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The complex numbers C are an algebraically closed field. That is,

(*) Every non-constant polynomial in one variable:

f(x) 2 C[x]
has a complex root. Iterating this, f(x) factors completely:

f(x) = c(x� r1) · · · (x� rd)

Example. The polynomials f(x) = x

d � c (c 6= 0) have distinct roots:
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2⇡i/d is the basic dth root of 1.

There are algebraic, analytic and topological proofs of this fact, but
in this talk I want to explore the implications of this for systems of
polynomial equations. In one variable, this is:

(**) If f1, ...., fm 2 C[x] share no collective common roots, then:

1 =
X

gifi

can be solved with polynomials g1, ..., gm 2 C[x].
Proof. Let h(x) = gcd(f1(x), ..., fm(x)). If h(x) is not constant,

then f1, ..., fm have a common root! The rest is Euclid’s algorithm.

Nulltellensatz. (**) is also true for polynomials in n variables.

Remark. Euclid’s algorithm is not available in more variables.

Background. The span of vectors v1, ..., vm in a vector space V is:

hv1, ..., vmi =
n

X

civi 2 V | ci 2 C are arbitrary scalars
o

⇢ V

and by the fundamental theorem of linear algebra,

hv1, ...., vmi = ker (V 7! V/hv1, ...., vmi)
is the kernel subspace of the map to the quotient space.

Similarly, the span of polynomials f1, ..., fm 2 C[x1, ..., xn] is:

hf1, ..., fmi =
n

X

gifi | gi 2 C[x1, ..., xn]
o

which is an ideal in the ring of polynomials, and once again:

hf1, ..., fmi = ker (C[x1, ..., xn] ! C[x1, ..., xn]/hf1, ..., fmi)
is the kernel of the map to the quotient ring. But this is not a subring.
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Ideals. Ideals in C[x1, ..., xn] are subspaces that are also closed under
multiplication by the variables x1, ..., xn, hence by multiplication by
all polynomials. Like subspaces of Cn, all ideals in C[x1, ..., xn] have a
finite generating set (the Hilbert Basis Theorem).

Example. The “vanishing ideal” at a subset S 2 Cn is the ideal:

I(S) = {f 2 C[x1, ..., xn] | f(s) = 0 for all s 2 S}

By Zorn’s Lemma, an ideal that is not equal to C[x1, ..., xn] is always
contained in a maximal ideal I whose quotient is a field:

C[x1, ..., xn]/I = K

Conversely, the kernel of a map from C[x1, ..., xn] to a field is maximal.

Example. The vanishing ideal of the point (a1, ...., an) 2 Cn is:

hx1 � a1, ....., xn � ani
and the map to quotient is the evaluation map to C given by f 7! f(a).

Nullstellensatz reformulated. These are all the maximal ideals.

Not even a Sketch. The quotient by a maximal ideal is a field:

C[x1, ..., xn] ! K

and therefore C ⇢ K. This is, in particular, a complex vector space
which must have finite dimension (by a Theorem of Emmy Noether).
But if C 6= K, choose ↵ 2 K � C and consider:

1,↵,↵2
, .... 2 K

These vectors are eventually dependant, which determines a polynomial
with ↵ as a root. But C is algebraically closed, so all roots are in C.

Maximal ideals and prime ideals are the building blocks of algebraic
geometry, as they correspond to points and irreducible algebraic sets,
respectively. The subject can be developed with C replaced by any
algebraically closed field. But recently there has been interest in:

The algebraic geometry of the tropical numbers. This is the set:

T = R [ {�1}
with s + t = max(s, t) and s · t = s + t (real addition), which is an
additively idempotent (t+ t = t) semi-ring:

• There is no subtraction in T. The tropical number �1 is an
additive identity, but s+t = �1 has no solutions besides s = t = �1.

• Every “non-zero” tropical number t has reciprocal �t so T behaves
like a field with no subtraction.



But there is a surjective map to the Boolean semi-field:

T ! B, �1 7! 0, R 7! 1

so T itself shouldn’t properly be called a semi-field.

Ideals. Rob Easton and I decided to work with congruence ideals.

These are the “kernels” whose quotient is another semi-ring:

I = ker (⇡ : T[x1, ..., xn] ! R)

But there is no subtraction, so these are not subsets of T[x1, ..., xn]!
The kernel of a map is properly a relation:

I = {(f, g) 2 T[x1, ..., xn]⇥ T[x1, ..., xn] | ⇡(f) = ⇡(g)}
In the complex case, we can replace (f, g) with (f � g, 0) and get

equivalent information, but without subtraction, we can’t do this.
Significant problems result. E.g., we cannot find bases of subspaces.

But it gets even worse:

Let (t1, t2) 2 T2 be a vector. Then:

s · (t1, t2) = (t1 + s, t2 + s) with real addition

is the line with slope 1 through (t1, t2). Two vectors span the strip
between the corresponding lines, and a series of vectors map span larger
strips with no limit. In other words, the “subspace” given by an open
strip cannot be generated by finitely many vectors.

Definition. A subspace W ⇢ Tn is finitely determined if there are
finitely many linear relations:

rj = (
n

X

i=1

ai,jxi,

n
X

i=1

bi,jxi)

whose common locus of solutions is W .

• In T1, they are either T1 or zero.

• In T2, they are (maybe unbounded) strips.

• In T3 they develop kinks (see the projective version).

Exercise. Are finitely determined tropical subspaces always generated
by finitely many vectors?

Definition. An ideal I ⇢ T[x1, ..., xn] ⇥ T[x1, ..., xn] is finitely deter-
mined if I there are finitely many relations rj = (fj, gj) 2 I such that
I is the smallest ideal containing the rj.



Remark. Such an ideal determines a subset of Tn:

Z(I) = {v = (t1, ..., tn) 2 Tn | fj(v) = gj(v) for all j}
and also an ideal of relations vanishing on Z:

I(Z(I)) = {(f, g) | f(v) = g(v) for all v 2 Z(I)}
The strong Nullstellensatz explains how to relate I, Z(I) and I(Z(I)).

In the classical case, for example,

(a) if I is the zero ideal, then I(Z(I)) is also the zero ideal

(b) if Z(I) is empty, then I contains a constant (weak Nullstellensatz)

Rob Easton and I proved a Nullstellensatz for tropical ideals.

Theorem. (Weak version).

If I is finitely determined and Z(I) = ;, then:
(f, c · f) 2 I

for some f 2 T[x1, ..., xn] with a non-zero constant term and c 6= “1”.

(This is the tropical analogue of having a constant function!).

Not even a sketch. Interestingly, we prove this by proving a fact
about tropical ideals that is false for ideals in the complex case. Namely,
if I is finitely determined, then there is a single relation in I such that:

Z(f, g) = Z(I)

Then we use a lovely trick to deduce the result. If Z(f, g) = ;, then
by the intermediate value theorem, either f(v) < g(v) for all v or else
f(v) > g(v) for all v. Assume the former. Then for some ✏ > 0,

(f, g) 2 I ) (f + ✏f, g + ✏f) 2 I ) (✏f, g) 2 I

which finally implies that (f, ✏f) 2 I by transitivity!


