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Lecture 9. When we think of the Lie groups GL(n,C), SL(n,C),
SO(n,C), Sp(2n,C) over the complex numbers as algebraic groups, we
may forget the groups entirely and replace them with their C-algebras
of regular functions. Within these regular functions the irreducible
representations of the Lie groups will eventually be found.

Motivating Example. Because the circle U(1) is abelian, all of its
irreducible representations are one-dimensional characters, and it is
easy to see that the continuous characters of U(1) are the powers:

χn(eiθ) · v = einθ · v
On the other hand, consider GL(1,C) = C∗. The regular (algebraic)

functions on C∗ are Laurent polynomials in the variable z, which are
organized by degree:

C[z, z−1] =
∞⊕

n=−∞

C · zn

But when we act on these by C∗ (with the variable w) by pulling
back under the left multiplication, we get:

w · zn = (w−1z)n = w−nzn

which is just the one-dimensional representation χ−n extended to C∗.
In other words, the algebraic functions on C∗ break up precisely into

a complete set of characters of C∗, which agree with the continuous
characters of the circle U(1). Our goal is to see how this idea extends
to the non-abelian Lie groups, using some algebraic geometry.

Definition 9.1. (a) A C-algebra A is a commutative ring with 1 ∈ A
together with an inclusion of C ⊂ A as a field of “scalars.”

(b) A ring homomorphism f : A → B of C-algebras that is also
the identity map on scalars is a C-algebra homomorphism. When the
context is clear, we will just say that f is a homomorphism.

Example 9.1 The polynomial rings A = C[x1, ..., xn] are C-algebras.

Definition 9.2: A (proper) ideal is a subset 0 ∈ I ⊂ A that is:

(a) Closed under (internal) addition: b1, b2 ∈ I ⇒ b1 + b2 ∈ I.

(b) Closed under (external) multiplication: a ∈ A, b ∈ I ⇒ ab ∈ I.

(c) Satisfies I ∩ C = 0 (otherwise I = A is improper).

Remark. An ideal in A is not a subring of I, because 1 6∈ I.
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Proposition 9.1. The kernel of a homomorphism f : A→ B:

ker(f) = {a ∈ A | f(a) = 0}
is an ideal and conversely, if I ⊂ A is a (proper) ideal, then A/I is a
C-algebra and q : A→ A/I is a C-homomorphism with kernel I.

Proof. Checking that the kernel is an ideal is straightforward. In
the other direction, the interesting operation is coset multiplication:

(a1 + I)(a2 + I) = (a1a2 + a1I + a2I + I2) = a1a2 + I

because of the closedness properties of an ideal. �

There is a bijection of ideals under q : A→ A/I

q−1 : {ideals in A/I} → {ideals in A that contain I}
An ideal m ⊂ A is maximal if it is contained in no (proper) ideal.

Exercise 9.1. A C-algebra with no proper ideal other than 0 is a field.
The quotient of a C-algebra by a maximal ideal is a field.

There are dueling notions of finite-generatedness for algebras and ideals:

Definition 9.3. (a) A C-algebra A is finitely generated over C if there
is a surjective C-algebra homomorphism from a polynomial ring:

φ : C[x1, ..., xn]→ A

in which case the images yi = φ(xi) are generators of A (over C).

(b) An ideal I ⊂ A is (finitely) generated by b1, ..., bn ∈ I if:

I = 〈b1, ..., bn〉 = {b1a1 + · · ·+ bnan |a1, ..., an ∈ A}

Let’s quickly relate this to algebraic groups:

Definition 9.4. The algebraic functions on the algebraic groups are:

(a) C[SL(n,C)] = C[xij]/〈det(X)− 1〉.
(b) C[GL(n,C)] = C[xij, y]/〈y det(X)− 1〉
(c) C[O(n,C)] = C[xij]/〈XXT − id〉
(d) C[SO(n,C)] = C[xij]/〈XXT − id, det(X)− 1〉.

where X = (xij) and XXT − id is a system of n2 polynomials.

Example 9.2. The algebraic functions on SO(2,C) are:

C[x, y, z, w]/〈x2 + y2 − 1, xz − yw, z2 + w2 − 1, xw − yz − 1〉
Two theorems of Hilbert are crucial:

Basis Theorem: Every ideal in C[x1, ..., xn] is finitely generated.
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Nullstellensatz. The maximal ideals in C[x1, ..., xn] are exactly:

mp = ker(ep) = 〈x1 − p1, ..., xn − pn〉 for p = (p1, ..., pn) ∈ Cn

where ep : C[x1, ..., xn]→ C is “evaluation at the point p.”

Definition 9.5. Let A be a finitely generated C-algebra. Then:

mspecA = {maximal ideals m ⊂ A}
is the maximum spectrum of A. This is intrinsic to A, but if generators:

φ : C[x1, ..., xn]→ A

for the C-algebra are chosen, as well as generators:

〈f1, ..., fm〉 = ker(φ)

for the kernel ideal, then we obtain a bijection:

mspec(A)↔ {maximal ideals mp ∈ C[x1, ..., xm] containing 〈f1, ..., fm〉}
and the latter is in a natural bijection with the set of points:

V (f1, ..., fm) = {p ∈ Cn |f1(p) = f2(p) = · · · = fm(p) = 0} ⊂ Cn

i.e. with the set of solutions to the system of polynomial equations.

Looking back at the algebraic groups, we get natural bijections:

(a) mspec(C[SL(n,C)])↔ SL(n,C)

(c) mspec(C[O(n,C)])↔ O(n,C)

(d) mspec(C[SO(n,C)])↔ SO(n,C)

and finally, (b),

mspec(C[GL(n,C)])↔ {(A, y) | det(A)y = 1} ⊂ Cn2+1

which projects bijectively onto the set GL(n,C) = {A | det(A) 6= 0}.
The Zariski Topology on mspec(A) is also intrinsic. In this topology,
ideals determine subsets of mspec(A) via:

Z(I) = {m |I ⊂ m} ⊂ mspec(A)

which are, by definition, the closed sets in the Zariski topology.

Exercise 9.2. Check that this defines a topology on mspec(A), if we
throw in the empty set as a closed set.

Example 9.3.. This is a strange topology! For example, if A = C[x[,
then every ideal is principal, generated by f(x) ∈ C[x], so:

I = 〈f(x)〉 = 〈c(x− p1) · · · (x− pm)〉 ⇒ Z(I) = {p1, ..., pm}
and the closed sets are the finite sets. This is very non-Hausdorff.
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Exercise 9.3. The complements of hypersurfaces:

Uf := mspec(A)− Z〈f〉 for f ∈ A
are a basis for the Zariski topology in the strong sense that every
nonempty open set is a finite union of basis open sets.

From the basis theorem, it follows that any decreasing chain:

Z(I1) ⊇ Z(I2) ⊇ · · ·
of closed subsets in the Zariski topology eventually stabilizes at:

Z(In) = Z(In+1) = · · ·
A topological space with this property is called Noetherian.

We want to consider the sheaf of regular functions on X = mspec(A).
For this it is useful to make the following:

Restriction. SupposeA is a domain (and finitely generated C-algebra).
Let X = mspec(A) with the Zariski topology. Then:

(a) X is an irreducible Noetherian topological space: if X = Z1 ∪Z2

is a union of closed sets, then either Z1 = X or Z2 = X.

(b) The fraction field C(A) of A defines the rational functions on X.

(c) An element f ∈ A is evaluated at a point x ∈ X by:

f(x) := f (mod mx) ∈ C

where mx is the maximal ideal corresponding to x.

(d) Every element φ ∈ C(A) has an open domain of definition

Uφ = {x ∈ X | φ =
f

g
with g(x) 6= 0}

(e) A sheaf of regular functions OX is defined by setting:

OX(U) = {φ ∈ C(X) | U ⊂ Uφ}
Proposition 9.2. The global regular functions OX(X) are all in A.

Proof. Clearly A ⊂ OX(X). Conversely, if φ ∈ OX(X) ⊂ C(X),
consider the ideal I = {g | gφ ∈ A} of denominators of φ. For all
x ∈ X, there is a g ∈ I such that g 6∈ mx. Thus, I is not in any
maximal ideal of A (Nullstellensatz!), so 1 ∈ I and φ ∈ A.

Remark. As a variation on Proposition 9.2, one can show:

OX(Uf ) = A[f−1]

if f ∈ A is any non-zero element of A.
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Example 9.4. Consider the example of A = C[x, y]. Then:

X = C2, Z(〈f〉) = {p ∈ C2 | f(p) = 0}

are plane curves, the complements of which satisfy:

OC2(Uf ) = C[x, y, f−1]

but one can easily show that OC2(C2−{0}) = C[x, y], so that somehow
the regular functions on C2 − {0} do not “see” the missing point.

Definition 9.6. The data consisting of:

(a) An irreducible Noetherian topological space X = mspec(A)

(b) The sheaf of regular functions OX(U) with OX(X) = A

is the affine variety (of finite type over C) associated to A.

Definition 9.7. A morphism of affine varieties (over C) is:

(i) A continuous map f : X → Y (Zariski topologies!) such that:

(ii) For all U ⊂ Y , the function pull-back f ∗ : OY (U)→ OX(f−1(U))
maps regular functions to regular functions.

Remark. The global pull-back f ∗ : OY (Y ) → OX(X) is a C-algebra
homomorphism h : B → A of the underlying domains, and conversely,
a homomorphism h : B → A of C-algebras determines f : X → Y
defined by f(mx) = h−1(mx), as well as the map on sheaves.

Moment of Zen: The category of affine varieties (X,OX) of finite
type over C is equivalent (contravariantly, i.e. with arrows reversed)
to the category of finitely generated C-algebra domains A.

Given this equivalence, it is natural to ask of affine varieties:

Q1. What morphisms are associated to surjective maps of domains?

Q2. What morphisms are associated to injective maps of domains?

The first question is rather easy, because:

A surjective map of domains factors through the quotient:

h : B → B/ ker(h) = A

where P = ker(h) is the prime ideal kernel of the homomorphism h.

When we reverse arrows, this is an isomorphism of affine varieties
between mspec(A) = X and the closed subvariety mspec(B/P ) ⊂ Y
which is “an affine variety” structure on the irreducible closed set Z(P ).
Such a map of affine varieties is called a closed embedding.



6

As an example of the second question, consider the inclusion:

B ⊂ A = B[g−1] for some non-unit g ∈ A

Then the arrrow-reversed map of affine varieties:

f : mspec(B[g−1])→ mspec(B) = Y

is an isomorphism from X to the basic open set Ug ⊂ Y . This map is
called an open embedding.

But for a general inclusion of rings, the answer is more interesting!

Example 9.4. (a) Projections. Let B ⊂ A = B[x1, ..., xn]. Then:

f : mspec(A)→ mspec(B) = Y

is the projection p : Y × Cn → Y .

(b) Blow-downs. Let h : C[x, xy] ⊂ C[x, y] be the inclusion of one
polynomial ring in another. Then:

f : C2 → C2 is the map f(a, b) = (a, ab)

whose image is neither open nor closed. It is the complement Uy ⊂ C2

of the y-axis together with the origin. Notice that f−1(0, 0) = {(0, b)}
while f−1(a, c) = {(a/c, c)} is a single point otherwise. For this reason,
we say that f blows down the y-axis onto the origin.

We want to define an abstract variety (of finite type over C) to be
an irreducible topological space with a sheaf of regular functions on it
that is locally affine and globally Hausdorff, as we did for manifolds,
but we have already mentioned a problem with the Hausdorff property
for the Zariski topology. We need a categorical work-around.

Products exist in the category of affine varieties. The contravariant
functor above tells us this is equivalent to the existence of coproducts in
the category of C-algebra domains. These are furnished by the tensor
product of C-algebras over C:

A⊗C B together with a : A⊗ 1→ A⊗B, b : 1⊗B → A⊗B

is a coproduct (the only hard thing is to prove that it is a domain!)
Via our contravariant functor, this means that:

mspec(A⊗B),with the maps a∗ and b∗ is a product!

but this product of varieties does not have the product topology! For
example, C2 = C1 × C1 via this construction, but its Zariski topology
has many more closed sets in it (plane curves!) than does the product
of the coifinite topologies.
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Observation. The diagonal mapping:

X → X ×X
is the closed embedding corresponding to the surjective map:

A⊗ A→ A; a1 ⊗ a2 7→ a1 · a2
converting tensor product to ordinary product. The kernel is:

〈ai ⊗ 1− 1⊗ ai | ai ∈ A generate A as an algebra!〉
which in particular proves that the diagonal in X ×X is closed.

Looking back at the section on topology, we noticed (Exercise 6.2 (b))
that Hausdorff was equivalent to the diagonal being closed provided that
products had the product topology. Here they don’t, so we go with the
categorical definition instead.

Definition 9.8. An object X in a category of topological spaces with
products is separated if the diagonal X → X ×X is a homeomorphism
onto a closed subset ∆ ⊂ X ×X.

Remark. Here the product doesn’t have the product topology as a
topological space. Amusingly, in Grothendieck’s theory of schemes,
the product of schemes isn’t even the Cartesian product as a set!

By analogy with manifolds, we now try to make the following:

Definition 9.9. A variety is a Noetherian topological space X together
with a sheaf of regular functions OX so that the pair (X,OX) is locally
affine and globally separated.

But there is a problem here! What is the product of X with itself?
We did it for affine varieties by appealing to the tensor product, but
we have enlarged our category to include pairs (X,OX) that are locally
affine. Well, it can be done, even in Grothendieck’s wild category of
locally affine schemes. I refer you to Hartshorne’s book or you can
think about it as an ambitious exercise.
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Exercises.

9.1. (a) A C-algebra with no proper ideal other than 0 is a field.

(b) The quotient of a C-algebra by a maximal ideal is a field.

9.2. (a) Check that declaring Z(I) to be closed if I ⊂ A is an ideal
defines a topology on mspec(A) (after you throw in the empty set).
This is the Zariski topology.

(b) Check that I(Z(I)) contains the radical of I, defined by:
√
I = {f ∈ A | f r ∈ I for some r > 0}

and also check that
√
I is, in fact, an ideal.

Remark. It is a consequence of the Nullstellensatz that
√
I = I(Z(I)).

9.3. Check that the complements of hypersurfaces:

Uf := mspec(A)− Z〈f〉 for f ∈ A
are a basis for the Zariski topology in the strong sense that every
nonempty open set is a finite union of basis open sets.

9.4. (Ambitious) Create a category of locally affine spaces with sheaves
and prove that products exist in your category, so that the notion of
being separated makes sense!


