
Lecture 7. Functions and Stuff
PCMI Summer 2015 Undergraduate Lectures on Flag Varieties

Lecture 7. Functions and differentiable and analytic manifolds. The
implicit function theorem, cotangent spaces and Lie algebras.

Consider first the hierarchy for functions f : R→ R on the real line.

Continuous functions (at x0) are those with the property that:

∀ε > 0 ∃δ > 0 such that if |x− x0| < δ then |f(x)− y0| < ε

i.e. (x0 − δ, x0 + δ) ⊂ f−1(y0 − ε, y0 + ε) where y0 = f(x0).

Or, more succinctly,

lim
x→x0

f(x) = y0 and y0 = f(x0)

Of course, this matches the topological definition from Lecture 6.

Differentiable functions (at x0) are continuous functions that are well-
approximated by linear functions, in the sense that:

lim
h→0

|f(x0 + h)− (y1h+ y0)|
|h|

= 0

for (uniquely determined) real numbers y0 = f(x0) and y1 := f ′(x0).
The function f is continuously differentiable on an interval (a, b) if the
derivative f ′(x) is continuous on (a, b). We will ignore the infinite
hierarchy of functions that have n but not n+1 continuous derivatives,
and pass directly to infinitely differentiable functions, whose derivatives
determine a Taylor series approximation to f near x0:

f(x) ≈ y0 + y1(x− x0) +
y2
2!

(x− x0)2 + · · ·

where yn = f (n)(x0) is the nth derivative evaluated at x0.

Analytic functions on (a, b) are infinitely differentiable and agree
with their Taylor series, in the sense that their Taylor series converge
to f(x0) at each point x0 ∈ (a, b).

Rational functions are ratios of polynomials. Not only are they
analytic (on their domain), but the Taylor series can be obtained by
algebraically inverting the denominator polynomial as a power series.

Functions of each type may be added, subtracted, multiplied and
divided (where nonzero), remaining in the same class, and compositions
of functions of a given type remain of the same type.

The classes are distinct. There is a huge gap between each class of
functions. Some standard functions that distinguish the classes include:
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(a) f(x) = |x| (continuous, not differentiable at 0)

(b) f(x) = e−1/x
2
, f(0) = 0 (the Taylor series at 0 is identically 0).

(c) ex, ln(x), sin(x), cos(x) are analytic but not rational.

When the same hierarchy is imposed on functions f : C → C of
one complex variable, however, the distinction between differentiable
and analytic vanishes in a striking way. Continuity is defined as for
functions of two real variables (see below), but differentiability in a
complex variable has extraordinary consequences.

Definition 7.1. f(z) = u(z) + iv(z) : C→ C is holomorphic at z0 if:

lim
z→z0

|f(z)− (w1z + w0)|
|z − z0|

= 0

for complex numbers w0 = f(z0) and w1 := f ′(z0).

Such functions satisfy the Cauchy-Riemann equations:

∂u

∂x
=
∂v

∂y
and

∂u

∂y
= −∂v

∂x

which imply that u and v are harmonic functions in x and y, satisfying:

∂2u

∂x2
+
∂2u

∂y2
= 0 =

∂2v

∂x2
+
∂2v

∂y2

but also that |f | =
√
u2 + v2 is a harmonic function of x and y. This

has the following important consequence:

Maximum Principle. If f(z) is a holomorphic function, then |f(z)|
does not have a local maximum at a point of a ball in its domain unless
f(z) is constant on the ball.

The Cauchy integral formula yields another important consequence:

(Cauchy) Theorem. If f has one complex derivative near z0, then f
is infinitely differentiable and (complex) analytic near z0.

So there is no “gap” between holomorphic (complex differentiable)
functions and analytic functions of a complex variable. It is surprising
that having one complex derivative is so much more consequential than
having a real derivative!

This discussion is easily promoted to functions of several variables.

Continuity. f : Rn → R is continuous at ~x0 if:

lim
~x→~x0

|f(~x)− y0| = 0 for y0 = f(~x0)

(agreeing with the definition via the Euclidean topology)
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Differentiability. A differentiable function is well-approximated by a
linear function:

lim
~x→~x0

|f(~x)− (~y1 · ~x+ y0)|
|~x− ~x0|

= 0

for y0 = f(~x0) and

~y1 :=

(
∂f

∂x1
(~x0), . . . ,

∂f

∂xn
(~x0)

)
the gradient

where the partial derivatives of f are the derivatives in each xi direction,
holding the others variables constant.

Remark. The existence (and continuity) of partial derivatives are not
in general enough to imply differentiability.

An infinitely differentiable function f has a Taylor expansion:

f(x1, ..., xn) ≈
∑

D=(d1,...,dn)

1

d1! · · · dn!

∂Df

(∂x)D
(~x0)(x− x0)D

near ~x0 and f is analytic if it agrees with its Taylor approximation.

Rational. A rational function is a ratio of polynomials.

Once again, there is a pleasant surprise when we replace R with C
(and say “holomorphic” instead of “differentiable”).

Hartog’s Theorem. A function f : Cn → C is holomorphic if and
only if f is holomorphic in each variable separately.

Finally, the type of a map f : Rn → Rm is determined by the
coordinate functions fi = yi◦f for yi : Rm → R, and a composition and
inverse of (invertible) maps preserves the type. This is a consequence
of the chain rule for differentiable maps, and algebraic manipulations
for analytic and rational maps.

Next, we turn to manifolds. A manifold M is differentiable if there
is a consistent notion of (infinitely) differentiable functions among the
continuous functions f : U → R on open subsets of M . This is captured
in the structure of a sheaf of infinitely differentiable functions onM , but
before we jump through that hoop, consider the important example:

Gluing. Suppose U1, ..., Um ⊂ Rn are open subsets, equipped with
gluing data Uij ⊂ Ui and fij : Uij → Uji that satisfies the gluing
criteria. If the fij : Uij → Uji ⊂ Rn are each infinitely differentiable
maps, thought of as maps from Rn to Rn, then the glued manifold M
is a differentiable manifold. If U1, ..., Um ⊂ Cn and the gluing is by
holomorphic maps, then the manifold is holomorphic. In other words,
if the glue has a property, the manifold has that property.
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Example 7.1. (a) Consider again the sphere from Lecture 6, obtained
by gluing Rn − 0 to Rn − 0, with (self-inverse) gluing map:

f12(x0, ..., xn) =

(
x0

x20 + · · ·+ x2n
, . . . ,

xn
x20 + · · ·+ x2n

)
These gluing functions are differentiable, analytic and even rational.

If y ∈ U2, then g(y0, ..., yn) is infinitely differentiable from the U2 point
of view if it is infinitely differentiable in y variables. From the U1 point
of view, g becomes g(x0/|x|2, ....., xn/|x|2) = g ◦f12 as a function of the
x-variables, and we then ask whether this is infinitely differentiable in
the x-variables. Evidently, differentiability of the glue is necessary for
the points of view to coincide in general.

Notice, however, that if we replace Rn with Cn, then the glue:

f12(z0, ...., zn) =
( z0
zz
, . . . ,

zn
zz

)
is not holomorphic, and indeed when n > 1, there is no way to create
a compact holomorphic manifold by adding a point to Cn.

(b) Consider projective space Pn from Lecture 6. This was covered
by open sets Ui with gluing data:

fij(x0|i, ....., xn|i) = (x0|i/xj|i, ...., xn|i/xn|j)

These are rational functions, and they remain rational when R is
replaced by C. Thus, not only is PnR a differentiable manifold, but PnC
is a compact holomorphic manifold, and even an algebraic manifold.
Moreover, this holds for the Grassmannian as well.

Remark. There are many, many differentiable functions on the sphere.
Since the gluing for the sphere compactification of Cn is not holomor-
phic, it doesn’t even make sense to ask for holomorphic functions on
this sphere. It does make sense, however, to ask for holomorphic func-
tions on PnC or G(m,n) over C. The answer is somewhat sobering.

Proposition 7.1. The only holomorphic functions f : M → C on a
compact, holomorphic connected manifold are the constants.

Proof. The image f(M) ⊂ C of a holomorphic function is compact.
By the Heine-Borel theorem, f(M) is therefore closed and bounded,
so in particular, |f(z)| attains a maximum value for z ∈ M . Suppose
f(z0) = c ∈ C has this maximum length. Then the set f−1(c) ⊆ M is
closed by continuity, and open by the maximum principle! �

Remark. The original maximum principle was for functions of one
complex variable. This is for several. It follows. Try to figure out why.
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Implicit Function Theorem. Let f1, ..., fm be analytic functions in
n variables (real or complex) for some m ≤ n. This gives a system:

f1(x1, ..., xn) = · · · = fm(x1, ..., xn) = 0

of equations and a set M = V (f1, ..., fn) ⊂ Rn (or Cn) of solutions of
the system of equations. Suppose that for each p ∈ M , the Jacobian
matrix of partial derivatives:

Jac(p) =

(
∂fi
∂xj

)
(p)

has an invertible m×m minor. Then M is an analytic manifold.

Precisely, suppose p = (p1, ...., pn) ∈M and J ⊂ [n] indexes a minor
of the Jacobian that is invertible at the point p. Then in a small enough
neighborhood Br(p) ∩M , the set M coincides with the graph of an
analytic mapping:

Φ : Rn−m → Rm in the complementary coordinates

i.e. the coordinates xj1 , ..., xjm on M are analytic functions of the
complementary set of (free) coordinates in a neighborhood of x ∈M .

Example 7.2. Consider the circle S1 = {x2 + y2 − 1 = 0} ⊂ R2.

The gradient of the function f(x, y) = x2 + y2 − 1 is ∇f = (2x, 2y)
which vanishes at no point of S1. Near the point (0, 1), the second
partial doesn’t vanish, and the circle is locally the graph of the function:

Φ1 : R→ R; Φ1(x) =
√

1− x2

in the complementary variable. Near the point (0,−1), again the sec-
ond partial doesn’t vanish, and the circle is locally the graph of the
function:

Φ2 : R→ R; Φ2(x) = −
√

1− x2

Near the point (1, 0), the first partial doesn’t vanish, and the circle
locally the graph of the function:

Φ3 : R→ R; Φ3(y) =
√

1− y2

and finally, near the point (−1, 0), the first partial fails to vanish, and
the circle is locally the graph of the functions:

Φ4 : R→ R; Φ4(y) = −
√

1− y2

All together, the domains of these four functions cover the circle
with local graphs of analytic functions. The circle can now be glued
from these four domains, with analytic glue. Notice that although the
equation was polynomial, the manifold is “only” analytic.
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Corollary 7.1. Suppose f1, ..., fm are analytic functions in n variables,
andM ⊂ V (f1, ..., fm) consists of of all the points at which the Jacobian
matrix has rank m. Then U is an analytic manifold of dimension n−m.
If the variables were complex, then M has complex dimension n−m,
i.e. real dimension 2(n−m).

Proof. By the implicit function theorem, M can assembled by gluing
balls in Rn−m (or Cn−m) with analytic glue.

Let’s go back to our Lie groups and apply this neat trick:

SL(n,C) = V (det(xij)− 1) ⊂ Cn2

What’s the gradient of the determinant? By expanding the determi-
nant along a row or column, each partial derivative of the determinant
is “clearly” the complementary minor:

∂ det

∂xij
= (−1)i+j det(Mij)

But if all of these vanish, then the determinant is zero, so they don’t
all vanish at any point of the special linear group!

Conclusion. SL(n,C) is an analytic manifold of dimension 2(n2− 1).
(Dimension n2 − 1 as a complex manifold).

Next up, the orthogonal group:

O(n,C) = V (ATA− id) ⊂ Cn2

This is a system of
(
n+1
2

)
quadratic polynomial equations, registering

the fact that each column dots with itself to one (n equations) and that
different columns dot with each other to zero (

(
n
2

)
equations). What’s

the Jacobian matrix of all of these
(
n+1
2

)
quadratic polynomials? Why

does it have rank equal to the number of equations at A ∈ O(n,C)?
There has to be a better way than just cranking out the derivatives.

There is a better way. Let’s reconsider what partial derivatives are
supposed to accomplish. In fact, let’s consider a system of equations:

f1(x1, ..., xn) = ... = fm(x1, ..., xn) = 0

as one single (vector valued) equation ~f(~x) = ~0. The differentiability
of all the functions goes into one single “master” equation as:

~f(p+ ε~x) = ~f(p) + εJac(p)~x+O(ε2)

The Jacobian Jac(p) then has rank m if the map:

Jac(p) : Cn → Cm is surjective

or, equivalently, if the kernel has dimension n−m.
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Applying this to the equations of O(n,C) at A ∈ O(n,C) gives:

(A+ εB)T (A+ εB)− id = ε(ATB +BTA) +O(ε2)

from which we conclude that the Jacobian Jac(A) is the operator:

Jac(A)(B) = ATB +BTA

When A = id, this operator is:

Jac(id)(B) = B +BT

which has as its image equal to the space of symmetric matrices, and
the symmetric matrices are a vector space of dimension equal to

(
n+1
2

)
,

which was the number of equations! So O(n,C) is an analytic manifold
in some neighborhood of id. In fact, it is an analytic manifold every-
where. Instead of proving this by analyzing Jac(A), you should think
about how to prove it using the fact that O(n,C) is a group.

This is cool! Let’s apply it back to the special linear group:

det(id + εB)− 1 = εTr(B) +O(ε2)

so Jac(id)(B) = Tr(B) is the trace operator in this case. The image
of the trace is one dimensional, so this is another proof that SL(n,C)
is an analytic manifold, at least in a neighborhood of the identity.

You’ve been promised a definition for a differentiable manifold, but
you’ve only gotten examples. It’s time to follow through. We will think
categorically, and start with:

Definition 7.2. The category of open subsets of a manifold M has:

• Open subsets U ⊂M as the objects.

• Inclusions U ⊂ V (of open sets) as the morphisms.

Remark. Compare this to the category of subsets of a (finite) set.

To each open set U ⊂M , we associate the ring:

CM(U) = {continuous functions f : U → R}
Definition 7.3. A commutative ring with 1 (or simply ring) satisfies
all the properties of a field except for multiplicative inverses. A ring
homomorphism is a map φ : R → S of rings such that φ(1) = 1,
φ(r1 + r2) = φ(r1) + φ(r2) and φ(r1r2) = φ(r1)φ(r2) for all r1, r2 ∈ R.

Moment of Zen. The category CRings consists of:

(a) Commutative rings with 1, (b) Ring homomorphisms

We will say a lot more about commutative rings in Lecture 9.

These rings of continuous functions satisfy the following:



8

(1) They restrict. Given a morphism U ⊂ V in the category of open
sets, “restriction of functions from V to U” is a ring homomorphism:

ρV,U : CM(V )→ CM(U)

i.e. a morphism in the category of rings.

(2) Locally zero means globally zero. If f ∈ CM(U) and U = ∪Uλ is
an open cover of U with the property that:

ρU,Uλ(f) = 0 ∈ CM(Uλ) for all λ

then f = 0 is the zero function (on U).

(3) They patch. If U = ∪Uλ, and fλ ∈ C(Uλ) satisfy:

ρUλ,Uλ∩Uµ(fλ) = ρUµ,Uλ∩Uµ(fµ)

for all pairs λ, µ, then the fλ patch to a global function:

f ∈ CM(U) such that ρU,Uλ(f) = fλ for all λ

Remark. Condition (1) precisely says that:

CM : category of open sets in M → CRings
is a functor from the category of open sets in M to the category of
commutative rings! Conditions (2) and (3) are the (famous) additional
conditions that an abstract functor (pre-sheaf) from open sets to rings
(or abelian groups) needs to satisfy in order to be a sheaf.

Roughly, a differentiable manifold is a manifold for which the sheaf of
continuous functions has a sensible subsheaf of differentiable functions.
As a warmup, consider:

Example 7.3. The sheaf ZM of locally constant integer-valued func-
tions on a manifold M is the sub sheaf of C defined by:

ZM(U) = {continuous functions f : U → Z}
with the same restriction and gluing properties as CM . Notice that this
is a very discrete object! If U is connected, then ZM(U) = Z, because
the only continuous functions from a connected set to the integers are
the constant functions! We can similarly define sheaves RM and CM

to be the subsheaves of functions that are locally constant as maps
f : U → R (or C) (i.e. continuous for the discrete topologies!).

Remark. These simple-minded locally constant sheaves are actually
very interesting! Within them is encoded all the information of the
singular cohomology ring of the manifold M , betti numbers, etc.

Here is a very important observation.
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Suppose φ : M → N is a continuous map of manifolds. Then there
is a “pull-back” map on continuous functions:

φ∗ : CN(U)→ CM(f−1(U)); φ∗(f) = φ ◦ f
that commutes with the restrictions. Notice also that the pull-back
respects the subsheaves of locally constant functions in the sense that:

φ∗ : Z(U)→ Z(f−1(U))

In the special case of the manifold Rn itself, or any open subset
M ⊂ Rn, there is another subsheaf, namely the sheaf of infinitely
differentiable functions C∞M , defined by:

C∞M (U) = {infinitely differentiable functions f : U → R}
that sits between the locally constant and the continuous functions.

Definition 7.4. A manifold M together with a subsheaf C∞M ⊂ CM of
the sheaf of continuous functions is differentiable if there is a “chart”
consisting of an open cover M = ∪Uλ together with homeomorphisms:

fλ : Bλ → Uλ; with balls Bλ ⊂ Rn

such that f ∗(C∞M (V )) = C∞Bλ(f−1(V )) for all open subsets V ⊂ Uλ.

In other words, there should exist a cover of M by open balls and
a notion of differentiability of functions (captured in the sheaf) such
that a function is (globally) differentiable if and only if it is (locally)
differentiable on each of the open balls.

Moment of Zen. the category Diff consists of:

(a) Differentiable manfolds, (b) Differentiable maps.

Sheaves allow us to effortless define the morphisms:

Definition 7.5. A continuous map φ : M → N of differentiable
manifolds (M, C∞M ) and (N, C∞N ) is differentiable if:

φ∗(C∞N (U)) ⊂ C∞M (φ−1(U)) for all U ⊂ N

i.e. if the pull-back respects differentiable functions!

Vocabulary. An isomorphism in Diff is called a diffeomorphism.

Definition 7.6. A Lie Group G is a group within the category of
differentiable manifolds, i.e. G is a differentiable manifold, and:

m : G×G→ G and i : G→ G

are differentiable maps.

Note. Analytic and holomorphic manifolds are defined the same way!
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Still (you might wonder), what does all this buy us?

Differentiable Manifolds have Tangent Bundles! More precisely,
there is an intrinsic notion of a tangent space TpM to a differentiable
manfold M at a point p ∈M with the following properties:

(a) The tangent space to Rn at any point is Rn (no variation).

(a) In general, tangent spaces “vary differentiably” as p varies in M .

(b) Tangent spaces push forward. A differentiable map φ : M → N
induces linear maps φ∗ : TpM → Tφ(p)N for each point p ∈M .

(c) If M ⊂ Rn is the locus of zeroes of a system of m equations with
Jacobian matrix of rank m at p, then the extrinsic tangent space,
defined as the kernel of the Jacobian matrix Jac(p) ⊂ Rn = TpRn, is
the image of the intrinsic tangent space i∗TpM ⊂ Rn under the push
forward by the inclusion map i : M ⊂ Rn.

(d) If G is a Lie group, then the action of G on itself by conjugation
c : G → Aut(G) produces diffeomorphisms c(g) : G → G, each of
which fixes the identity, and therefore induces an “adjoint” action of
the tangent space at the identity on itself via c(g)∗ : TidG→ TidG
This gives the tangent space to a Lie group at the identity the structure
of a Lie algebra.

Let’s recap where we are with our Lie groups:

GL(n,C) (or R). Not compact, defined as the complement of a zero
set of the determinant. Tangent space at id is all n× n matrices.

SL(n,C) (or R). Not compact, defined as the zero set of det(A)− 1.
Tangent space at id is all trace zero matrices.

O(n,C). Not compact, defined as the zero set of ATA− id. Tangent
space at id is all skew symmetric matrices (in particular, traceless!).

O(n,R). Compact, zero set of ATA − id. Tangent space at id is all
real skew-symmetric matrices.

U(n). Compact, zero set of ATA − id. Tangent space at id is all
skew-Hermitian matrices (BT = −B). This forces the diagonal to be
purely imaginary. The additional condition for SU(n) is the traceless
condition.
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Exercises.

1. State the maximum principle for holomorphic functions of several
variables and deduce it from the one-variable maximum principle.

2. A mini-étude on the exponential map:

(a) Compute the tangent space of U(n) and deduce what skew-
Hermitian means.

(b) Compute the tangent space of U(1) and notice that by exponen-
tiating a tangent vector, we can get TidU(1) to map onto U(1).

(c) Do the same for SO(2,R). Here the tangent vector is a two-by-
two matrix, and we are exponentiating it as a matrix.

(d) Do the same for SU(2). This should blow your mind.

(e) Is the exponential of an arbitrary matrix well defined? If so,
can you show that the exponential of a matrix taken from the tangent
space to any of our Lie groups lands in the Lie group?

3. The Lie bracket, denoted [∗, ∗], is a bilinear operation:

[∗, ∗] : V × V → V

on a vector space V that anti-symmetric:

[X, Y ] = −[Y,X]

and satisfies the Jacobi identity:

[[X, Y ], Z] + [[Y, Z], X] + [[Z,X], Y ] = ~0

(a) Show that the operation:

[X, Y ] = XY − Y X

is a Lie bracket on matrices. Give an example to show that this is not,
in general, associative!

(b) Show that each of our tangent spaces to Lie groups is closed
under the Lie bracket on n× n matrices.

4. Let’s go after the meaning of a tangent vector. We can put an
equivalence relation on differentiable functions f : Rn → R defined in
a neighborhood of the origin (or “germs of functions at the origin”) by:

f ∼ g ↔ ∇f(~0) = ∇g(~0)

i.e. if their gradients at the origin are the same. The gradient is not
well-defined if ~0 ∈ Rn is replaced by p ∈ M , a point of a differentiable
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manifold, but the equivalence classes remain the same, and we get
a well-defined map:

d : C∞M (U)→ T ∗pM ; df = [f − f(p)]

from differentiable functions to the equivalence class of differentiable
functions under this equivalence relation. These equivalence classes
add! In fact, they are “just” the dual space to Rn, generated by dxi,
whenever x1, ..., xn is a “system of coordinates” near p, i.e. a collection
of differentiable functions on a neighborhood of p that maps the neigh-
borhood diffeormorphically to a ball in Rn. A cotangent vector is just
one of these equivalence classes. A tangent vector is an element of the
dual vector space.

If φ : (−ε, ε) → M is a “short differentiable curve,” with φ(0) = 0,
then the curve determines a tangent vector φ′(0) (i.e. a dual vector to
the cotangent space) at p, via:

φ′(0)(df) =
d(f ◦ φ)

dt
|t=0

In other words, in the dual coordinates ∂
∂xi

to the dxi, we have:

φ′(t) =
n∑
i=1

dφi(t)

dt

∂

∂xi

which is the usual form for the vector field associated to φ.

Apply this to the exponential map:

φA(t) = eAt

to explicitly see the extrinsic tangent vector to the Lie groups as tan-
gent vectors. In general, try to understand why tangent spaces push
forward, using this description of the tangent space.


