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8. Primitive Elements and Quadratic Reciprocity (Part I).

Fermat’s Little Theorem tells us that for all nonzero remainders m,

mp−1 ≡ 1 mod p.

Thus every number from 1 to p− 1 is a root of xp−1 − 1 mod p, so

xp−1 − 1 ≡ (x− 1)(x− 2)(x− 3) · · · (x− (p− 1)) mod p

and since the constant term on the right is (−1)p−1(p− 1)!, we get

Wilson’s Theorem: If p is any prime, then:

(p− 1)! ≡ −1 mod p

(when p is odd, p− 1 is even whereas mod 2 we have −1 ≡ +1).

Question: What is (n− 1)! mod n when n is composite?

Definition 8.1. The order of any nonzero m mod p is the smallest
positive value of d such that:

md ≡ 1 mod p

The order is, of course, always ≤ p− 1, but in fact it divides p− 1.
That’s because of Euclid’s Algorithm. Suppose mk ≡ 1 mod p, and let
d = GCD(k, p− 1). Then we can solve d = ak + b(p− 1), and:

md ≡ mak+b(p−1) ≡ makmb(p−1) ≡ (mk)a(mp−1)b ≡ 1 mod p

giving us a smaller power of m that divides p− 1.

Definition 8.2. m mod p is primitive if its order is exactly p− 1. In
this case, the powers of m:

m,m2,m3,m4, . . . ,mp−2,mp−1 ≡ 1 mod p

are all the remainders mod p (in some other order) because if ma ≡ mb

for some a < b ≤ p− 1, then mb−a ≡ 1, which isn’t allowed.

For example, mod 11:

m ≡ 2,m2 ≡ 4,m3 ≡ 8,m4 ≡ 5,m5 ≡ 10

m6 ≡ 9,m7 ≡ 7,m8 ≡ 3,m9 ≡ 6,m10 ≡ 1

and notice that m5 ≡ 10 ≡ −1 mod 11.

Lemma 8.3 For each d that divides p − 1, there are φ(d) remainders
of order d. In particular, there are φ(p− 1) primitive remainders.
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Proof: If m has order d, then the roots of xd − 1 are exactly the
remainders m,m2,m3, . . . ,md−1,md ≡ 1. Consider mk for some k < d.
If GCD(k, d) = e 6= 1, then (mk)(d/e) = (m(k/e))d ≡ 1 has smaller order.
Thus the only possible remainders of order d are the powers of m that
are relatively prime to d. Thus there are at most φ(d) remainders of
order d for each d that divides p− 1. On the other hand, if you add all
of the values of the φ function for divisors of p− 1 together:∑

d|p−1

φ(d) = p− 1

so there must be exactly φ(d) remainders of each order d, otherwise we
wouldn’t be able to account for all the numbers from 1 to p− 1.

Examples: Mod 11, we consider the divisors of 10 = 11− 1:

φ(1) + φ(2) + φ(5) + φ(10) = 1 + 1 + 4 + 4 = 10

and the corresponding remainders are:

1 (order 1), 10 (order 2), 4, 5, 9, 3 (order 5), 2, 8, 7, 6 (order 10)

Food for thought: Why is it that
∑

d|n φ(n) = n for all n?

We next consider: “What are the perfect squares mod p?”

For starters, 1 is obviously always a square, with square roots 1,−1
(which are different from each other as long as p is an odd prime).

The next easiest case is m = −1:

Proposition 8.4. Let p be an odd prime, so p ≡ 1 or p ≡ 3 mod 4.

(a) −1 is not a square mod p if p ≡ 3 mod 4.

(b) −1 is a square mod p if p ≡ 1 mod 4. Moreover, in that case:(
p− 1

2

)
! = 1 · 2 · 3 · · ·

(
p− 1

2

)
, and −

(
p− 1

2

)
!

are the two square roots of −1 modulo p.

Proof: Suppose m is a primitive remainder mod p. Remember that:

m,m2,m3, . . . ,mp−1 ≡ 1 mod p

runs through all the remainders modulo p. Since each square mod p
has two different square roots (r and −r), it follows that exactly half
of the remainders mod p are squares. But:

m2, (m2)2 ≡ m4, (m3)2 ≡ m6, . . . , (m
p−1
2 )2 ≡ mp−1

are all different, and all perfect squares, so they must be all of them!
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Notice that (m
p−1
2 )2 ≡ 1, and m

p−1
2 6≡ 1 mod p, so it must be −1. If

p ≡ 3 mod 4, then p−1
2

is odd, so m
p−1
2 is NOT a square, and if p ≡ 1

mod 4, then p−1
2

is even, so it is a perfect square, and if p ≡ 1 mod 4,

then p− 1 ≡ −1, p− 2 ≡ −2, . . . , p−
(

p−1
2

)
=
(

p−1
2

)
+ 1 ≡ −

(
p−1
2

)
, so

by Wilson’s Theorem:

−1 ≡ (p−1)! ≡
(
p− 1

2

)
!·(−1)(

p−1
2 )
(
p− 1

2

)
! ≡

((
p− 1

2

)
!

)2

mod p

Examples: The first primes ≡ 1 mod 4 are: 5, 13, 17 and 29.

(a) (mod 5) 2! = 2, and 22 ≡ −1 mod 5.

(b) (mod 13) 6! = 720 ≡ 5 mod 13, and 52 = 25 ≡ −1 mod 13.

(c) (mod 17) 8! = 40320 ≡ 13 mod 17, and 132 = 169 ≡ −1 mod 17.

(d) (mod 29) 14! ≡ 12 mod 29, and 122 = 144 ≡ −1 mod 29.

Remark: The nice thing about this Proposition is that it tells us
whether or not −1 is a perfect square without requiring us to find
the square root. It just so happens that the square root is given by(

p−1
2

)
!, but this is actually quite hard to calculate when p is large.

Quadratic Reciprocity will similarly tell us whether any remainder
mod p is a perfect square or not, with a minimal amount of checking
of congruences mod 4 (and mod 8). We will follow one of Gauss’ many
proofs of this, which proceeds in stages.

Lemma 8.5 (Stage 1): Let a mod p be nonzero. Then:

a( p−1
2 ) ≡ 1 or − 1 mod p

and a is a square if it is 1, and not a square if it is −1.

Proof: Letm be some primitive mod p, and choose k so that a ≡ mk.

• If k = 2l is even, then a is a square and a( p−1
2 ) ≡ m(p−1)l ≡ 1 mod p.

• If k = 2l + 1 is odd, then a is not a square, and

a( p−1
2 ) ≡ m(p−1)l+( p−1

2 ) ≡ −1 mod p. �

Example: mod 11:

15 ≡ 1 mod 11. Perfect square (duh!).

25 = 32 ≡ −1 mod 11. Not a perfect square.

35 = 243 ≡ 1 mod 11. Perfect square.

45 = 1024 ≡ 1 mod 11. Perfect square (duh!).

55 = 3125 ≡ 1 mod 11. Perfect square.
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65 ≡ (−5)5 ≡ −1 mod 11. Not a perfect square.

75 ≡ (−4)5 ≡ −1 mod 11. Not a perfect square.

85 ≡ (−3)5 ≡ −1 mod 11. Not a perfect square.

95 ≡ (−2)5 ≡ 1 mod 11. Perfect square (duh!).

105 ≡ (−1)5 ≡ −1 mod 11. Not a perfect square.

This is somewhat nice, but it involves too many calculations. It is,
however, the key ingredient in a further extremely clever Lemma due
to Gauss. For this, we consider the first half of the multiples of a:

a, 2a, 3a, 4a, . . . ,

(
p− 1

2

)
a

and we choose remainders that lie between −
(

p−1
2

)
and

(
p−1
2

)
mod p

(rather than the usual remainders between 1 and p− 1). Let n be the
number of negative remainders.

Gauss’ Lemma 8.6 (Stage 2): Let a be nonzero mod p, and let n
be defined as above. Then:

• a is a square mod p if n is even, and:

• a is not a square mod p if n is odd.

Proof: Since −a ≡ (p−1)a,−2a ≡ (p−2)a, . . . it follows that when
a, 2a, . . . ,

(
p−1
2

)
a are brought between −

(
p−1
2

)
and

(
p−1
2

)
mod p, then

at most one of each of the following pairs arises:

1 or− 1, 2 or − 2, 3 or − 3, . . . ,

(
p− 1

2

)
or −

(
p− 1

2

)
but since there are exactly

(
p−1
2

)
of these, it follows that one of each

pair does arise. Multiply all the remainders together:

(a)(2a)(3a) · · ·
((

p− 1

2

)
a

)
≡ (±1)(±2)(±3) · · ·

(
±p− 1

2

)
mod p

and exactly n of the “±”s on the right side is a “−.” As in the proof
of Euler’s formula, we can now cancel

(
p−1
2

)
! from both sides to get:

a( p−1
2 ) ≡ (−1)n mod p

which, together with Stage 1, proves Stage 2. �

Example: (a) Check that 2 is not a square mod 11.

2, 4, 6, 8, 10 become 2, 4,−5,−3,−1

so n = 3 is odd, and 2 is not a square.



5

(b) Check that 3 is a square mod 11.

3, 6, 9, 12, 15 become 3,−5,−2, 1, 4

so n = 2 is even, and 3 is a square.

We can generalize Example (a) in a big way to get the following:

Proposition 8.7. If p is an odd prime, p ≡ 1, 3, 5 or 7 mod 8, and:

(a) 2 is a square mod p if p ≡ 1 or 7 mod 8, and

(b) 2 is not a square mod p if p ≡ 3 or 5 mod 8.

Proof: As in Example (a), consider:

2, 4, 6, 8, · · · , p− 1 = 2

(
p− 1

2

)
and remember that n is the number of these that are larger than

(
p−1
2

)
(which is

(
p−1
2

)
minus the number that are less than or equal to

(
p−1
2

)
).

• If p = 8l + 1, then n = 4l − 2l = 2l is even.

• If p = 8l + 3, then n = (4l + 1)− 2l = 2l + 1 is odd.

• If p = 8l + 5, then n = (4l + 2)− (2l + 1) = (2l + 1) is odd.

• If p = 8l + 7, then n = (4l + 3)− (2l + 1) = (2l + 2) is even. �

Examples:

(a) 2 is not a square mod 3.

(b) 2 is not a square mod 5.

(c) 2 ≡ 32 mod 7.

(d) 2 is not a square mod 11 (and 11 ≡ 3 mod 8).

(e) 2 is not a square mod 13 (and 13 ≡ 5 mod 8).

(f) 2 ≡ 62 mod 17 (and 17 ≡ 1 mod 8).

(g) 2 is not a square mod 19 (and 19 ≡ 3 mod 8).

(h) 2 ≡ 52 mod 23 (and 23 ≡ 7 mod 8).

Again, notice that the Proposition tells us whether 2 is a perfect
square or not mod p simply by testing p mod 8.


