Summer High School 2009

Aaron Bertram

8. Primitive Elements and Quadratic Reciprocity (Part I).

Fermat's Little Theorem tells us that for all nonzero remainders m,

$$m^{p-1} \equiv 1 \mod p$$
.

Thus every number from 1 to p-1 is a root of $x^{p-1}-1$ mod p, so

$$x^{p-1} - 1 \equiv (x-1)(x-2)(x-3)\cdots(x-(p-1)) \bmod p$$

and since the constant term on the right is $(-1)^{p-1}(p-1)!$, we get

Wilson's Theorem: If p is any prime, then:

$$(p-1)! \equiv -1 \mod p$$

(when p is odd, p-1 is even whereas mod 2 we have $-1 \equiv +1$).

Question: What is $(n-1)! \mod n$ when n is composite?

Definition 8.1. The *order* of any nonzero $m \mod p$ is the *smallest* positive value of d such that:

$$m^d \equiv 1 \mod p$$

The order is, of course, always $\leq p-1$, but in fact it divides p-1. That's because of Euclid's Algorithm. Suppose $m^k \equiv 1 \mod p$, and let d = GCD(k, p-1). Then we can solve d = ak + b(p-1), and:

$$m^d \equiv m^{ak+b(p-1)} \equiv m^{ak} m^{b(p-1)} \equiv (m^k)^a (m^{p-1})^b \equiv 1 \mod p$$

giving us a smaller power of m that divides p-1.

Definition 8.2. $m \mod p$ is *primitive* if its order is exactly p-1. In this case, the powers of m:

$$m, m^2, m^3, m^4, \dots, m^{p-2}, m^{p-1} \equiv 1 \mod p$$

are all the remainders mod p (in some other order) because if $m^a \equiv m^b$ for some $a < b \le p-1$, then $m^{b-a} \equiv 1$, which isn't allowed.

For example, mod 11:

$$m \equiv 2, m^2 \equiv 4, m^3 \equiv 8, m^4 \equiv 5, m^5 \equiv 10$$

$$m^6 \equiv 9, m^7 \equiv 7, m^8 \equiv 3, m^9 \equiv 6, m^{10} \equiv 1$$

and notice that $m^5 \equiv 10 \equiv -1 \mod 11$.

Lemma 8.3 For each d that divides p-1, there are $\phi(d)$ remainders of order d. In particular, there are $\phi(p-1)$ primitive remainders.

Proof: If m has order d, then the roots of $x^d - 1$ are exactly the remainders $m, m^2, m^3, \ldots, m^{d-1}, m^d \equiv 1$. Consider m^k for some k < d. If $GCD(k, d) = e \neq 1$, then $(m^k)^{(d/e)} = (m^{(k/e)})^d \equiv 1$ has smaller order. Thus the only possible remainders of order d are the powers of m that are relatively prime to d. Thus there are at most $\phi(d)$ remainders of order d for each d that divides p-1. On the other hand, if you add all of the values of the ϕ function for divisors of p-1 together:

$$\sum_{d|p-1} \phi(d) = p - 1$$

so there must be exactly $\phi(d)$ remainders of each order d, otherwise we wouldn't be able to account for all the numbers from 1 to p-1.

Examples: Mod 11, we consider the divisors of 10 = 11 - 1:

$$\phi(1) + \phi(2) + \phi(5) + \phi(10) = 1 + 1 + 4 + 4 = 10$$

and the corresponding remainders are:

Food for thought: Why is it that $\sum_{d|n} \phi(n) = n$ for all n?

We next consider: "What are the perfect squares mod p?"

For starters, 1 is obviously always a square, with square roots 1, -1 (which are different from each other as long as p is an odd prime).

The next easiest case is m = -1:

Proposition 8.4. Let p be an odd prime, so $p \equiv 1$ or $p \equiv 3 \mod 4$.

- (a) -1 is **not** a square mod p if $p \equiv 3 \mod 4$.
- (b) -1 is a square mod p if $p \equiv 1 \mod 4$. Moreover, in that case:

$$\left(\frac{p-1}{2}\right)! = 1 \cdot 2 \cdot 3 \cdots \left(\frac{p-1}{2}\right), \text{ and } -\left(\frac{p-1}{2}\right)!$$

are the two square roots of -1 modulo p.

Proof: Suppose m is a primitive remainder mod p. Remember that:

$$m, m^2, m^3, \dots, m^{p-1} \equiv 1 \mod p$$

runs through all the remainders modulo p. Since each square mod p has two different square roots (r and -r), it follows that exactly half of the remainders mod p are squares. But:

$$m^2, (m^2)^2 \equiv m^4, (m^3)^2 \equiv m^6, \dots, (m^{\frac{p-1}{2}})^2 \equiv m^{p-1}$$

are all different, and all perfect squares, so they must be all of them!

Notice that $(m^{\frac{p-1}{2}})^2 \equiv 1$, and $m^{\frac{p-1}{2}} \not\equiv 1 \mod p$, so it must be -1. If $p \equiv 3 \mod 4$, then $\frac{p-1}{2}$ is odd, so $m^{\frac{p-1}{2}}$ is NOT a square, and if $p \equiv 1 \mod 4$, then $\frac{p-1}{2}$ is even, so it is a perfect square, and if $p \equiv 1 \mod 4$, then $p-1 \equiv -1, p-2 \equiv -2, \ldots, p-\left(\frac{p-1}{2}\right) = \left(\frac{p-1}{2}\right) + 1 \equiv -\left(\frac{p-1}{2}\right)$, so by Wilson's Theorem:

$$-1 \equiv (p-1)! \equiv \left(\frac{p-1}{2}\right)! \cdot (-1)^{\left(\frac{p-1}{2}\right)} \left(\frac{p-1}{2}\right)! \equiv \left(\left(\frac{p-1}{2}\right)!\right)^2 \bmod p$$

Examples: The first primes $\equiv 1 \mod 4$ are: 5, 13, 17 and 29.

- (a) (mod 5) 2! = 2, and $2^2 \equiv -1 \mod 5$.
- (b) (mod 13) $6! = 720 \equiv 5 \mod 13$, and $5^2 = 25 \equiv -1 \mod 13$.
- (c) (mod 17) $8! = 40320 \equiv 13 \mod 17$, and $13^2 = 169 \equiv -1 \mod 17$.
- (d) (mod 29) $14! \equiv 12 \mod 29$, and $12^2 = 144 \equiv -1 \mod 29$.

Remark: The nice thing about this Proposition is that it tells us whether or not -1 is a perfect square without requiring us to find the square root. It just so happens that the square root is given by $\left(\frac{p-1}{2}\right)!$, but this is actually quite hard to calculate when p is large.

Quadratic Reciprocity will similarly tell us whether any remainder mod p is a perfect square or not, with a minimal amount of checking of congruences mod 4 (and mod 8). We will follow one of Gauss' many proofs of this, which proceeds in stages.

Lemma 8.5 (Stage 1): Let $a \mod p$ be nonzero. Then:

$$a^{\left(\frac{p-1}{2}\right)} \equiv 1 \text{ or } -1 \text{ mod } p$$

and a is a square if it is 1, and not a square if it is -1.

Proof: Let m be some primitive mod p, and choose k so that $a \equiv m^k$.

- If k=2l is even, then a is a square and $a^{\left(\frac{p-1}{2}\right)}\equiv m^{(p-1)l}\equiv 1 \mod p$.
- If k = 2l + 1 is odd, then a is not a square, and

$$a^{\left(\frac{p-1}{2}\right)} \equiv m^{(p-1)l+\left(\frac{p-1}{2}\right)} \equiv -1 \mod p. \quad \Box$$

Example: mod 11:

 $1^5 \equiv 1 \mod 11$. Perfect square (duh!).

 $2^5=32\equiv -1$ mod 11. Not a perfect square.

 $3^5=243\equiv 1 \text{ mod } 11.$ Perfect square.

 $4^5 = 1024 \equiv 1 \mod 11$. Perfect square (duh!).

 $5^5 = 3125 \equiv 1 \mod 11$. Perfect square.

 $6^5 \equiv (-5)^5 \equiv -1 \mod 11$. Not a perfect square.

 $7^5 \equiv (-4)^5 \equiv -1 \mod 11$. Not a perfect square.

 $8^5 \equiv (-3)^5 \equiv -1 \mod 11$. Not a perfect square.

 $9^5 \equiv (-2)^5 \equiv 1 \mod 11$. Perfect square (duh!).

 $10^5 \equiv (-1)^5 \equiv -1 \mod 11$. Not a perfect square.

This is somewhat nice, but it involves too many calculations. It is, however, the key ingredient in a further extremely clever Lemma due to Gauss. For this, we consider the first half of the multiples of a:

$$a, 2a, 3a, 4a, \ldots, \left(\frac{p-1}{2}\right)a$$

and we choose remainders that lie between $-\left(\frac{p-1}{2}\right)$ and $\left(\frac{p-1}{2}\right)$ mod p (rather than the usual remainders between 1 and p-1). Let n be the number of *negative* remainders.

Gauss' Lemma 8.6 (Stage 2): Let a be nonzero mod p, and let n be defined as above. Then:

- a is a square mod p if n is even, and:
- a is not a square mod p if n is odd.

Proof: Since $-a \equiv (p-1)a, -2a \equiv (p-2)a, \ldots$ it follows that when $a, 2a, \ldots, \left(\frac{p-1}{2}\right)a$ are brought between $-\left(\frac{p-1}{2}\right)$ and $\left(\frac{p-1}{2}\right)$ mod p, then at most one of each of the following pairs arises:

1 or
$$-1$$
, 2 or -2 , 3 or -3 , ..., $\left(\frac{p-1}{2}\right)$ or $-\left(\frac{p-1}{2}\right)$

but since there are exactly $\left(\frac{p-1}{2}\right)$ of these, it follows that one of each pair does arise. Multiply all the remainders together:

$$(a)(2a)(3a)\cdots\left(\left(\frac{p-1}{2}\right)a\right) \equiv (\pm 1)(\pm 2)(\pm 3)\cdots\left(\pm \frac{p-1}{2}\right) \bmod p$$

and exactly n of the " \pm "s on the right side is a "-." As in the proof of Euler's formula, we can now $cancel\left(\frac{p-1}{2}\right)!$ from both sides to get:

$$a^{\left(\frac{p-1}{2}\right)} \equiv (-1)^n \bmod p$$

which, together with Stage 1, proves Stage 2.

Example: (a) Check that 2 is not a square mod 11.

$$2, 4, 6, 8, 10$$
 become $2, 4, -5, -3, -1$

so n = 3 is odd, and 2 is not a square.

(b) Check that 3 is a square mod 11.

$$3, 6, 9, 12, 15$$
 become $3, -5, -2, 1, 4$

so n = 2 is even, and 3 is a square.

We can generalize Example (a) in a big way to get the following:

Proposition 8.7. If p is an odd prime, $p \equiv 1, 3, 5$ or 7 mod 8, and:

- (a) 2 is a square mod p if $p \equiv 1$ or 7 mod 8, and
- (b) 2 is not a square mod p if $p \equiv 3$ or 5 mod 8.

Proof: As in Example (a), consider:

$$2, 4, 6, 8, \dots, p-1 = 2\left(\frac{p-1}{2}\right)$$

and remember that n is the number of these that are larger than $\left(\frac{p-1}{2}\right)$ (which is $\left(\frac{p-1}{2}\right)$ minus the number that are less than or equal to $\left(\frac{p-1}{2}\right)$).

- If p = 8l + 1, then n = 4l 2l = 2l is even.
- If p = 8l + 3, then n = (4l + 1) 2l = 2l + 1 is odd.
- If p = 8l + 5, then n = (4l + 2) (2l + 1) = (2l + 1) is odd.
- If p = 8l + 7, then n = (4l + 3) (2l + 1) = (2l + 2) is even. \square

Examples:

- (a) 2 is not a square mod 3.
- (b) 2 is not a square mod 5.
- (c) $2 \equiv 3^2 \mod 7$.
- (d) 2 is not a square mod 11 (and $11 \equiv 3 \mod 8$).
- (e) 2 is not a square mod 13 (and $13 \equiv 5 \mod 8$).
- (f) $2 \equiv 6^2 \mod 17 \text{ (and } 17 \equiv 1 \mod 8).$
- (g) 2 is not a square mod 19 (and $19 \equiv 3 \mod 8$).
- (h) $2 \equiv 5^2 \mod 23 \pmod{23} \equiv 7 \mod 8$).

Again, notice that the Proposition tells us whether 2 is a perfect square or not mod p simply by testing p mod 8.