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PCMI Summer 2015 Undergraduate Lectures on Flag Varieties

Lecture 10. The category of projective varieties, which count among
their objects the Grassmannians and (eventually) the flag varieties.

In Lecture 9, we gave the definition of a variety as a separated, locally
affine Noetherian topological space equipped with a sheaf of regular
functions. Our first task is to find a similar categorical workaround for
the notion of compact that we gave for Hausdorff and then to prove
that projective varieties satisfy this criterion.

Definition 10.1 An object X in a category of topological spaces with
products is proper if it is separated and also universally closed, i.e. all
the projections:

p : X × Y → Y

onto map closed sets to closed sets.

Example 10.1. C1 = mspec(C[x]) is not proper. The hyperbola:

Z(xy − 1) ⊂ C× C
projects to the non-closed set C− {0}.

This example can easily be expanded to show:

Exercise 10.1 The only affine variety that is proper in the category
of affine varieties is the single point mspec(C).

This is the affine variety version of the fact that a ball in Rn fails to
be compact. So what’s a projective variety? Let’s start with:

Definition 10.2. An action of C∗ on a finitely generated C-algebra
domain A is linear if:

(a) The scalars C ⊂ A are the subspace for the trivial character.

(b) The subspace for the tautological character χ(λ) = λ−1 is finite-
dimensional, and denoted A1 ⊂ A.

(c) The algebra breaks into finite dimension character spaces and is
generated by A1:

A = C⊕ A1 ⊕ A2 ⊕ · · ·

Vocabulary. An algebra A with a linear action of C∗ is linearized.

Example 10.2 Let A = C[x1, ..., xn] be the polynomial ring, with:

λ(xi) = λ−1xi

the standard “dual scaling” action. This linearizes A, with:

C[x1, ..., xn]d = {homogeneous polynomials of degree d}
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and is the action on functions associated to the scaling action on Cn:

λ(p1, ..., pn) = (λp1, ..., λpn)

Definition 10.3. An ideal I ⊂ A inside a linearized C-algebra A is
homogeneous if I is C∗-invariant as a subspace of A.

Remark. The usual correspondence holds:

{homogeneous ideals I ⊂ A} ↔ {linear quotient algebras A/I}
There is a single maximal homogeneous ideal, denoted by:

m = A1 ⊕ A2 ⊕ · · ·
corresponding to the linear quotient algebra C (trivial action) that
plays the role here that A itself played in the non-linear case. Namely,
all homogeneous ideals are contained in m and maximality is only taken
among homogeneous ideals that are properly contained in m.

Let A be a linear C-algebra domain. Then:

(a) The homogeneous field of fractions of A is:

C(A)0 =

{
F

G
| F,G ∈ Ad for the same d

}
(b) For any a ∈ A1, the localized C-algebra Aa is:

Aa = A[a−1]0 =

{
F

ad
| F ∈ Ad

}
⊂ C(A)0

Remark. Notice that:

C(A)0 = C(Aa)

is the ordinary field of fractions for every a ∈ A1.

Definition 10.4. mproj(A) is the Noetherian topological space with
a sheaf of regular functions on it defined by:

(a) The points x ∈ X := mproj(A) are the maximal homogeneous
ideals mx ⊂ m.

(b) The topology on X is the homogeneous Zariski topology:

Z(I) = {maximal homogeneous ideals mx containing I}
(together with the empty set) are the closed sets of X.

(c) The domain of definition of φ ∈ C(A)0 is:

Uφ =

{
mx ∈ A | φ =

F

G
with G /∈ mx

}
⊂ X

and the sheaf OX is defined by: OX(U) = {φ ∈ C(A)0 | U ⊂ Uφ}



3

Question. In what sense is φ a function on its domain?

There are two answers to this.

(i) The “ordinary” maximal ideals in A are all of the form:

mp = 〈a1 − p1, ..., an − pn〉
as ai ∈ A1 range over a basis, by the Nullstellensatz, and the maximal
homogeneous ideals are all of the form:

m[p] = 〈aipj − ajpi〉
where [p] = (p1 : ... : pn) is the equivalence class of p under scaling.
These are the largest homogeneous ideals contained in mp. Then:

f : mspec(A)− {m} → mproj(A); f(mp) = m[p]

is a well-defined map, the fibers f−1(m[p]) consist of mλ·p for all scal-
ings of p, and we can evaluate a rational function φ at a point mp of
mspec(A) as usual, and notice that because φ ∈ C(A)0, it is invariant
under scalings and well-defined as a function on mproj(A).

(ii) Given a nonzero element a =
∑
ciai ∈ A1, consider the map:

fa : mspec(Aa)→ mproj(A)

defined as follows. The algebra Aa is generated by a1/a, ..., an/a, so
by the Nullstellensatz (again), its maximal ideals are all of the form
mp = 〈ai/a − pi〉 subject to the constraint that

∑
cipi = 1. The map

fa is then defined by:

fa(mp) = 〈ai − pia〉 = m[p]

and this map is injective and induces an isomorphism:

mspec(Aa) ∼= Ua ⊂ mproj(A)

between mspec(Aa) and the open subset Ua = mproj(A)−Z(〈a〉) with
the Zariski topology and sheaf of regular functions on Ua inherited from
that on mproj(A).

Examples 10.3. (a) For A = C[x1, ..., xn] with the scaling action from
Example 10.2, the map:

f : Cn − {0} = mspec(A)− {m0} → mproj(A) = PnC
is the standard quotient by the scaling action, exhibiting PnC as the
space of lines (through the origin) in Cn. The local isomorphisms:

fi = fxi : Cn−1 = mspec(C[x1/xi, ..., xn/xi])→ Ui ⊂ PnC
are precisely the open cover of PnC explained in Lecture 6 by gluing
vector spaces to create projective space as a manifold.
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(b) If A is any linear C-algebra, consider the natural surjective map:

h : C[A1]→ A

from the polynomial ring onto A. Then we obtain a map:

h∗ : mproj(A)→ P(A1) := mproj(C[A1])

in the opposite direction, which is an isomorphism from mproj(A) to
the irreducible Zariski closed subset of projective space P(A1) defined
by the homogeneous polynomial relations (in A) on the generators of
A1. This is the projective variety analogue of the closed embedding of
affine varieties associated to a surjective map of C-algebras.

(c) Fix m > 0 and consider the sub-algebra:

A =
∞⊕
d=0

C[x1, ..., xn]md ⊂ C[x1, ..., xn]

created from only the homogeneous polynomials for characters that are
multiplies of χ−m. We can factor the action of C∗ through λ 7→ λm to
linearize this algebra. This creates a new grading on A with:

A1 = 〈all monomials of degree m in the xi〉
with lots of relations among the polynomials in the elements of A1. In
fact, these are generated by quadratic relations.

The new projective variety mproj(A) (for the modified grading) is
isomorphic as a variety to PnC, but its natural habitat comes from its
closed embedding in P(A1), as in (b).

(d) Tensor two C-algebras A and B and consider:

A⊗C B with the product linearization

Peel off the sub-algebra (with C∗-action):

C⊕ (A1 ⊗B1)⊕ (A2 ⊗B2)⊕ ...
and rescale the linearization as in (b) to get a linearized algebra C.
This turns out to be the product of mproj(A) and mproj(B).

(e) Consider the subalgebra of the polynomials in the Grassmann
coordinates given by the Plücker determinants:

C[det(xI)] ⊂ C[x11, ...., xmn]

and again rescale to linearize the subalgebra. Then:

P = mproj(C[det(xI)]) ⊂ P(P1)

is the Plücker embedding of the Grassmannian!

So onward with the projective varieties.
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Proposition 10.1. mproj(A) is separated and proper.


