.

Indeed, this can be checked on each ghost component using Lemma 4.2.3; the numerator gives

the probability that an r -tuple of germs vanishing at a point are transverse at that point, while the

denominator gives the probability that an r -tuple of germs either do not all vanish at a point or all

vanish and are transverse.

It follows that Expσ(h1)|Y (κ) is the pullback of (1 + p(h1 + h2 + . . .)) from 1 to Y (κ). Thus,

using Example 4.3.3 for the second equality,

∏
Y (κ)

EAY (κ)/Y (κ)[Expσ(h1)] = ∏
Y (κ)

(1 + p(h1 + h2 + . . .)) = (1 + p(h1 + h2 + . . .))[Y (κ)].

4.6.2.1 We now prove Theorem D. We continue with the notation above, except we now take Y

to be a smooth, closed, and geometrically connected subscheme in order to agree with the setup

in Section 4.1.2 (these conditions show up in the definition of vanishing cohomology and in the

analysis of the top degree cohomology when establishing congruences modulo W (C)bdd).
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Proof of Theorem D. We write Xd for the random variable on Ud as in Section 4.1.2 sending F to

CF
(t ). For Xd as above, we have, as in the r = 1 case of [How24, §8.4],

Xd = [q−m/2]

(
(−1)m Xd − [H m(Y )] − (−1)m

m−1∑
i=0

(−1)i (1 + [qm−i ])[H i (Y )]

)
. (4.6.1)

Because any constant random variable is independent to any other random variable, we find

E[Expσ(Xd h1)] = E[Expσ((−1)m[q−m/2]Xd )] Expσ(µh1)

for

µ = −[q−m/2][H m(Y )] − (−1)m
m−1∑
i=0

(−1)i ([q−m/2] + [qm/2−i ])[H i (Y )].

To obtain Equation (4.1.1), it remains to note that, by Theorem 4.6.2,

lim
d∈Im+r,r

E
[

Expσ([q−m/2]Xd )
]
= (1 + p([q−m/2]h1 + [q−m]h2 + . . .))[Y (κ)]

and thus also, by [How25, Theorem 2.2.1],

lim
d∈Im+r,r

E
[

Expσ(−[q−m/2]Xd )
]
= (1 + p(−[q−m/2]e1 + [q−m]e2 − . . .))[Y (κ)].

It remains just to establish the claimed comparisons mod [q−1/2]W (C)bdd. This is nearly identical

to the proof of [How24, Proposition 9.2.2] after we establish

p ≡ [q−r ] mod [q−(m+1+r )]W (C)bdd.

But this is immediate if we note L([q], m + r, r ) = ∏r−1
j=0(1 − [q]−(m+r− j )) then expand

p = [q]−r L([q], m + r, r )

1 − [q]−r + [q]−r L([q], m + r, r )
= [q−r ] − [q−(m+1)−r ] + . . .

1 − [q−(m+1)−r ] + . . .
.

4.7 Semiample equidistribution

In this section, we first establish an equidistribution result for sections of semiample bundles

using the generalization of Poonen’s sieve in [EW15], Proposition 4.7.1. We then combine Proposi-

tion 4.7.1 with Theorem 4.4.3 to compute, in Theorem 4.7.2, the asymptotic Λ-distribution of the

zeta functions of curves of bidegree (2, d) on Hirzebruch surfaces (generalizing the computation

of the classical distribution of rational points given in [EW15, Theorem 9.9-(b)]).
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4.7.1 Establishing equidistribution

Let Y be a smooth, projective scheme (integral but not necessarily geometrically integral) of

dimension m over Fq with q a power of a prime p. Consider a very ample divisor D on Y and a

globally generated divisor E on Y . Let π be the map given by the complete linear series on E :

π : Y PM
Fq

.
|E |

Define Rn,d := H 0(Y , OY (nD + dE)) and for F ∈ Rn,d , write HF for the corresponding divisor in

|nD + dE |.
Suppose z ∈ |π(Y )| ⊆ |PM

Fq
| is a closed point and z(1) := Spec(OPM

Fq
,z /𝔪2

z ) the first-order

infinitesimal neighborhood of z. For y ∈ |Y | a closed point in π−1(z), let y (1) = Spec(OY ,y /𝔪2
y ).

For any finite subscheme W ⊂ PM
Fq

, define YW = Y ×PM
Fq

W .

Given a section F ∈ Rn,d , HF is smooth at a closed point y ∈ π−1(z) if and only if F does not

vanish under the restriction map

Rn,d H 0(y (1), Oy (1) (nD)) ∼= OY ,y /𝔪2
y .

where the latter isomorphism depends on a choice of trivialization of Oy (1) (nD), but the condition

of non-vanishing does not. This restriction map factors as

Rn,d H 0(Yy (1) , OYy(1)
(nD)) OY ,y /𝔪2

y .α

Set F = π∗(OY (nD)), so F (d) ∼= π∗(OY (nD + dE)).

There is a natural map

F (d) ⊗O
PM

Oz(1) H 0
(
Yy (1) , OYy(1)

(nD)
)
.

β

Note that α is the composition of β and the natural restriction map

Rn,d = H 0(PM
Fq

,π∗OY (nD + dE)) = H 0(PM
Fq

, F (d)) F (d) ⊗O
PM

Oz(1) . (4.7.1)

As explained in the proof of [EW15, Lemma 5.2(a)], Serre vanishing implies that for d ≫ 0 this

restriction map Equation (4.7.1) is surjective.

Let φ : PM
Fq

→ PM
Fq

(resp. φk : PM
Fq

→ PM
Fqk

) be the natural map. Let π′ : Y
Fq

→ PM
Fq

be the

base change of π relative to φ. We write the homogeneous coordinates on PM
Fq

as x0, . . . , xM , and

for each P ∈ (π(Y ))(Fq ), we fix a 0 ≤ jP ≤ M such that x jP
does not vanish at P ; we make this

choice so that jP is constant on orbits. For F ∈ Rn,d (Fq ), we write FP for the image of F /xd
jP

in

φ∗F ⊗O
PM
Fq

OP (1) .
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Proposition 4.7.1. With notation as above, set B = (π(Y ))(Fq ). For each P ∈ B, let AP be the set of

gP ∈ φ∗F ⊗O
PM
Fq

OP (1) such that the image of gP in OQ (1) is nonzero for all Q ∈ π′−1(P ).

Set A = ⊔
P∈B AP . Let Ud be the set of F ∈ Rn,d (Fq ) such that for all P ∈ B, the image of F in

OQ (1) is nonzero for all Q ∈ π′−1(P ). Each of A, B, and Ud are admissible Z-sets with the geometric

Frobenius action.

Let A → B be the map gP 7→ P and evd : Ud × B → A the map (F, P ) 7→ FP . If n ≥
max{(dimπ(Y ))(m + 1) − 1, (dimπ(Y ))p + 1}, then (Ud , evd ) equidistributes on A/B in the sense of

Definition 4.4.1.

Proof. For an admissible Z-subset B ′ ⊆ Bk of finite cardinality, we have

HomBk
(B ′, Ak) = ∏

|P |∈|B ′|
HomBk

(|P |, Ak).

If we identify the orbit |P | ⊆ B ′ ⊆ PM (Fq ) with a closed point of PM
Fqk

, then we obtain a canonical

identification of HomBk
(|P |, Ak) with a subset A|P | of F ⊗O

PM
F

qk

O|P |(1) . Viewing Ud ,k(1) as the set of

F ∈ Rn,d (Fqk ) such that the image F|P | of F in F ⊗O
PM
F

qk

O|P |(1) lies in A|P | for all |P | ∈ |Bk| ⊆ |Pn
Fqk

|,
the map evd ,B ′ sends F to the tuple (F|P |)|P |∈|B ′|.

To establish Equation (4.4.1), it suffices to show equality for each singleton {(F|P |)|P |∈|B ′|}. On

the right side we have

µHomBk
(B ′,Ak)({(F|P |)|P |}) = ∏

|P |∈|B ′|

1

#A|P |
.

The left side can be viewed as a conditional probability:

(
(evd ,B ′)∗µUd ,k(1)

)
({(F|P |)|P |})

= µUd ,k(1)(ev−1
d ,B ′({(F|P |)|P |})

=
#{G ∈ Rn,d (Fqk ) | G|P | = F|P | for all |P | ∈ |B ′| and G ∈ Ud ,k(1)}/#Rn,d (Fqk )

#Ud ,k(1)/#Rn,d (Fqk )
.

Since the restriction maps of Equation (4.7.1) (or rather their analogs over Fqk ) are surjective

for d ≫ 0, we can phrase local probabilities at |P | in terms of φ∗
kF (d)⊗O

PM
F

qk

O|P |(1) instead of Rn,d .

Thus, by [EW15, Theorem 3.1], as d → ∞, this converges to(∏
|P |∈|B ′|

1
#φ∗

k F⊗O
PM
F

qk

O|P |(1)

)(∏
|P |∈|π(Y )F

qk
|−|B ′|

#A|P |
#φ∗

k F⊗O
PM
F

qk

O|P |(1)

)
∏

|P |∈|π(Y )F
qk

|
#A|P |

#φ∗
k F⊗O

PM
F

qk

O|P |(1)

= ∏
|P |∈|B ′|

1

#A|P |
.

So Equation (4.4.1) is satisfied, and thus (Ud , evd ) equidistributes on A/B .
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4.7.2 Application: Zeta functions of curves on Hirzebruch surfaces

In [EW15, Theorem 9.9], the semiample Bertini theorem is used to compute the asymptotic

distribution of some point-counting random variables for smooth curves on Hirzebruch surfaces.

Using our methods, this can be extended to compute the full Λ-distributions — the classical

distributions in [EW15, Theorem 9.9] are equivalent to the restriction of the Λ-distributions to

Z[h1] ⊆ Λ. We illustrate this below in the case of bidegree (2, d) curves on Hirzebruch surfaces

([EW15, Theorem 9.9-(b)]).

4.7.2.1 Let κ be a finite field of order q , let Y = ProjP1
κ
(Sym•(O ⊕O (a))) for a ≥ 0 be a Hirzebruch

surface over κ, and write π : Y → P1
κ for its natural projection. We let E be the divisor on Y of the

fiber over ∞ on P1
κ (so that π is induced by E) and let D the class of a hyperplane section in the

relative proj construction. We write O (i , j ) = O (i D + j E), a line bundle on Y .

Let Ud be the admissibleZ-set of global sections of O (2, d) on Yκ with smooth vanishing locus.

For F in Ud , we write κ(F ) for the subfield of κ generated by the coefficients of F and κ, and we

view the vanishing locus V (F ) as a scheme over κ(F ).

Let Xd be the random variable on Ud sending F to the zeta function

ZV (F )(t ) = ∏
y∈|V (F )|

1

1 − t deg y
= ∏

z∈|P1
κ(F )|

Zπ−1(z)∩V (F )(t ).

Theorem 4.7.2. With notation as above,

lim
d→∞

E[Expσ(Xd h1)]

=
 ([q]2 − 1)([q] − 1)

(∑
j≥0 h j

) + [q]4−[q]2

2

(∑
j≥0 h j

)2 + ([q]2−[q])2

2

(∑
j≥0 h j (t 2)

)
[q]4 − [q]2 − [q] + 1

P1(κ)

.

Proof. We adopt the notation of Proposition 4.7.1 for our choice of Y , D, and E above. We note

that, although n = 2 does not satisfy the bounds given in Proposition 4.7.1, by [EW15, Proposition

8.2], the application of [EW15, Theorem 3.1] in the proof of Proposition 4.7.1 is still valid in this

specific setting, so that we have equidistribution.

For P ∈ P1(κ), let P be the random variable on AP that sends a germ gP to ZV (g P )(t ), where

here the vanishing locus is taken inside of YP
∼= P1

κ
, g P is the induced element of H 0(YP , O (2D)) ∼=

H 0(P1
κ

, O (2)), and we treat V (g P ) as being defined over κ(gP ) to obtain a zeta function.

We then have

Xd =
∫

Ud×P1(κ)/Ud

ev∗d 
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and thus, by Theorem 4.4.3,

lim
d→∞

E[Expσ(Xd h1)] = ∏
P1(κ)

EA/P1(κ)[Expσ(h1)].

We now compute the σ-moment-generating function for P , P ∈ P1(κ), using Lemma 4.2.3. Let

qP = #κ(P ). We note that resk (P ) can be viewed as a function on the germs at P defined over

κ(P )k , the degree k extension of κ(P ) in κ. On such a germ g , it takes value

(a) 1
1−t if g is the square of a single factor. The number of such cases is

(q2k
P − 1) · (q3k

P − q2k
P ).

Here the q2k
P −1 = (qk

P +1)(qk
P −1) is the number of points in P1(κ(P )k ) times the number of

degree two homogeneous equations vanishing at such a point with multiplicity two, and the

factor q3k
P −q2k

P is the number of possible smooth extensions g of each g (which correspond

to degree two polynomials that don’t have a zero at the same point — cf. [EW15, Lemma 9.8

and preceding paragraph])1.

(b)
( 1

1−t

)2
if g splits into two distinct factors over κ(P )k . The number of such cases is

(qk
P + 1)qk

P

2
(qk

P − 1)q3k
P = q2k

P − 1

2
q4k

P

where
(qk

P+1)qk
P

2 (qk
P − 1) is the number of pairs of distinct points in P1(κ(P )k ) times the

number of degree two homogeneous equations vanishing exactly at such a pair, and q3k
P

counts the number of smooth extensions g of each g (which correspond to arbitrary degree

3 polynomials).

(c) 1
1−t 2 if g is irreducible over κ(P )k . The number of such cases is

q2k
P − qk

P

2
(qk

P − 1)q3k
P = (qk

P − 1)2

2
q4k

P

where
q2k

P −qk
P

2 (qk
P − 1) is the number of degree 2 closed points in P1

κ(P )k
times the number

of degree two homogeneous equations vanishing exactly at such a point, and q3k
P counts

the number of smooth extensions g of each g (which correspond to arbitrary degree 3

polynomials).

1One can also compare this computation with [EW15, proof of Proposition 9.9-(b)], but note that there is a typo in
the corresponding computation in that proof: the second (q − 1)(q + 1) appearing should in fact be our q3 − q2.
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Note that the total number of cases adds up to q6k
P − q4k

P − q3k
P + q2k

P , i.e. this is the denominator

for the probability of each case occurring.

Now we note that

Expσ
( 1

1 − t
h1

)
= ∑

j≥0
h j

and

Expσ

(( 1

1 − t

)2

h1

)
=

(
Expσ

( 1

1 − t
h1

))2

=
(∑

j≥0
h j

)2

.

The formula for Expσ( 1
1−t 2 ) is more complicated, but we only need the first component, which is

straightforward:

Expσ
( 1

1 − t 2 h1

)
1
= ∑

τ

(
hτ ◦

1

1 − t 2

)
1

mτ =
∑
τ

m2τ =
∑
τ

mτ(t 2) = ∑
j

h j (t 2).

The first equality is [How24, Example 2.5.2] and the second follows because 1
1−t 2 = [2] so that

h j ◦ 1
1−t 2 = [Sym j (2)]; indeed, Sym j (2) has one fixed point if j is even and no fixed points otherwise.

Combining our computation above of the probability of each value • with these computations of

Expσ(•)1, we obtain

E1[Expσ(resk (P h1))]

=
(q2k

P − 1)(qk
P − 1)

(∑
j≥0 h j

) + q4k
P −q2k

P
2

(∑
j≥0 h j

)2 + (q2k
P −qk

P )2

2

(∑
j≥0 h j (t 2)

)
q4k

P − q2k
P − qk

P + 1
.

Applying Lemma 4.2.3, and comparing k th components, we find

E[Expσ(P h1)]

=
([qP ]2 − 1)([qP ] − 1)

(∑
j≥0 h j

) + [qP ]4−[qP ]2

2

(∑
j≥0 h j

)2 + ([qP ]2−[qP ])2

2

(∑
j≥0 h j (t 2)

)
[qP ]4 − [qP ]2 − [qP ] + 1

.

The function on P1(κ) sending P to this series is the pullback from 1 of

([q]2 − 1)([q] − 1)
(∑

j≥0 h j

) + [q]4−[q]2

2

(∑
j≥0 h j

)2 + ([q]2−[q])2

2

(∑
j≥0 h j (t 2)

)
[q]4 − [q]2 − [q] + 1

.

Thus, applying Example 4.3.3 to compute
∏
P1(κ) EA/P1(κ)[Expσ(h1)], we obtain the claimed

expression.
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