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2.2 Euclidean Domains

The sets of integers and of polynomials (for any field of coefficients) have:

(a) Addition that associates and commutes.

(b) An additive identity element 0 and additive inverses of everything.

(c) Multiplication that associates, commutes and distributes with addition.

(d) A multiplicative identity element 1.

(e) A cancellation rule: if a 6= 0 and ab = ac, then b = c.

(f) Division with remainders.

Any set D with addition and multiplication rules that has all the properties
(a)-(e) above is called an integral domain. A field is one kind of integral
domain, and the integers and polynomials are another. Condition (f) will be
part of the definition of a Euclidean domain.

Definition: An element a ∈ D of an integral domain is called a unit if it has
a multiplicative inverse element, which we denote a−1 or 1/a. There is always
at least one unit in any integral domain, namely the multiplicative identity 1.

Note: Units are the things we call “not interesting” when we factor.

Examples: (a) In a field F , all the elements except 0 are units.

(b) In F [x], the constant polynomials are the units (Corollary 2.1.2).

(c) 1 and −1 are the integer units.

Definition: A function:

deg : D − {0} → R+ ∪ {0}

is called a degree function if it has the following properties:

(i) deg converts multiplication to addition:

deg(ab) = deg(a) + deg(b)

(ii) deg detects the units of the integral domain:

deg(a) = 0 if and only if a is a unit

Example: The degree of a polynomial in §2.1 is a degree function:

deg(a(x)) = the ordinary degree of a(x)

This is what Proposition 2.1.1 and Corollary 2.1.2 tell us. Notice that the range
of this degree function is the set of whole numbers.

To define the degree of an integer, I need to remind you of the:
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Natural Logarithm: This is defined for all positive real numbers by:

ln(x) =
∫ x

1

1
t
dt

from which it follows immediately that ln(1) = 0 and

ln(x) < ln(y) whenever x < y

(in other words, ln(x) is an increasing function of x).

If x and y are fixed positive real numbers, then:∫ xy

x

1
t
dt =

∫ y

1

1
xs

(xds) =
∫ y

1

1
s
ds = ln(y)

using the substitution t = xs (and dt = xds). But then:

ln(xy) =
∫ xy

1

1
t
dt =

∫ x

1

1
t
dt+

∫ xy

x

1
t
dt = ln(x) + ln(y)

Proposition 2.2.1. The “natural log of the absolute value:”

deg(a) = ln(|a|)

is a degree function for the integers.

Proof: If a = 0, then deg(a) = ln(0) is undefined. Otherwise |a| ≥ 1, and
then deg(a) = ln(|a|) ≥ 0, so deg has the required domain and range.

Next, −1 and 1 are the only integers with ln(|a|) = 0, and these are the
integer units. This gives Property (ii). And finally,

ln(|ab|) = ln(|a||b|) = ln(|a|) + ln(|b|)

is what we require for Property (i). So ln(|a|) is a degree function.

Remark: The smallest range of this degree function is {0 = ln(1), ln(2), ln(3), ...}
which is not the set of whole numbers, but like the set of natural numbers and
the set of whole numbers, this set does satisfy the well-ordered axiom. This
will be important for us later.

Definition: An integral domain D with degree function is called a Euclidean
domain if it has division with remainders: For all a, b ∈ D − {0}, either:

(a) a = bq for some q, so b divides a (b is a factor of a), or else:

(b) a = bq + r with deg(r) < deg(b), and r is the remainder.

Examples: (a) F [x] is a Euclidean domain, with the ordinary degree function.

(b) Z is a Euclidean domain with log(|a|) as its degree function.
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Confession: We saw in §1.1 that N (not Z) has division with remainders. This
can easily be modified to incorporate the negatives, however. In fact, it works
even better when we allow negative remainders, since we can make their absolute
values even smaller. That is, we can arrange:

a = bq + r with |r| ≤ 1
2
|b|

which the degree function sees as deg(r) ≤ deg(b)− log(2).

Example: Divide 1000 by 501 with remainders:

As natural numbers: 1000 = 501(1) + 499 with a (large) remainder of 499.

As integers: 1000 = 501(2) + (−2) with a (much smaller) remainder of −2.

Another Example: Divide 900 by 200 with remainders:

As natural numbers: 900 = 200(4) + 100.

As integers, we could take that or equally well: 900 = 200(5) + (−100)

In general, when |r| = 1
2 |b|, there are two possibilities for r.

Now that we have a general definition of a Euclidean domain, we’ll reexamine
Euclid’s algorithm and refine the fundamental theorem of arithmetic for integers
and polynomials (and all Euclidean domains).

Euclid’s algorithm: If D is a Euclidean domain and the degree function has a
range set that satisfies the well-ordered axiom, then each sequence of divisions
with remainders eventually stops:

a = bq1 + r1
b = r1q2 + r2
r1 = r2q3 + r3

...
rk = rk+1qk+2 STOP

and the last remainder rk+1 is a common divisor of greatest degree.

Proof: First, we prove that each of the sequences of divisions with remain-
ders eventually stops. Given one of them, consider the set of all degrees of all
the remainders:

S = {deg(r1),deg(r2),deg(r3), ...}

Since deg(r1) > deg(r2) > deg(r3) > ..., the well-ordered axiom says there is
smallest element of S, which is the degree of the last remainder!

To see that rk+1 is a common divisor of a and b, we work our way back up
Euclid’s algorithm, starting with the last line. Namely:

rk = rk+1qk+2

shows that rk+1 divides rk.
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Next:
rk−1 = rkqk+1 + rk+1

= (rk+1qk+2)qk+1 + rk+1

= rk+1(qk+2qk+1 + 1)

shows that rk+1 divides rk−1. As we work our way up and substitute, we see
that rk+1 divides all the remainders, and it divides a and b as well, so that rk+1

is a common divisor of a and b (and all other remainders, too!).

To see that rk+1 has greatest degree among all the common divisors, we
work our way down Euclid’s algorithm. The first equation:

a = bq1 + r1

can be rewritten as
r1 = a+ (−q1)b

showing that r1 is a linear combination of a and b. Then:

r2 = b+ (−q2)r1 = b+ (−q2)(a+ (−q1)b) = (−q2)a+ (1 + q1q2)b

so r2 is a linear combination of a and b, too, and as we work our way down,
every remainder is a linear combination of a and b, down to:

rk+1 = ua+ vb

for some pair of elements u, v ∈ D.

Now if d is any common divisor of a and b, then a = dq and b = dq′, and:

rk+1 = udq + vdq′ = d(uq + vq′) so d divides rk+1

But then
deg(d) + deg(uq + vq′) = deg(rk+1)

so deg(d) ≤ deg(rk+1). Thus rk+1 has the possible greatest degree of any
common divisor of a and b!

Definition: A common divisor of greatest degree will be called a gcd.

Two Examples: First, an integer example. Start with 750 and 144.

750 = 144(5) + 30
144 = 30(5) + (−6)
30 = (−6)(−5)

First we go up Euclid’s algorithm and substitute:

30 = (−6)(−5)
144 = 30(5) + (−6) = (−6)(−5)(5) + (−6) = (−6)(−24)
750 = 144(5) + 30 = (−6)(−24)(5) + (−6)(−5) = (−6)(−125)

to see that −6 is a common divisor of 144 and 750.
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Then we go down Euclid’s algorithm:

30 = 750 + 144(−5)
−6 = 144 + 30(−5) = 144 + (750 + 144(−5))(−5)

= 750(−5) + 144(26)

to see that −6 is a linear combination of 750 and 144.

Next, a polynomial example. Start with x4 − 1 and x3 + x in Q[x].

x4 − 1 = (x3 + x)(x) + (−x2 − 1)
x3 + x = (−x2 − 1)(−x)

First we go up Euclid’s algorithm and substitute:

x3 + x = (−x2 − 1)(−x)
x4 − 1 = (x3 + x)(x) + (−x2 − 1) = (−x2 − 1)(−x)(x) + (−x2 − 1)

(−x2 − 1)(−x2 + 1)

to see that −x2 − 1 is a common divisor. Then we go down:

(−x2 − 1) = (x4 − 1) + (x3 + x)(−x)

to see that −x2 − 1 is a linear combination of the polynomials.

Note: Unlike the natural numbers, gcd’s in Z and F [x] are not unique. In the
first example, 6 would have been a perfectly good gcd, and in the second, x2+1,
or even 1

2x
2 + 1

2 would have been possible gcd’s.

Proposition 2.2.2. Every gcd of a and b is a linear combination of a and b.

Proof: Start with the linear combination from Euclid’s algorithm:

rk+1 = ua+ vb

If d is any gcd, then d divides rk+1 (see the proof of Euclid’s algorithm above).
So rk+1 = dq. But deg(rk+1) = deg(d) (because both of them are gcds). This
tells us deg(q) = 0, so q is a unit. That means d = rk+1/q, and:

d = (u/q)a+ (v/q)b

is a linear combination of a and b.

Example: We said 6 is a gcd of 750 and 144. We multiply:

−6 = 750(−5) + 144(26)

from Euclid’s algorithm by the unit −1 to get:

6 = 750(5) + 144(−26)

Definition: An element p of positive degree in a Euclidean domain is prime
if its only factors of smaller degree are units.

Example: In F [x], the primes are, of course, the prime polynomials. The
integer primes are p and −p, where p are the natural number primes.
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Proposition 2.2.3. Suppose p is a prime in a Euclidean domain D and a ∈ D
is another element of D. If p does not divide a, then 1 is a gcd of p and a.

Proof: Suppose d is a gcd of p and a. Since p is a prime and d divides p,
then either deg(d) = 0 or else deg(d) = deg(p).

If deg(d) = deg(p), let p = dq. Then deg(q) = 0, so q is a unit, so d = p/q
and p divides d, which divides a, which is not allowed.

But if deg(d) = 0, then 1 is also a gcd of p and a because 1 obviously divides
both p and a and deg(1) = deg(d) = 0. In other words, if a unit is a gcd of p
and a, then the special unit 1 is also a gcd of p and a.

Proposition 2.2.4. In a Euclidean domain, every prime that divides ab must
divide a or divide b (or it divides both a and b).

Proof: If p divides ab, then ab = pq for some q. If p doesn’t divide a, then
1 is a gcd of p and a (Proposition 2.2.3), and by Proposition 2.2.2

1 = up+ va

for some u and v. If we multiply through by b, we get:

b = bup+ vab = bup+ vqp = p(tu+ vq)

so p divides b. That is, if p doesn’t divide a, then it must divide b. So p must
divide either a or b (or both) !!

Definition: Primes p and p′ are associated if p′ = pu for some unit u ∈ D.

Proposition 2.2.5. If p divides p′, then p is associated to p′.

Proof: If p divides p′, they both have positive degree, since they are primes,
and so deg(p) = deg(p′) by definition of a prime. But then p′ = pq, and it follows
as usual, taking degrees, that q is a unit.

Examples: (a) In Z, the primes p and −p are associated.

(b) In F [x], primes f(x) and kf(x) (for any constant k) are associated.

The Fundamental Theorem of Arithmetic Revisited: In a Euclidean
domain, every element of positive degree factors as a product of finitely many
primes. Moreover, if:

p1 · · · pn = a = p′1 · · · p′m
are two factorizations of a, then each of the p’s is associated to one of the p′’s
and vice versa (so there are the same number of p’s as p′’s)

Proof: The fact that factorizations exist is the well-ordered axiom. We’ve
seen this twice already! The second part needs a proof, though.

If p1 · · · pn = p′1 · · · p′m, then in particular, p1 divides p′1(p
′
2 · · · p′m), so by

Proposition 2.2.4 either p1 divides p′1 or else p1 divides p′2 · · · p′m. If p1 divides
p′1, then p1 and p′1 are associated by Proposition 2.2.5.
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Otherwise p1 divides p′2(p
′
3 · · · p′m), and continuing in this fashion, eventually

p1 is associated to one of the p′’s. Similarly, every pi is associated to one of the
p′j ’s, and reversing the argument, every p′j is associated to one of the pi’s.

Example: There are two possible prime factorizations of 15:

(3)(5) = 15 = (−3)(−5)

and 3 is associated to −3 and 5 is associated to −5.

There are many prime factorizations of x2 − 1 in Q[x]. Examples:

(x− 1)(x+ 1) = x2 − 1 = (
1
2
x+

1
2
)(2x− 2)

and x− 1 is associated to 2x− 2 and x+ 1 is associated to 1
2x+ 1

2 .

Finishing up the proof of Proposition 1.2.5: We needed to show that there
is only one fraction in lowest terms representing each rational number. That is,
we need to know that if:

a

b
∼ a′

b′

and both are in lowest terms, then a = a′ and b = b′. If any of them is 1 or −1,
the result is obvious. Otherwise we factorize them:

a = p1 · · · pn, a′ = p′1 · · · p′m, b = q1 · · · ql, b′ = q′1 · · · q′k

and then:
ab′ = p1 · · · pn · q′1 · · · q′k = q1 · · · ql · p′1 · · · p′m = ba′

and we can assume that all the q’s and q′s are positive, since b and b′ are
positive. But remember that a and b have no common factors, so every q must
be associated, in fact equal to one of the q′’s. And a′ and b′ have no common
factors, so each q′ is equal one of the q’s. But then b = b′ and then a = a′

(cancellation law!) and we’re done.

The same argument gives another useful result:

Proposition 2.2.6. If a/b is in lowest terms, and

a

b
∼ a′

b′

then a divides a′ and b divides b′.

Proof: Again we factorize. And again, we conclude as above that each q is
equal to one of the q′’s. This is enough to let us conclude that b divides b′. Of
course there may be more q′’s than q’s, so it may be that b 6= b′. But anyway,
let b′ = bc. Then ba′ = ab′ = abc cancels to give a′ = ac, so a divides a′ as well
(with the same quotient c).
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2.2.1 Euclidean Domain Exercises

6-1 Suppose D is an integral domain and ab = 0. Prove that a = 0 or b = 0.

6-2 Exactly one of the following is a degree function for the integers. Figure
out which it is, and explain why the others don’t qualify.

(a) The “absolute value minus one” function:

deg(a) = |a| − 1

(b) The zero function:
deg(a) = 0

(c) The “natural log of the square” function:

deg(a) = ln(a2)

6-3 For each of the following pairs of integers:

(i) Find a gcd.

(ii) Express your gcd as a linear combination of the integers.

(a) 37 and 100 (b) − 77 and 91 (c) 777, 777 and 100, 100

6-4 For each of the following pairs of polynomials (in Q[x]):

(i) Find a gcd.

(ii) Express your gcd as a linear combination of the polynomials.

(a) x5 and x3 + 1 (b) x12 − 1 and x8 − x6 + x2 − 1

6-5 Consider again the Gaussian integers Z[i] = {a+ bi} from §1.4.

(a) Show that log(|a+ bi|) = log(
√
a2 + b2) is a degree function.

There is a long division for Gaussian integers! Given a+ bi and c+ di, with
deg(c+di) < deg(a+bi), let p+qi be the closest Gaussian integer to the complex
number:

a+ bi

c+ di
=

(a+ bi)(c− di)
c2 + d2

=
ac+ bd

c2 + d2
+
bc− ad

c2 + d2
i

Then p+ qi is the quotient Gaussian integer.

Next, define r + si by:

a+ bi = (c+ di)(p+ qi) + (r + si)

This is the remainder, which does satisfy deg(r + si) < deg(c+ di).

(b) Long divide the Gaussian integer 10 + 5i by 2 + 3i.

(c) Find a gcd of 5 + 5i and 4 + 2i.
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6-6 A power series in the variable x is a (usually infinite) sum:

f(x) = adx
d + ad+1x

d+1 + ad+2x
d+2 + ... (ad 6= 0, d ≥ 0)

where the coefficients all belong to a field F . Power series are added and mul-
tiplied as polynomials are added and multiplied, and they are easily seen to
satisfy properties (a)-(d) of the beginning of this section.

The set of power series is denoted by F [[x]]. In Q[[x]]:

(a) Find the multiplicative inverse of 1 + (a/b)x.

(b) Find the multiplicative inverse of 1 + 2x+ 3x3 + 4x4 + ....

Hint: This power series is the derivative of 1 + x+ x2 + ... = 1/(1− x).

(c) The units in F [[x]] are exactly the power series satisfying d = 0. As-
suming this fact (which I could ask you to prove, but I won’t!) show that the
function:

deg(adxd + ad+1x
d+1 + ad+2x

d+2 + ...) = d

is a degree function for the power series.

(d) Prove that x has no multiplicative inverse in any F [[x]].

(e) Prove that F [[x]] satisfies property (e) at the beginning of this section,
so it is an integral domain.

Finally, F [[x]] satisfies a strong form of division with remainders. Namely,
if deg(f(x)) ≤ deg(g(x)), then:

f(x) divides g(x)

(I am telling you this. If you want to prove it, go for it!)

In other words, this is division with remainders without remainders! So
F [[x]] is yet another example of a Euclidean domain.




