
Lecture 6. Manifolds
PCMI Summer 2015 Undergraduate Lectures on Flag Varieties

Lecture 6. Topology, and topological manifolds, with applications to
Lie groups and Grasssmannians as extended examples.

Definition 6.1. (a) A topological space is a set X equipped with a
collection of open subsets U ⊂ X with the following properties:

(i) The empty set and X are open sets.

(ii) The intersection of a finite number of open sets is an open set.

(ii) The union of arbitrarily many open sets is an open set.

(b) The complement of an open set is called a closed set.

Example 6.1. In the Euclidean topology on Rn, the balls:

Br(p) = {q ∈ Rn ||q − p| < r} for all r > 0, p ∈ Rn

of radius r and center p are open, and every open set is a union of balls.

Verification. To see that this defines a topology on Rn, one needs
to check that a finite intersection of unions of balls is a union of balls.
This isn’t very difficult. It follows from the fact that the intersection
of two balls is a (usually infinite) union of balls.

Definition 6.2 A collection of open sets {Uλ | λ ∈ Λ} is a basis for a
topology on X if every open set U ⊂ X in the topology is a union of
(usually infinitely many) open sets from the collection.

Remark. A topology is uniquely determined by any basis of open sets.

Thus, by definition, the balls are a basis for the Euclidean topology,
but the collection of balls with rational radius and rational center are
a countable basis for the topology.

Definition 6.3. A map f : X → Y between topological spaces is
continuous if the inverse image of every open set U ⊂ Y is open in X.

Exercise 6.1. (a) The identity map idX is continuous.

(b) A composition of continuous maps is continuous.

(c) The inverse of a continuous map may not be continuous!

Moment of Zen. The category T op of topological spaces is:

(a) The collection of topological spaces, with (b) All continuous maps.

An isomorphism in T op is called a homeomorphism.
1



2

Example 6.2. A polynomial P (x1, ..., xn) is a finite linear combination
of monomials (over any field k):

P (x1, ..., xn) =
∑

D=(d1,...,dn)

cDx
d1
1 · · ·xdnn ; cD ∈ k, di ≥ 0

which naturally defines a function from kn to k. Polynomials over R
(or C) are continuous functions for the Euclidean topology.

Definition 6.4. Any subset Y ⊂ X of a topological space has an
induced topology, in which the open subsets of Y are the intersection
U ∩ Y with open subsets U ⊂ X. The induced topology is rigged so
that the inclusion map i : Y ⊂ X is continuous.

Example 6.3. All balls in Rn (induced topology) are homeomorphic
to each other (easy), including the ball B∞ = Rn of infinite radius, but
a ball in Rn is not homeomorphic to a ball in Rm if n 6= m (harder).

The category of topological spaces includes a lot of “pathological”
examples, including discrete topologies on arbitrary sets, in which the
points are all open, and trivial topologies, in which only the empty set
and X are open. To get a topology that is closer to geometry, consider:

Definition 6.5. X is Hausdorff if each pair of points p1, p2 ∈ X may
be “separated” by open sets U1, U2 ⊂ X, in the sense that:

p1 ∈ U1, p2 ∈ U2 and U1 ∩ U2 = ∅
Example 6.4. (a) The Euclidean topology on Rn is Hausdorff.

(b) The induced topology on any subset of a Hausdorff topological
space is Hausdorff.

Definition 6.6. The topology on a Cartesian product X1 × ... × Xn

of topological spaces with a basis consisting of products U1 × ... × Un
of open sets Ui ⊂ Xi is called the product topology.

Exercise 6.2. (a) The Euclidean topology on Rn coincides with the
product topology on Rn = R1× ....×R1 of the Euclidean topologies on
the real line. The former yields a basis of balls, and the latter yields a
basis of “boxes” (products of open intervals).

(b) A topological space X is Hausdorff if and only if the diagonal:

∆ := {(x, x) | x ∈ X} ⊂ X ×X
is a closed subset of the product (with the product topology).

Definition 6.7. A topological (continuous) manifold of dimension n
is a Hausdorff topological space M that has a countable basis of open
sets, each of which is homeomorphic to a ball in Rn.
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What is this saying? First, since every point of M is in an open set
homeomorphic to a ball, it says that a point of the manifold cannot
distinguish its local environment from that of a ball in Rn. Second,
the existence of a countable basis ensures that M is not “globally too
big,” (e.g. M is not a disjoint union of balls, one for each point of the
real line). Finally, the Hausdorff condition ensures, for example, that
if a sequence of points of M has a limit, then that limit is unique. A
point cannot get arbitrarily close to another point without eventually
reaching it on a Hausdorff manifold (see Rn with the doubled origin).

Example 6.5. Every open subset of a manifold is a submanifold.

Example 6.6. Some closed sets in Rn are manifolds (see Lecture 7),
but some are not. A pair of intersecting lines in R2 is not a manifold,
because the point of intersection knows that it is not on an interval, no
matter how myopic it is.

An important example is obtained by gluing. The idea is that if a
manifold M is a union of finitely many overlapping open submanifolds
U1, ..., Um ⊂ M , then the double and triple intersections Ui ∩ Uj and
Ui ∩ Uj ∩ Uk are enough information to reassemble M from the Ui.

Example 6.7 (Gluing). Gluing data for a finite set M1, ...,Mn of
manifolds (of the same dimension) consists of open sets Ui,j ⊂Mi and
gluing homeomorphisms fi,j : Ui,j → Uj,i for each pair i, j satisfying:

(i) fi,j = f−1j,i

(ii) For every triple i, j, k,

fi,j(Ui,j ∩ Ui,k) = Uj,i ∩ Uj,k and fj,k ◦ fi,j = fi,k

as maps from Ui,j ∩ Ui,k to Uk,i ∩ Uk,j
Then the following topological space is a manifold if it is Hausdorff:

M =
n∐
i=1

Mi/(Ui,j ∼ Uj,i via fi,j)

Remark. The notation is that of an equivalence relation. Two points:

x, y ∈M1 tM2 t ... tMn

are to be identified if y = fi,j(x) for some pair i, j. The data (ii) says
that this is an equivalence relation. In particular, the maps Mi → M
are injective, and the open sets of each of the Mi ⊂ M are a basis for
the topology on M . The key observation is that this topology on M
is well-defined because a subset U ⊂ Mi ∩Mj is open whether U is
regarded as a subset of Mi or of Mj because fij is a homeomorphism.



4

Subexample. Glue two copies of Rn together along Ui,j = Rn − {~0}:
(i) Using the identity homeomorphisms: fi,j = id.

(ii) Using the “length inverting” (self-inverse) homeomorphisms:

fi,j(~v) = ~v/|~v|2

The first gluing gives Rn with the “doubled origin,” i.e. two points,
coming from the origins in each copy of Rn, that cannot be separated
by open sets in the glued space. It is therefore not Hausdorff.

The second gluing produces a manifold. The glued manifold may be
viewed as Rn ∪ {∞} with additional infinite open balls:

{q ∈ Rn | |q| > r} ∪ {∞}
This is homeomorphic to the sphere Sn.

Definition 6.8. (a) A topological space X is disconnected if there is a
pair of disjoint nonempty open subsets U1, U2 ⊂ X with U1 t U2 = X.
X is connected if it is not disconnected.

(b) A topological space X is compact if it is Hausdorff and every
cover of X by open sets admits a finite sub-cover.

Example 6.8. (a) Rn is connected but not compact.

(b) The sphere M = Rn ∪ {∞} is connected and compact.

Exercise 6.3. If X is compact and f : X → Y is continuous, then:

(a) Every closed subset Z ⊂ X is compact.

(b) f(X) is compact (with the induced topology from Y ).

(c) if Y is Hausdorff, then f(Z) ⊂ Y is closed for every closed Z ⊂ X.

Remark. If M is a compact connected manifold, then the image of M
in any gluing of M with other manifolds is both open and closed, hence
a compact M cannot be enlarged by gluing while remaining connected.

Definition 6.9. A subset X ⊂ Rn is bounded if it is contained in a
ball of finite radius (or box of finite side lengths).

Heine-Borel Theorem. A subset of Rn with the induced topology is
compact if and only if it is closed and bounded.

Let’s apply this to some of our groups:

Proposition 6.1. Of the groups from Lecture 5 (over R and C):

(a) SO(n,R), U(n) and SU(n) are compact and connected.

(b) SL(n,R),GL(n,C) and SL(n,C) are connected but not compact.
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Some Proof. The columns of the groups in (a) are orthogonal unit
vectors. This implies that each of the groups is contained in a sphere
(in the respective spaces Rn2

and Cn2
). So these groups are bounded.

They are closed because each is the zero locus of a polynomial equation
in the real variables. It is important to realize that the equation
zz = 1 is a polynomial equation a2 + b2 = 1 on the real and imaginary
parts of z = a+ ib, but is not a polynomial in the variable z! So these
groups are compact, by the Heine-Borel theorem.

On the other hand, the one-parameter subgroups (and tori) in the
groups in (b) proved that they are unbounded, although SL(n,R) and
SL(n,C) are zeroes of the single polynomial equation det(A) = 1 in the
real and complex variables, respectively. It is a general feature of zero
sets of (systems) of polynomials in complex variables, that unless they
consist of finitely many points, they are always unbounded. Thus, for
example, SO(n,C) is also unbounded (which can alternately be seen
by finding a one-parameter subgroup).

Connectedness of the groups in (a) can be proved by induction by
applying the following lemma to their realization as a tower of spheres.

Lemma 6.1. If X is compact and Y is Hausdorff, and f : X → Y is
a surjective, continuous map with connected fibers f−1(p), then:
X is connected if and only if Y is connected.

Proof. If Y = U1 t U2 disconnects Y , then X = f−1(U1) t f−1(U2)
disconnects X (this only required that f be continuous and surjective).
Conversely, if X = U1 t U2 disconnects X, then for each p ∈ Y , either
f−1(p) ⊂ U1 or f−1(p) ⊂ U2 because f−1(p) is connected. Therefore
Y = f(U1) t f(U2) disconnects Y , since f(Ui) are closed. �

Remark. (i) This lemma does its job but misses the point, which is
that the maps Xi+1 → Xi in the towers of spheres are each “bundles”
of spheres, which are far better behaved than arbitrary continuous
maps. In particular, the compactness is a red herring. We leave the
connectedness of the groups in (b) as an ambitious exercise, requiring
more topology than I have been willing to put into this lecture. You
might give some thought to the semi-simple elements of SL(n,C), or

the inclusions SU(n,C) ⊂ SL(n,C) ⊂ GL(n,C) ⊂ Cn2
.

(ii) O(n,R) and GL(n,R) are not connected because they map con-
tinuously onto the disconnected sets {±1} and R∗, respectively! In
fact, they have two “connected components.”

Now let’s turn our attention back to the flag varieties:



6

Projective Space. We’ll first describe this over any field, and then
focus on the topological properties over R or C.

Definition 6.10. Pnk is the locus of lines through the origin in kn+1.

The projective coordinates of a line through the origin are ratios:

(x0 : ... : xn)

which represent the equivalence classes of points on the line spanned
by (x0, ..., xn) (and the origin). Evidently, the only restriction on the
coordinates is that some xi 6= 0.

The set of lines for which a given xi is nonzero may be put in
bijection with the points of the “affine hyperplane” xi = 1 via:

(x0 : · · · : xi : · · ·xn)↔
(
x0
xi
, · · · , 1, · · · , xn

xi

)
(notice that the colons are replaced with “ordinary” commas).

This covers projective space with the affine spaces:

Ui = {(x0|i, · · · , xn|i)|xi|i = 1}

in coordinates whose indexing reflects the ratios xj/xi of the projective
coordinates. We now apply Example 6.7 with the gluing data:

Uij = {x ∈ Ui | xj|i 6= 0}, fij(x0|i, ...., xn|i) = (x0|i/xj|i, ...., xn|i/xj|i)

and amusingly, the gluing criteria has to apply, because we know, a
priori, that gluing is an equivalence relation since we are gluing together
subsets of an existing locus (of lines). But just to make sure:

fji ◦ fij(. . . xk|i . . . ) = fji(. . . xk|i/xj|i . . . ) = (. . . xk|i · xj|i/xj|i · xi|i . . . )

the point being that xi|i = 1. And then additionally,

fjk ◦ fij(. . . xl|i . . . ) = fjk(. . . xl|i/xj|i . . . ) = (. . . (xl|i/xj|i)(xj|i/xk|i) . . . )

= (. . . xl|i/xk|i . . . ) = fik(. . . xl|i . . . )

There are two important things to notice here:

(i) The open sets Uij ⊂ Ui are each the complement of a hyperplane.

(ii) The gluing maps are rational maps in the coordinates.

Exercise 6.4. (a) When endowed with the topology from gluing,
projective space over R or C is Hausdorff, and a manifold.

(b) Each projective space over R or C is the image of a continuous
map from a sphere. Conclude that it is compact and connected.
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This is the covering of projective space by the open sets Ui that was
promised in the introduction (for Grassmannians and flag manifolds).
Next, we turn to the stratification:

Definition 6.11. A partial ordering is a binary relation � on a set P
that is reflexive, anti-symmetric and transitive, i.e.

• µ � µ for all µ ∈ P
• If µ � ν and ν � µ, then µ = ν

• If µ � ν and ν � λ, then µ � λ

It is a total ordering if µ � ν or ν � µ for all µ, ν.

Let X be a topological space.

Definition 6.12. (a) A subset V ⊂ X is locally closed if there are
open and closed sets U,Z ⊂ X such that V = U ∩ Z.

(b) The closure Y of a subset Y ⊂ X is the intersection of all closed
sets containing Y . It is the unique smallest closed set containing Y .

(c) A stratification of X is a set of locally closed subsets Yµ ⊂ X
indexed by a partially ordered set P such that:

(i) X = tµ∈PYµ is the disjoint union of the sets Vµ.

(ii) Each closure Y µ = tµ�νYν
i.e. the boundary Y µ−Yµ is the union of all the “strictly larger” strata.

Observation. Projective space is stratified by affine spaces with the
totally ordered set P = {0, 1, ..., n} as follows:

Step 1. Let Vi = 〈e0, .., ei〉 be the standard flag:

V0 ⊂ V1 ⊂ · · · ⊂ Vi ⊂ Vi+1 ⊂ · · · ⊂ Vn = kn+1

Step 2. Consider the following nested closed subsets of X = Pnk :

Zi = {l ∈ Pn | l ⊂ Vn−i} = {(x0 : · · ·xn) | xn−i+1 = · · · = xn = 0}
Each of these is closed (and is a smaller projective space) because:

Zi = Pn − (Un ∪ Un−1 ∪ · · · ∪ Un−i+1) , and

this defines a stratification with strata:

Yi := Zi − Zi+1 = {(∗, ∗, ..., ∗, 1, 0, ..., 0)} = Zi ∩ Un−i

Remark. For a line l ⊂ Vn through the origin and a subspace W ⊂ Vn,
either the intersection l ∩W = 0, in which case the line and subspace
are transverse, or else l∩W = l. The locally closed sets Yi are the sets
of lines that fail to be transverse to Vn−i but are transverse to Vn−i−1.
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Grassmannians. We are now in position to make sense of comments
in the introduction on Grassmannians. The strategy for constructing
Grassmannians follows that of projective space.

Definition 6.13. The Grassmannian G(m,n) over a field k is the
locus of m-dimensional subspaces W ⊂ kn.

Analogous to the projective coordinates are Grassmann coordinates:

(xij) =


x11 x12 · · · x1n−1 x1n
x21 x22 · · · x2n−1 x2n
...

...
...

...
xm1 xm2 · · · xmn−1 xmn


that define a point of the Grassmannian (the span of the row vectors)
provided that the rows are linearly independent, i.e. provided that
det(xJ) 6= 0 for some multi index J = {1 ≤ j1 < · · · < jm ≤ n}
and square matrix (xJ) := (xijk). The ambiguity in the coordinates,
analogous to the “ratio” ambiguity for projective coordinates, is:

(Axij) ∼ (xij)

where A ∈ GL(m) acts by left multiplication on the Grassmann coor-
dinates (xij), taking one basis for W (as a subspace of kn) to another.
Notice that det(AxJ) = det(A)(xJ) for each of the square matrices of
coordinates, and therefore the “Plücker point”

φ(W ) := (· · · : xJ : . . . ) ∈ P(n
m)−1

only depends upon W and not on the choice of Grassmann coordinates.

Example 6.9. The Plücker point of the plane in C4 with coordinates:[
x11 x12 1 0
x21 x22 0 1

]
and (total) ordering of the multi-indices J given by:

({1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4})
is (x11x22 − x12x21,−x21, x11,−x22, x12, 1).

Proposition 6.2. The Plücker map φ : G(m,n)→ P(n
m)−1 is injective.

Proof. Fix W ∈ G(m,n). As in Example 6.8, assume that (xi,jk)
is the identity for J ⊂ [n]. This gives Plücker coordinate xJ = 1.
For each i = 1, ...,m and j ∈ J c, let J(i, j) ⊂ [n] be defined by:
J(i, j) = J − {ji} ∪ {j}. Then the Grassmann coordinate xij is equal
to either xJ(i,j) or−xJ(ij). In other words, every Grassmann coordinate
for W is uniquely recovered from the Plücker coordinates. �



9

Remark. All the other Plücker coordinates are polynomials in the xij!

Example 6.9 (cont). In the coordinates:[
1 y11 0 y12
0 y21 1 y22

]
(and the same ordering of subsets), the Plücker coordinate is:

(y21, 1, y22, y11, y11y22 − y12y21,−y12)
and the gluing data from x to y coordinates is therefore:

y11 = x22/x21, y12 = 1/x21, y21 = (x12x21−x11x22)/x21, y22 = −x11/x21

The gluing data in general for the Grassmannian can therefore be
phrased in terms of the effect of changing coordinates on its image
under the Plücker embedding. As in the case of projective space, we
let xij|J denote the Grassmann i, j-coordinate in a matrix with the
Jth minor set to the identity. Then:

UJ = {(. . . xij|J . . . ) | xijk|J = id}, UJL = {x ∈ UJ | xL 6= 0}

fJL(. . . xij|J . . . ) = (· · · ± xL(i,j)/xL . . . )

where L = (l1 < ... < lk < ... < lm) determines the coordinates we are
transitioning into, and L(i, j) = (l(i, j)1 < ... < l(i, j)k... < l(i, j)m)
recovers the Grassmann coordinates from the Plücker coordinates in
the new system.

Remark. The desired properties of the gluing data follow from the
fact that we have identified each UJ with its image under the Plücker
embedding in projective space and deduced the gluing from the gluing
for open sets of projective space. Also note that the open sets UJ are
vector spaces (more precisely, affine spaces), that each UJL ⊂ UJ is the
complement of the locus of zeroes of a polynomial, and that all the
gluing is by rational functions in the coordinates.

Now it is time to talk about Schubert Cells in the Grassmannian.
Fix the standard flag Vi = 〈e1, ..., ei〉:

V1 ⊂ V2 ⊂ · · · ⊂ Vn = kn

and let Jmax = (n−m+ 1 < ... < n) be the largest multi index. Then:

W ∈ UJmax ⇔ dim(W ∩ Vi) = max{0, i−m}
i.e. the dimension sequence is: 0, 0, 0..., 0, 1, 2, 3, ...,m. To see this,
recall that the Grassmann coordinates forW ∈ UJmax can be normalized
so that the last minor is the identity matrix. Then the dimension
sequence becomes clear.
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Such a subspace W is transverse to each Vi. For an arbitrary W ,
consider the dimension sequence di := dim(W ∩Vi), which increases by
0 or 1 each time with m of the latter. Record the “jump” subsequence
of the m times when the dimension jumps by 1:

di1 < ... < dim

and subtract these from the “generic” jump sequence:

n−m+ 1 < n−m+ 2 < ... < n− 1 < n

to obtain the “deficit jump sequence” λj = (n−m+ j)− dij of W .

Remark. The deficit jump sequence is non-increasing!

Definition 6.14. The Schubert cell Yλ associated to a Young diagram:

λ = {n−m ≥ λ1 ≥ λ2 ≥ · · · ≥ λm ≥ 0}
is the set of subspaces W ⊂ kn with deficit jump sequence λ. Young
diagrams have a natural partial ordering:

λ � µ if λi ≤ µi for all i

and the size of a Young diagram λ is |λ| = λ1 + · · ·+ λm.

Remark. A Young diagram can be visualized as an inverted stack of
boxes contained in an m× (n−m) rectangle with λi boxes in the ith
row of the diagram.

The subspaces W with Young diagram λ are those with Grassmann
coordinates consisting of a 1 in each (i, n−m+i−λi) position (precisely
λi to the left of where it would be for a transverse subspace) and 0’s
below and to the right of each 1. The free coordinates in a matrix
with his configuration of 0’s and 1’s uniquely determine the subspace.
Counting these coordinates, we see that:

dim(Yλ) = m(n−m) = |λ|
Example 6.10. The two two-dimensional cells for G(2, 4) are:

Y(2≥0) ↔
[

1 0 0 0
0 ∗ ∗ 1

]
and

Y(1≥1) ↔
[
∗ 1 0 0
∗ 0 1 0

]
Proposition 6.3. {Yλ} stratifies G(m,n).

Proof. It is clear that G(m,n) is the disjoint union of the Yλ. To see
that the Yλ are locally closed, simply notice that they are closed subsets
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of the corresponding Uλ, obtained by setting some of the coordinates
to zero. The last part of the stratification condition:

Yλ = tλ�µYµ
is more interesting. It suffices to show that
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Exercises.

6.1. Show that:

(a) The identity map idX on a topological space is continuous.

(b) A composition of continuous maps is continuous.

(c) Find a continuous bijection whose inverse is not continuous.

6.2. (a) Show that the Euclidean topology on Rn coincides with the
product topology on Rn = R1× ....×R1 of the Euclidean topologies on
the real line. The former yields a basis of balls, and the latter yields a
basis of “boxes” (products of open intervals).

(b) A topological space X is Hausdorff if and only if the diagonal:

∆ := {(x, x) | x ∈ X} ⊂ X ×X

is a closed subset of the product (with the product topology).

6.3. If X is compact and f : X → Y is continuous, show that:

(a) Every closed subset Z ⊂ X is compact.

(b) f(X) is compact (with the induced topology from Y ).

(c) if Y is Hausdorff, then f(Z) ⊂ Y is closed for every closed Z ⊂ X.

(Hint: Consider the graph Γ = {(z, f(z))} ⊂ Z × Y of f : Z → W .
If Y is Hausdorff, then Γ is closed and f(Z) is the image of Γ under
the projection map Z × Y → Z.)

6.4. (a) When endowed with the topology from gluing, projective space
over R or C is Hausdorff, and a manifold.

(b) Each projective space over R or C is the image of a continuous
map from a sphere. Conclude that it is compact and connected.

(c) Show that the Grassmannians are compact, connected manifolds.

6.5. Prove a symmetry among the Young diagrams indexing the Schu-
bert cells of G(m,n). Namely, show that the number of such diagrams
of size i is the same as the number of size m(n−m)− i.

The cells of a particular length |λ| are a basis for the cohomology of
the complex Grassmannian in codimension λ, so that the number of
such cells of length i is a “2ith betti number” of the complex Grass-
mannian. this symmetry is a consequence of Poincaré duality. When
you look at the diagrams of complementary sizes, try to find an explicit
bijection between them. This is the pairing under Poincaré duality.
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6.6. Consider the Grassmannian G(m,n) over a finite field Fq with
q elements. How many points are there in this Grassmannian? What
happens when you set q = 1? (Try the case of projective space first.)

6.7. Prove that SL(n,R) and SL(n,C) are connected.

6.8. Discuss the connectedness and/or compactness of the symplectic
groups Sp(2n,R) and Sp(2n,C).

6.9. Are the groups GL(n,R) and GL(n,C) manifolds? What about
the groups SL(n,R) and SL(n,C)? Or the others?


