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Lecture 5. Some Lie Groups and their personalities.

Let’s recap our successful program from Lectures 1-4 for classifying
the finite dimensional representations of finite groups:

(a) Average the ordinary dot product on a G-module to obtain an
invariant dot (or Hermitian) product to prove complete irreducibility:
every G-module is a direct sum of irreducible G-modules.

(b) Locate all the irreducible representations as G-submodules of a
single G-module, namely the (left) regular representation C[G].

We’re going to generalize this program to continuous (Lie) groups
and algebraic groups. Before we worry about this, let’s consider the
cast of characters.

General Linear Groups. The multiplication map:

m : GL(n, k)×GL(n, k)→ GL(n, k)

is a polynomial map that is linear in the variables on each side of the
product, and quadratic over all. For example:

m(a, b) = ab

m

([
a1,1 a1,2
a2,1 a2,2

]
,

[
b1,1 b1,2
b2,1 b2,2

])
=

[
a1,1b1,1 + a1,2b2,1 a1,1b1,2 + a1,2b2,2
a2,1b1,1 + a2,2b2,1 a2,1b1,2 + a2,2b2,2

]
The inverse map:

i : GL(n, k)→ GL(n, k)

is a rational map. The one and two-dimensional cases are:

i(a) =
1

a

i

([
a1,1 a1,2
a2,1 a2,2

])
=

[
a1,1/(a1,1a2,2 − a1,2a2,1) −a2,1/(a1,1a2,2 − a1,2a2,1)
−a1,2/(a1,1a2,2 − a1,2a2,1) a2,2/(a1,1a2,2 − a1,2a2,1)

]
The general case is Cramer’s rule: the entries of A−1 are

A−1 =

(
(−1)i+j det(Mj,i)

det(A)

)
i.e. the ratios of the determinants of n− 1×n− 1 minors Mi,j and the
determinant of A. Notice that these are homogeneous rational functions
of degree −1, reflecting the fact that if A is replaced by λA, then A−1

is replaced by λ−1A−1.

These are algebraic maps, well defined over any field k.
1
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Now consider the action of GL(n, k) on itself by conjugation. We’ve
already seen that semi-simple matrices in GL(n, k) are those with a
diagonal matrix in the conjugacy class. In general:

Jordan Canonical Form. Within each conjugacy class of GL(n,C),
there is a matrix in canonical form, consisting of Jordan blocks:

λ 1 0 · · · 0
0 λ 1 · · · 0
...

...
...

...
0 0 0 λ 1

0 0 0
... λ


corresponding to the “maximal cyclically generated” subspaces. These
are subspaces generated by a vector ~v, in the sense that the vectors:

~v1 = ~v,~v2 = A~v1 − λ~v1, ..., ~vm = A~vm−1 − λ~vm−1
span the space, and ~vm is the only eigenvector.

Special Linear Groups are defined by a polynomial equation:

SL(n, k) = {A ∈ GL(n, k) | det(A) = 1}
Notice that SL(2, k) has k∗ as a subgroup:

t 7→
[
t 0
0 t−1

]
so it is unbounded when k = R or C. This subgroup is not normal!
When we conjugate it we get loads of “one-parameter” subgroups:

t 7→ A

[
t 0
0 t−1

]
A−1

The general linear group has the diagonal torus Tn = (k∗)n as a
subgroup (as well as all its conjugate subgroups), and SL(n, k) contains
the subtorus Tn−1 = {(t1, ., ..., tn) |

∏n
i=1 ti = 1} ⊂ Tn.

Projective Linear Groups are defined as the quotient

PGL(n, k) = GL(n, k)/k∗

by the normal subgroup consisting of multiples of the identity ma-
trix. In this group, the natural torus is the quotient torus Tn/T via
the diagonal action of T on T n. Notice that the kernel of the map
SL(n, k) → PGL(n, k) is the group Cn of roots of unity (times id).
This is the center of the special linear group. Projective linear groups
are not projective varieties...quite the opposite, they are affine, but they
are the natural groups to act on projective space by automorphisms.
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Orthogonal Groups. With respect to the ordinary dot product:

Definition 5.1. A matrix A ∈ GL(n, k) is orthogonal if

(A~v) · (A~w) = ~v · ~w for all ~v, ~w ∈ Rn

The orthogonal group O(n, k) is the group of orthogonal matrices. The
special orthogonal group SO(n, k) ⊂ O(n, k) is the normal subgroup of
orthogonal matrices of determinant 1.

Proposition 5.1. (a) A ∈ O(n, k) if and only if

A(~v) · A(~v) = ~v · ~v for all ~v ∈ kn

(b) A is orthogonal if and only if AT · A = id.

(c) det(A) = 1 or −1 if A ∈ O(n, k).

Proof. One direction of (a) is obvious. As for the other, consider:

A(~v + ~w) · A(~v + ~w) = A(~v) · A(~v) + 2A(~v) · A(~w) + A(~w) · A(~w)

and (~v + ~w) · (~v + ~w) = ~v · ~v + 2~v · ~w + ~w · ~w. If we assume that all
“square terms” are equal, then so are the cross terms.

The dot product ~v · ~w is the matrix product (~v)T · (~w), where vectors
are regarded as one-column matrices. A is orthogonal if:

(A~v)T · (A~w) = (~v)T (ATA)~w = (~vT ) · (~w)

for all ~v, ~w. Applying this to all pairs of basis vectors ei, ej gives (b).
Then det(A)2 = 1, which gives (c).

Let us focus on the case k = R.

Proposition 5.2. (a) The columns of A ∈ O(n,R) are perpendicular
unit vectors, i.e. an orthonormal basis for Rn. Likewise for the rows.

(b) O(n,R) are the symmetries of the unit sphere in Rn.

(c) The stabilizer of a point of the sphere is isomorphic to O(n−1,R).

Proof. (a) is an immediate consequence of Proposition 5.1(b), and
(b) is an immediate consequence of Proposition 5.1(a). For (c), since
all stabilizers are isomorphic, consider the stabilizer of the “north pole”
en ∈ Sn−1. Then by (a) any stabilizer of en is a matrix of the form:

A =


0 0 · · · 0 1
∗ ∗ · · · ∗ 0
...

...
...

...
∗ ∗ · · · ∗ 0
∗ ∗ · · · ∗ 0


and again by (a) the submatrix of indeterminates is orthogonal! �
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Example 5.1. (a) Permutation matrices are orthogonal.

(b) We’ve seen O(2,R) in Lecture 2. Namely,

O(2,R) =

{[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]}
t
{[

cos(θ) sin(θ)
sin(θ) − cos(θ)

]}
are “rotations” and “reflections” which have determinant 1 and −1,
respectively. The first column of each is an arbitrary point of the unit
circle, and the second is a unit vector orthogonal to the first.

(c) The set of orthogonal matrices is a “tower of sphere bundles:”

O(n,R) = Xn → Xn−1 → · · · → X1 = Sn−1

where Xi is the space of i ordered orthonormal vectors ~u1, ..., ~ui ∈ Rn

(the first i columns of an orthogonal matrix). The map Xi+1 → Xi

forgets ~ui+1, which (given the first i vectors ~u1, .., ~ui) was free to be
any point of the unit sphere Sn−i ⊂ 〈~u1, ..., ~ui〉⊥. In particular, the
very last vector ~un is ±1 ∈ 〈~u1, ..., ~un−1〉⊥ which produce matrices of
determinant 1 or −1. In particular, SO(n,R) maps bijectively to Xn−1.

Example 5.2. The above discussion exhibits SO(3,R) as a bundle of
circles over S2, as does the action of SO(3,R) on the sphere. But there
is another way to visualize SO(3,R):

Since A ∈ SO(3,R) preserves length, every eigenvalue of A is a real
(or complex) number of length 1. From this and det(A) = 1, it follows
that λ = 1 is an eigenvalue for A with a one-dimensional eigenspace
(unless A = id). This eigenspace is the “axis” for a rotation in the
perpendicular plane by an angle θ between −π and π. In other words,
every symmetry of the sphere is a rotation around an axis (obvious?).
We will revisit this a little bit later.

Next, consider orthogonal matrices over C.

The ordinary dot product is not the Hermitian product. Notice
that ~v · ~v is not always positive, so this is not the square of a length.
Nevertheless, we can analyze these matrices as we did in the real case.

With respect to the dot product:

• The columns (and rows) of an orthogonal matrix satisfy ~vi · ~vi = 1
and ~vi · ~vj = 0 for i 6= j.

• The orthogonal group acts on the “complex sphere,” i.e. the locus
of vectors ~u ∈ Cn that satisfy ~u · ~u = 1.

• The orthogonal group is a “tower of complex spheres.”

Example 5.3. SO(2,C) is isomorphic to C∗, as follows:
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First of all, notice that a matrix in SO(2,C) is of the form:

A =

[
z1 −z2
z2 z1

]
where z21 + z22 = 1

In other words, as with SO(2,R), this is the first complex sphere.
By analogy with rotations, here is the isomorphism:

z 7→
[

(z + z−1)/2 (z−1 − z)/2i
(z − z−1)/2i (z + z−1)/2

]
Notice that when restricted to the unit complex numbers eiθ, this is

exactly the isomorphism between the circle and SO(2,R).

Next, consider unitary transformations over the complex numbers.

Definition 5.2. A matrix A ∈ GL(n,C) is unitary if:

〈A~v,A~w〉 = 〈~v, ~w〉 for all ~v, ~w ∈ Cn

The unitary group U(n) is the group of unitary matrices.

Example 5.4. U(1) ⊂ C∗ is the unit circle!

The analogues of the results for real orthogonal groups hold:

• Unitary matrices are those that preserve length of (complex) vectors.

• A is unitary iff AT · A = id, which implies det(A) · det(A) = 1.

• The columns of a unitary matrix A are orthogonal unit vectors.

• The unitary groups are a tower of odd dimensional real spheres.

Definition 5.3. The special unitary group SU(n) is the kernel of

det : U(n)→ U(1)

i.e. the unitary matrices of determinant 1.

Example 5.5. SU(2). A special unitary 2× 2 matrix has the form:[
z1 −z2
z2 z1

]
i.e. SU(2) is the unit sphere in R4 identified with:{[

a1 + ib1 −a2 + ib2
a2 + ib2 a1 − ib1

]
such that a21 + b21 + a22 + b22 = 1

}
but there is a better way to “see” this unit sphere:

The quaternions H are the set:

H = {a+ bi+ cj + dk | a, b, c, d ∈ R}
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with ordinary (vector) addition and vector multiplication defined by:

i2 = j2 = k2 = −1, ij = k = −ji, jk = i = −kj, ki = j = −ik
If we use vector notation ~v = v1i+ v2j + v3k, then:

(a+ ~v)(b+ ~w) = (ab− ~v · ~w) + (a~w + b~v + ~v × ~w)

where × is the cross product of vectors in R3. There is a quaternion
conjugate and inverse. Let q = a+ ~v. Then:

q = a− ~v, qq = |q|2 = a2 + v21 + v22 + v23, q
−1 = q/qq

just as with the complex numbers. And as with the complex numbers:
S3 = {q | |q|2 = 1}, i.e. the unit quaternions, are a group.

Proposition 5.3. SU(2) is isomorphic to the unit quaternions.

More precisely, as above, an element of SU(2) is of the form:

A = a1

[
1 0
0 1

]
+ b2

[
0 i
i 0

]
+ a2

[
0 −1
1 0

]
+ b1

[
i 0
0 −i

]
and the matrices multiply as 1, i, j, k (beware the multiple uses of i!).
Thus the map φ : S3 → SU(2) defined by:

φ(1) =

[
1 0
0 1

]
, φ(i) =

[
0 i
i 0

]
, φ(j) =

[
0 −1
1 0

]
, φ(k) =

[
i 0
0 −i

]
is the desired isomorphism (of groups).

Now consider the action of SU(2) on itself by conjugation:

Proposition 5.4. The conjugacy classes of elements in SU(2) are the
“latitudes” of the sphere S3, i.e. the unit quaternions of fixed real part.

Proof. If q = a+ ~v and r = b+ ~w are unit quaternions, then:

qrq−1 = b+ (a2 − |~v|2)~w + 2a(~v × ~w) + 2(~v · ~w)~v

(by brute force computation). This proves that the real part of a unit
quaternion is fixed under conjugation. Alternatively, the real part of:

a1

[
1 0
0 1

]
+ b2

[
0 i
i 0

]
+ a2

[
0 −1
1 0

]
+ b1

[
i 0
0 −i

]
is half of the trace, which is preserved under conjugation by matrices.

Next, suppose r = b+ ~w and r′ = b+ ~w′ are two unit quaternions in
the same latitude. Then the unit quaternion ~u in the direction 1

2
(~w+ ~w′)

(at the equator) conjugates r to r′, since the effect of conjugating by
~u (by the brute force calculation) is to rotate the vector part by 180
degrees around the axis in the ~u direction, and that takes ~w to ~w′.
Thus conjugation is transitive on each latitude. �
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Corollary 5.1. Via the conjugation action on the “equator:”

c : SU(2)→ SO(3,R); c(q)(0 + ~w) = q(~w)q−1

is a surjective homomorphism of groups with ker(c) = ±1.

Proof. The reader is invited to verify with brute force or, better,
with elegance, that if a+ ~v = q is a unit quaternion, then conjugation
by q rotates the equator (= S2) around the axis in the ~v direction by
an angle ranging from 0 (at the north pole) to 2π (at the south pole)
determined by a. Notice that this exhibits c as a double cover since
the additional information of ~v determines a direction along the axis
(“spin up” in physics lingo). �

Corollary 5.2. (of the reader’s elegant proof in Corollary 5.1). The
stabilizer subgroups H~u ⊂ SU(2) of the points of the equator are the
“longitudinal circles:”

a± (
√

1− a2)~u
of S3 since rotation around the direction ~u precisely stabilizes ~u.
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Exercises.

1. Check that the mapping:

z 7→
[

(z + z−1)/2 (z−1 − z)/2i
(z − z−1)/2i (z + z−1)/2

]
is an isomorphism between C∗ and SO(C, 2).

2. Check that the subgroup {±id} ⊂ O(3,R) is normal, and con-
clude that there is a surjective homomorphism:

φ : O(3,R)→ SO(3,R)

with kernel ±1. Comparing this with the similar result in Corollary
5.1, decide whether or not SU(2) and O(3,R) are isomorphic groups.

3. Given any symmetric invertible n× n matrix B, we can form the
“orthogonal group with respect to B,” i.e. the subgroup O(n,B) of
GL(n) consisting of the matrices A that “centralize” B:

ATBA = B

Show that these are precisely the matrices that preserve “b-length”
b(~v,~v), where b(~v, ~w) = (~v)TB~w. Over the complex numbers, these
groups are all isomorphic to each other, and hence are all isomorphic
to O(n,C) (can you prove this?) but investigate the example of:

B =

[
−1 0

0 1

]
over the real numbers.

4. An m ×m matrix C is skew-symmetric if CT = −C. Given an
invertible skew-symmetric m×m matrix C, we can form the “symplec-
tic group with respect to C” in exactly the same way, as the subgroup
Sp(m,C) ⊂ GL(m) of matrices that centralize the skew-symmetric
form c(~v, ~w) defined in the same way by the matrix C. The “standard”
symplectic group Sp(2n, k) over k is the group defined by:

C =


0 0 · · · 0 −1
0 0 · · · −1 0
...

...
...

...
...

0 1 · · · 0 0
1 0 · · · 0 0


i.e. with two block “anti-diagonal” n× n matrices of −1s and 1s.

(a) Prove that a skew-symmetric m×m matrix is never invertible if
m is odd. Hence the symplectic groups are only defined for m = 2n.

(b) The group Sp(2, k) is isomorphic to a familiar group. Which one?


