
Lecture 3. Group Actions
PCMI Summer 2015 Undergraduate Lectures on Flag Varieties

Lecture 3. The category of groups is discussed, and the important
notion of a group action is explored.

Definition 3.1. A group is a set G with a composition operation
(generally but not always written as a product), such that:

(i) Composition is associative: f · (g · h) = (f · g) · h ∀f, g, h.

(ii) There is an element id ∈ G such that: g · id = g = id · g for all g.

(iii) Every element of G has a (two-sided) inverse.

Alternatively.... It is also true (and tempting) to define:

• A monoid is a category with one object, and

• A group is the collection of invertible morphisms of a monoid

Example 3.1. (a) Perm(n) or GL(V ), or any of the automorphism
groups Aut(X) of any object X of any category C.

(b) A field k or vector space V with the addition operation.

(The group operation in this case is addition. It’s the exception proving
the rule that the operation is usually written as a product.)

(c) The units k∗ = k−{0} of a field with the multiplication operation.

(d) The group with two elements: {±1} with (−1) · (−1) = 1.

(e) The group {1} (analogous to the empty set or the zero space).

Definition 3.2. A map of groups φ : G→ G′ is a homomorphism if:

(i) φ(idG) = idG′ and

(ii) φ(g1 · g2) = φ(g1) · φ(g2) for all g1, g2 ∈ G.

Example 3.2. (a) The (natural) logarithm is a group homomorphism

ln : R>0 → R
from the positive reals (with multiplication) to R (with addition). It is
an isomorphism, with inverse the exponential function ex : R → R>0.
On the other hand, the complex exponential ez : C → C∗ is a group
homomorphism that is only “locally” invertible by a logarithm.

(b) The permutation matrices of the previous lecture are the images
of the homomorphism φ : Perm(n)→ GL(n, k) given by φ(τ) = Pτ .

(c) The sign and determinant are group homomorphisms:

sgn : Perm(n)→ {±1}, det : GL(n, k)→ k∗
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Moment of Zen. The category Groups of groups consists of:

(a) The collection of all groups, and (b) All group homomorphisms.

Definition 3.3. A group G is abelian if the operation is commutative.

Example 3.3. Consider the four–element Klein group:

K4 := {id, (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)} ⊂ Perm(4)

This is an abelian group, with, for example:

(1 2)(3 4) ◦ (1 3)(2 4) = (1 4)(2 3) = (1 3)(2 4) ◦ (1 2)(3 4)

and every element squares to the identity.

Definition 3.4. An abelian group G is cyclic if there is an element
g ∈ G whose positive and negative powers fill up G, i.e.

{...., g−2, g−1, id, g, g2, g3, ...} = G

and such an element g is said to generate the cyclic group G.

Example 3.4 (Cyclic Groups).

(a) The integers, Z, with addition, generated by 1 (or −1).

(b) The integers (mod n), Z/nZ, with addition, generated by any
integer (mod n) that is relatively prime to n.

(c) The nonzero elements, k∗, of a finite field k, with multiplication,
which is cyclic, but without an obvious choice of generator!

(d) The group of rotational symmetries of a regular polygon.

Evidently a cyclic group is abelian, but not conversely:

Products. Given groups G1, ..., Gn, the product G1 × ... × Gn is the
set of n-tuples (g1, ..., gn) | gi ∈ Gi with coordinate-wise multiplication:

(g1, ..., gn) · (h1, ..., hn) = (g1 · h1, ..., gn · hn) and id = (id, ...., id)

Definition 3.5. The order of a finite group G is the number |G|.
Chinese Remainder. A product of finite cyclic groups is cyclic if
and only if the orders of the cyclic groups are pairwise relatively prime.
Thus, if n =

∏k
i=1 p

mi
i is the prime factorization of n as a product of

powers of distinct primes, then:

Z/nZ = Z/pm1
1 Z× ...× Z/pmkk

Example 3.5. The Klein group is not cyclic (it is Z/2Z× Z/2Z).

Groups are far more complicated than sets or vector spaces. For an
indication of the complexity of groups, consider the analogue of the
standard sets [n] and the standard vector spaces kn.
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Definition 3.6. The free group F (n) on generators x1, ...., xn is the set
of words made up of letters x1, x

−1
1 , ..., xn, x

−1
n (mod cancellation) with

concatenation as the operation (and the empty word as the identity).

Remark. The group analogue of Perm(n) or GL(n, k), namely the group
Aut(F (n)) of automorphisms of F (n), is extremely complicated.

Definition 3.7. A group G is finitely generated if there is a surjective
homomorphism: φ : F (n) → G (for some value of n). A relation is
an equation of two words that holds in G (after applying φ). A set of
relations is complete if every equality of words in G (after applying φ)
is a consequence of the given set of relations.

Example 3.6. (a) Cyclic groups are generated by one element x, with
no non-trivial relations in the infinite case and one complete relation
(xn = id) in the case of the cyclic group of order n.

(b) The dihedral group D2n is generated by x, y with relations:

(i) xn = id, (ii) y2 = id, (iii) yx = x−1y

There are 2n distinct elements of D2n :

{id, x, x2, . . . , xn−1, y, xy, x2y, . . . , xn−1y}
Moreover, it follows that each xiy squares to zero, since:

(xiy)2 = xi(yxi)y = xi(x−iy)y = id

Notice that if n > 2, then the dihedral group D2n is not abelian.

(c) Perm(n) is generated by t1 = (1 2), t2 = (2 3), ..., tn−1 = (n−1 n).
This takes some thought. For example:

(1 3) = t1t2t1 = t2t1t2, (1 4) = t1t2t3t2t1, . . . ,

and a complete set of relations is given by:

t2i = id, titi+1ti = ti+1titi+1 , titj = tjti if |i− j| > 1

(d) Dropping the relations t2i = id in (c) but keeping the others
defines the braid group on n strands. This is an infinite group which is
finitely generated (with a complete set of finitely many relations).

The most commonly studied groups fall, roughly, into three types:

(i) Finite Groups

(ii) Finitely Generated Infinite Groups (e.g. F (n) and braid groups)

(iii) Continuous Groups (e.g. the real numbers with addition)

We’ll be interested here in groups of type (i) and (iii).

Abelian groups, on the other hand, are less complicated:
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Theorem 3.1. Every finitely generated abelian group G is isomorphic
to a product of cyclic groups:

Zn × Z/d1Z× ...× Z/dmZ
for unique n and d1, ..., dm such that each di divides di+1.

Still, the group GL(n,Z) = Aut(Zn) is plenty complicated.

Definition 3.8. A homomorphism ρ : G→ Aut(X) is called an action
of the group G on an object X (of a category C). Examples include
permutation actions φ : G → Aut(S) on a set and linear actions, or
representations ρ : G→ GL(V ) on a vector space.

Example 3.7. (a) For each 0 ≤ m < n, the map:

χm : Cn → C∗ = Aut(C1); χm(x) = e
2πim
n

defines a one-dimensional complex representation of Cn.

(b) The dihedral group D2n has a two-dimension real representation:

ρ(x) =

 cos(2π
n

) − sin(2π
n

)

sin(2π
n

) cos(2π
n

)

 , ρ(y) =

[
1 0
0 −1

]
(rotation counterclockwise by 2π/n and reflection across the x-axis).

This is well-defined since ρ(x)n = id = ρ(y)2 and:

ρ(y) · ρ(x) =

 cos(2π
n

) − sin(2π
n

)

− sin(2π
n

) − cos(2π
n

)

 = ρ(x)−1ρ(y)

(c) D2n also acts on the set [n] via:

φ(x) = (1 2 ... n), φ(y) = (1 n− 1)(2 n− 2) · · ·
which is well-defined because φ(x)n = id = φ(y)2 and

φ(y)φ(x) = (1 n− 2)(2 n− 3)...(n− 1 n) = φ(x)−1φ(y)

This is the “induced action” from (b) on the vertices of a regular n-gon
centered at the origin, numbered counterclockwise, ending at n = (1, 0).

Definition 3.9. A subset H ⊂ G is a subgroup if id ∈ H and H is
closed under inverses and the group operations.

Definition 3.10. An action φ : G→ Aut(S) on a set S is transitive if,
for each pair s, t ∈ S, there is an element g ∈ G such that φ(g)(s) = t,
or equivalently, if there is no proper (nonempty) subset T ⊂ S that is
left fixed by the action. The stabilizer Hs of an element s ∈ S is the
subgroup of elements h ∈ G with the property that h(s) = s.
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Proposition 3.1. If φ : G → Aut(S) is a transitive action of a finite
group, and if Hs is the stabilizer of any s ∈ S, then |G| = |S| · |Hs|.

Proof. For each t ∈ S, choose gt ∈ G such that gt(s) = t. Then:

G =
⋃
t∈S

gtHs where gtHs = {gt · h | h ∈ Hs}

and this is a disjoint union of |S| sets, each of size |Hs|.
Corollary 3.1 (Lagrange’s Theorem) If H ⊂ G is a subgroup of a
finite group, then |H| divides |G|.

Proof. Let S = {gH | g ∈ G} be the set of left cosets of H ⊂ G.
Then G acts on S by left multiplication: g′(gH) = (g′g)H, the action
is transitive, and the stabilizer of H ∈ S is H, so |G| = |S| · |H|. �

In Proposition 2.3, the cosets of a subspace formed a vector space.
Here, they are just a set (and not usually a group). But see below!

Example 3.8. There are two obvious subgroups of D2n, namely:

Cn = {1, x, x2, ..., xn−1} and C2 = {1, y}
The cosets of Cn are: {1, x, x2, . . . , xn−1} and {y, yx, . . . , yxn−1}.
The cosets of C2 are {1, y}, {x, xy}, ..., {xn−1, xn−1y}.
Definition 3.11. The conjugation action of G on itself is the map:

c : G→ Aut(G), c(h)(g) = hgh−1

This is an action in the category of groups since:

c(h)(gg′) = h(gg′)h−1 = hgh−1 · hg′h−1 = c(h)(g) · c(h)(g′)

i.e. each c(h) is automorphism of G as a group. The image of the
conjugation action is called the group of inner automorphisms of G.

Example 3.9. (a) The conjugation action of an abelian group G on
itself is trivial (i.e. the image of c : G→ Aut(G) is {id}), since:

c(h)(g) = hgh−1 = (hh−1)g = g

More generally, if g ∈ G commutes with all other elements of G, then g
is said to be in the center of G, and is fixed by the conjugation action.

(b) The conjugation action of the permutation group. If h ∈ Perm(n)
(thought of as a bijection h : [n]→ [n]) and g ∈ Perm(n) is written in
cycle notation, then the cycle notation for hgh−1 has the same “shape”
as the cycle notation for g, but with each i replaced with h(i).

For example, if h = (1 2 3) ∈ Perm(3), then

h(1 2)h−1 = (h(1) h(2)) = (2 3) and h(1 3)h−1 = (2 1) = (1 2)
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As a consequence, it follows that the classes of elements of Perm(n)
are preserved by the conjugation action, and the conjugation action is
transitive on each conjugacy class of elements.

For example, consider the conjugacy classes of elements in Perm(4):

id, (∗ ∗), (∗ ∗ ∗), (∗ ∗ ∗ ∗), (∗ ∗)(∗ ∗)
We’ve seen that these classes have 1, 6, 8, 6, 3 elements, respectively.

We can write down the stabilizers of elements in each class:

Stab(id) = Perm(4)

Stab(1 2) = {id, (1 2), (1 2)(3 4), (3 4)}
Stab(1 2 3) = {id, (1 2 3), (1 3 2)}
Stab(1 2 3 4) = {id, (1 2 3 4), (1 3)(2 4), (1 4 3 2)}
Stab((1 2)(3 4)) = Exercise... note that it has 24/3 = 8 elements

Let Sub(G) be the set of subgroups H ⊂ G. Because it acts by group
automorphisms, the conjugation action induces an action on the set of
subgroups:

φ : G→ Aut(Sub(G)); φ(g) = gHg−1

i.e. conjugating a subgroup produces another subgroup!

Definition 3.12. (a) Two subgroups H,H ′ ∈ Sub(G) are conjugate if:

gHg−1 = H ′ for some g ∈ G
i.e. if φ(g)(H) = H ′. The set of subgroups that are conjugate to H
is called the conjugacy class of H. By definition, then, a group G acts
transitively on each conjugacy class of subgroups of G, just as it does
on each conjugacy class of elements of G.

(b) A subgroup H ⊂ G is normal if it is fixed by conjugation, i.e. if
the conjugacy class of H consists of H iself.

Example 3.10. The normal subgroups of Perm(4) are {id}, K4 and:

A4 := {id, (∗ ∗)(∗ ∗), (∗ ∗ ∗)} (12 elements)

i.e. all elements σ ∈ Perm(4) such that sgn(σ) = 1.

As with vector spaces, we have the following:

Definition 3.13. Let φ : G→ G′ be a group homomorphism.

(i) The kernel of φ is the subgroup φ−1(idG′) ⊂ G.

(ii) The image of φ is the subgroup im(φ) ⊂ G′.

The following is easily checked (see Proposition 2.2).

Proposition 3.2. φ is injective if and only if ker(φ) = {idG}.
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However, there is a new wrinkle:

Proposition 3.3. The kernel of a homomorphism φ : G → G′ is a
normal subgroup of G and conversely, if H ⊂ G is a normal subgroup,
there is a surjective homomorphism q : G→ G′ with H = ker(φ).

Proof. Suppose h ∈ ker(φ) and h′ = ghg−1 for some g. Then:

φ(h′) = φ(ghg−1) = φ(g)φ(h)φ(g−1) = φ(g) · idG′ · φ(g)−1 = idG′

so h′ ∈ ker(φ). This implies that H is normal.

Conversely, suppose H ⊂ G is normal, and consider again:

G/H = {gH | g ∈ G}, the set of cosets

I claim that H being a normal subgroup is exactly the condition that
is needed in order for multiplication of cosets to make G/H a group:

(gH) · (g′H) = g(g′Hg′
−1

)g′H = (gg′)H

Then the proof proceeds as in Proposition 2.3, with: q : G → G/H
given by q(g) = gH the surjective homomorphism with kernel H. �

Example 3.11. The Klein subgroup K4 ⊂ Perm(4) is normal, so it is
the kernel of a group homomorphism. Looking around, we find it:

φ : Perm(4)→ Aut({(1 2)(3 4), (1 3)(2 4), (1 4)(2 3)})
namely, the conjugation action on the conjugacy class (∗ ∗)(∗ ∗). This
is a surjective homomorphism to a group of order 6, with K4 in the
kernel (since K4 is commutative), hence K4 is the kernel (4× 6 = 24).

Definition 3.14. (a) The alternating group Alt(n) ⊂ Perm(n) is the
kernel of the sign homomorphism (permutations of sign 1).

(b) The special linear group SL(n, k) ⊂ GL(n, k) is the kernel of the
determinant, i.e. the matrices A with det(A) = 1.

Example 3.12. Consider Alt(5) with 60 = 5!/2 elements in classes:

id, (∗ ∗ ∗), (∗ ∗)(∗ ∗), (∗ ∗ ∗ ∗ ∗)
of Perm(5) with 1, 20, 15, 24 elements, respectively. This group has
many subgroups but it is simple, meaning that it has no (non-trivial)
normal subgroups. Indeed, the groups Alt(n) for n ≥ 5 are all simple.
This is not obvious, but you could prove it with the tools you have.

Notice that the Perm(5) conjugacy class (∗ ∗ ∗ ∗ ∗) cannot be a
conjugacy class for Alt(5) acting on itself, since 24 does not divide 60.
In fact, it splits in two.
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Exercises.

1. Show that an action of a group G on a set S is the same as a map
from the Cartesian product:

a : G× S → S; written a(g, s) = gs

with the property that g1(g2s) = (g1g2)s for all g1, g2 ∈ G. If S = V is
a vector space over k, then the action is a representation if in addition,
multiplication by g is linear, i.e. g(~v+ ~w) = g~v+g ~w and g(c~v) = cg(~v).

2. If G acts transitively on S and Hs and Hs′ are stabilizers of s, s′ ∈ S,
prove that Hs and Hs′ are conjugate subgroups of G. Conversely, if
H = gHsg

−1 is conjugate to Hs, for some g ∈ G, prove that H = Hs′

for some s′ ∈ S. Thus, S indexes the elements in the conjugacy class
of the stabilizer of (any) element s ∈ S.

3. Prove that the left multiplication action of G on itself is transitive,
but is only an automorphism of G as a set, and not an action in the
category of groups (in contrast to the conjugation action).

4. Prove that the group of units (denoted k∗) of a finite field is cyclic.

Hint: If n = |k∗|, then every element of k∗ is a root of xn − 1.
If g ∈ k∗ is not a generator, then g is a root of xd − 1 for some d

that properly divides n (by Lagrange’s Theorem). The problem now
follows from counting and the fact that a polynomial of degree d with
coefficients in a field has no more than d roots in that field.

5. Prove the Chinese Remainder result.

6. For the dihedral groups D2n:

(a) Find all the conjugacy classes of elements g ∈ D2n.

(b) Find all the normal subgroups H ⊂ D2n.

7. Find all conjugacy classes of elements of (a) Alt(4) (b) Alt(5).

8. Find the stabilizer of (1 2)(3 4) ∈ {(1 2)(3 4), (1 3)(2 4), (1 4)(2 3)}
for the conjugation action of Perm(4). (It is a group with 8 elements).

9. Find Aut(G) (in the category of groups) for the groups Cn and D2n.

10. Identify the groups of “rotational” symmetries of:

(a) A regular tetrahedron.

(b) A cube.

(c) A regular dodecahedron.

Hint: Two are alternating groups and one is a permutation group.

Zen master problems.
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11. Show that a product of two groups as defined just above Definition
3.5 is a product in the category of groups.

A functor F : C → D is faithful if F is injective on objects and each

(∗) F : Hom(X, Y )→ Hom(F (X), F (Y ))

is also injective. In other words, each object and arrow from C has a
unique image in D. It is fully faithful if each of the maps (∗) is also
surjective (but F is still only required to be injective on objects).

12. Show that the forgetful functors from vector spaces over k to sets,
as well as the forgetful functor from groups to sets, are all faithful but
not fully faithful. Notice that all groups and vector spaces are pointed,
i.e. they have a distinguished elements, so forgetful functors to the
category of sets pass through a category whose objects consist of sets
with a distinguished point (what are the morphisms?). However, even
the functor from the category of sets with a distinguished point to sets
(forgetting the point) is not fully faithful.

13. Let Ab be the category of abelian groups. Show that the forgetful
functors from vector spaces over any k to Ab are all faithful, but not
fully faithful, but in contrast, show that the functor from abelian groups
to groups is fully faithful.


