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8. Primitive Elements and Quadratic Reciprocity (Part I).
Fermat’s Little Theorem tells us that for all nonzero remainders m,
mP~™t =1 mod p.
Thus every number from 1 to p — 1 is a root of 2P~! — 1 mod p, so
Pt —1=@—-1)(z-2)(x—-3)---(x—(p—1)) mod p

and since the constant term on the right is (—1)?7'(p — 1)!, we get
Wilson’s Theorem: If p is any prime, then:

(p—1)!'=—1mod p
(when p is odd, p — 1 is even whereas mod 2 we have —1 = +1).
Question: What is (n — 1)! mod n when n is composite?

Definition 8.1. The order of any nonzero m mod p is the smallest
positive value of d such that:

m? =1 mod p

The order is, of course, always < p — 1, but in fact it divides p — 1.
That’s because of Euclid’s Algorithm. Suppose m* = 1 mod p, and let
d=GCD(k,p—1). Then we can solve d = ak + b(p — 1), and:

m? = mktte=1) = kb1 = (m™)*(mP~ 1) =1 mod p
giving us a smaller power of m that divides p — 1.

Definition 8.2. m mod p is primitive if its order is exactly p — 1. In
this case, the powers of m:

2 3 4

m,m?,m3, m*, ... mP?

,mP~' =1 mod p

are all the remainders mod p (in some other order) because if m® = m®

for some a < b < p — 1, then m?~® = 1, which isn’t allowed.
For example, mod 11:
m=2m>=4m3=8m*=5m°=10
ml=9m"=7mt=3,m’ =6,m'° =
and notice that m® = 10 = —1 mod 11.

Lemma 8.3 For each d that divides p — 1, there are ¢(d) remainders
of order d. In particular, there are ¢(p — 1) primitive remainders.



Proof: If m has order d, then the roots of ¢ — 1 are exactly the

remainders m, m?,m3,...,m% !, m? = 1. Consider m* for some k < d.

If GCD(k,d) = e # 1, then (m*)(@/¢) = (m(*/))4 = 1 has smaller order.
Thus the only possible remainders of order d are the powers of m that
are relatively prime to d. Thus there are at most ¢(d) remainders of
order d for each d that divides p— 1. On the other hand, if you add all
of the values of the ¢ function for divisors of p — 1 together:

> od)=p—1
dlp—1

so there must be ezactly ¢(d) remainders of each order d, otherwise we
wouldn’t be able to account for all the numbers from 1 to p — 1.

Ezxamples: Mod 11, we consider the divisors of 10 = 11 — 1:
A1)+ 9(2)+o(5) +d(10) =14+ 1+4+4=10
and the corresponding remainders are:
1 (order 1), 10 (order 2), 4,5,9,3 (order 5), 2,8,7,6 (order 10)
Food for thought: Why is it that >, @(n) = n for all n?
We next consider: “What are the perfect squares mod p?”

For starters, 1 is obviously always a square, with square roots 1, —1
(which are different from each other as long as p is an odd prime).

The next easiest case is m = —1:
Proposition 8.4. Let p be an odd prime, so p =1 or p = 3 mod 4.
(a) —1 is not a square mod p if p = 3 mod 4.

(b) —1 is a square mod p if p = 1 mod 4. Moreover, in that case:

(p—_l)!:1-2-3---(p—_1), and — (p—_1>!
2 2 2

are the two square roots of —1 modulo p.

Proof: Suppose m is a primitive remainder mod p. Remember that:

m,m%,m3,...,mP"' =1 mod p

runs through all the remainders modulo p. Since each square mod p
has two different square roots (r and —r), it follows that exactly half
of the remainders mod p are squares. But:

m?, (m?)? = m, (m*?2=m°, ..., (mprl)2 =mP!

are all different, and all perfect squares, so they must be all of them!



3

Notice that (m%)2 =1, and m'r % 1 mod p, so it must be —1. If
p = 3 mod 4, then ’%1 is odd, so m*= is NOT a square, and if p =1
mod 4, then 7’%1 is even, so it is a perfect square, and if p = 1 mod 4,
thenp—1=-1,p—2=-2,...,p— (;%1) = (p%l) +1= —(7%1), SO

by Wilson’s Theorem:

Examples: The first primes = 1 mod 4 are: 5,13,17 and 29.
(a) (mod 5) 2! =2, and 22 = —1 mod 5.
(b) (mod 13) 6! = 720 = 5 mod 13, and 5? = 25 = —1 mod 13.
(c) (mod 17) 8! = 40320 = 13 mod 17, and 13* = 169 = —1 mod 17.
(d) (mod 29) 14! = 12 mod 29, and 12? = 144 = —1 mod 29.

Remark: The nice thing about this Proposition is that it tells us
whether or not —1 is a perfect square without requiring us to find
the square root. It just so happens that the square root is given by

(’%1) I, but this is actually quite hard to calculate when p is large.

Quadratic Reciprocity will similarly tell us whether any remainder
mod p is a perfect square or not, with a minimal amount of checking
of congruences mod 4 (and mod 8). We will follow one of Gauss’ many
proofs of this, which proceeds in stages.

Lemma 8.5 (Stage 1): Let a mod p be nonzero. Then:
7)) =1 or — 1 mod p
and a is a square if it is 1, and not a square if it is —1.

Proof: Let m be some primitive mod p, and choose k so that a = m*.

o If £ = 2 is even, then a is a square and a("7) = m®-V = 1 mod D.
o If £ = 2]+ 1is odd, then a is not a square, and
al'7) = e+ (%) = 1 mod p. O

Ezample: mod 11:

1° = 1 mod 11. Perfect square (duh!).

2° = 32 = —1 mod 11. Not a perfect square.

3% = 243 = 1 mod 11. Perfect square.

4% = 1024 = 1 mod 11. Perfect square (duh!).

5° = 3125 = 1 mod 11. Perfect square.



6° = (—=5)°> = —1 mod 11. Not a perfect square.
7 = (—4)° = —1 mod 11. Not a perfect square.
85 = (—3)° = —1 mod 11. Not a perfect square.

95 = (—2)° = 1 mod 11. Perfect square (duh!).
10° = (—1)°> = —1 mod 11. Not a perfect square.

This is somewhat nice, but it involves too many calculations. It is,
however, the key ingredient in a further extremely clever Lemma due
to Gauss. For this, we consider the first half of the multiples of a:

—1
@,2@,3@,4a,...,(p )a

2

and we choose remainders that lie between _(p;) and (p%) mod p
(rather than the usual remainders between 1 and p — 1). Let n be the
number of negative remainders.

Gauss’ Lemma 8.6 (Stage 2): Let a be nonzero mod p, and let n
be defined as above. Then:

e ¢ is a square mod p if n is even, and:
e ¢ is not a square mod p if n is odd.

Proof: Since —a = (p—1)a, —2a = (p—2)a, . .. it follows that when
a,2a,..., (;%1) a are brought between —(’%1) and (’%1) mod p, then
at most one of each of the following pairs arises:

-1 -1
lor—1,20r —2, 3or —3, ..., (%) or _<pT)

but since there are exactly (’%1) of these, it follows that one of each

pair does arise. Multiply all the remainders together:
-1

(a)(20)(3a) - - ((Z)T>a) _ (il)(:l:Q)(:I:?))---( 7%1) mod p

and exactly n of the “4+”s on the right side is a “—.” As in the proof
of Euler’s formula, we can now cancel (7%1)! from both sides to get:

al"7) = (—1)" mod p
which, together with Stage 1, proves Stage 2. U
Ezample: (a) Check that 2 is not a square mod 11.
2,4,6,8,10 become 2,4, -5, -3, —1

so n = 3 is odd, and 2 is not a square.



(b) Check that 3 is a square mod 11.
3,6,9,12,15 become 3, —5,—2,1,4
so n = 2 is even, and 3 is a square.
We can generalize Example (a) in a big way to get the following:
Proposition 8.7. If p is an odd prime, p =1,3,5 or 7 mod 8, and:
(a) 2 is a square mod p if p =1 or 7 mod 8, and
(b) 2 is not a square mod p if p = 3 or 5 mod 8.

Proof: Asin Example (a), consider:

—1
2,4,6,8, - ,p—lzz(pT)

and remember that n is the number of these that are larger than (p;l)
(which is (p%l) minus the number that are less than or equal to (p%l) ).
o If p=28l+1, then n = 4l — 2] = 2[ is even.
o Ifp=8l+3,thenn=(4+1)—2l=20+1is odd.
olf p=8+5, thenn = (4+2)—(20l+1) = (20 + 1) is odd.
olfp=8l+7 thenn=(4+3)—20+1)=(2[+2)iseven. O
Ezamples:
(a) 2 is not a square mod 3.
(b) 2 is not a square mod 5.
(c) 2 =32 mod 7.
(d) 2 is not a square mod 11 (and 11 = 3 mod 8).
(e) 2 is not a square mod 13 (and 13 = 5 mod 8).
(f) 2=6* mod 17 (and 17 = 1 mod 8).
(g) 2 is not a square mod 19 (and 19 = 3 mod 8).
(h) 2 =5% mod 23 (and 23 = 7 mod 8).

Again, notice that the Proposition tells us whether 2 is a perfect
square or not mod p simply by testing p mod 8.



