Summer High School 2009
Aaron Bertram

7. RSA Encoding and Decoding. We now have the tools to analyze
(and implement) a public-key encryption scheme known as RSA. It is
a scheme whereby the tools to encode a message are public, so that
anyone can create a secret message, but the tools to decode the secret
messages are kept secret. Its effectiveness depends upon the following:

e Large numbers can’t be factored in a reasonable amount of time.

e The Euler phi function of a large number is impossible to compute
in a reasonable amount of time without knowing its factorization, BUT
computing it is a cinch if you know the factorization.

e In contrast, taking very large powers of one very large number
modulo another very large number can be done relatively quickly.

Private (Top Secret): Two large prime numbers p and q.

Public (Open to All): The product n = pq of the two primes and
an (also large) additional number m that is relatively prime to ¢(n).
Also, the cipher and block size (see below).

Privately: From the private information, it is easy to see that:
¢(n)=p-1—-1)
but this is impossible to figure out from the public information!

How to Encode: The cipher is a method for replacing each letter
(and space) of our message with a number.

Let’s agree on the following simple cipher:
A=11,B=12,...,7Z = 36, < space >= 99
so that, for example, “Happy Birthday” becomes:
18 11 26 26 35 99 12 19 28 30 18 14 11 35
(This is easy for codebreakers to crack. What you do next is diabolical.)

We agree on a block size of numbers to encode. Typically the block
size give us numbers just smaller than the number n that we are given
in the public key. These numbers may have 80 or more digits, so that
strings of 40 letters can be encoded at once. For this simple example,
we'll choose block sizes of 3 numbers (to keep things manageable!), so
that we are using RSA to encode the string of three-digit numbers:

181 126 263 599 121 928 301 814 113 500
1

Suppose that the meat of the public key consists of:
n=1147 and m = 517

(take my word for it, for now, that m is relatively prime to ¢(n)). Then
we encode each of the strings abc of three digits by computing:

(% %)™ mod n

and listing it as another string of digits. This can be done quickly using
the Binary and successive squaring techniques that we’ve just learned,
although even in this simple example we already need a computer!

(181)°*" = 367 mod 1147

(126)°'7 = 686 mod 1147
(263)°'7 = 891 mod 1147
(599)°'" = 144 mod 1147
(121)°'7 = 417 mod 1147
(928)°17 = 585 mod 1147
(301)°'7 = 827 mod 1147
(814)°'7 = 777 mod 1147
(113)'7 = 607 mod 1147
(500)°'" = 264 mod 1147

(Full disclosure: I picked these numbers small enough so my application
can compute all the powers without binary and successive squaring.)
So we have encoded our message!

367 686 891 144 417 585 827 777 607 264
How to Decode: We start with the (private) ¢(n) and solve:
am + bp(n) =
Now suppose k is any natural number, and consider:
FY = oot — pempbo(n) — (jmye (190)" mod n
and if k and n are relatively prime, then Euler’s formula tells us that
k?™ =1 mod n, so:
(k™) =k mod n
This means that if & = (x * *) is the number we want to recover,

then
(* % %)™ is the encoded number, and ((* * x)™)*

returns us back to £ mod n. In other words, all we have to do to
decode the message is to raise the encoded numbers by the (secret)

3
power a. But to emphasize, the number a is only known privately,
since it requires us to know ¢(n), which in turn requires p and gq.

In our example, the top secret p and ¢ are 31 and 37, so:
¢(n) = 1080, m =517 and a =493, b = —236 from Euclid
and you are invited to go ahead and check that:
(367)** = 181 mod 1147
(686)* = 126 mod 1147
ete.
For Thought: What do you do if a < 07

A Tiny Fudge: We assumed GCD(k,n) = 1 to decode the message.
Disaster would ensue if they failed to be relatively prime because then
GCD(k,n) = p or ¢, and the code would be broken! Fortunately, the
chances are infinitesimal for a number generated essentially at random
from the message to share a common factor with n.

Recap:
Public Knowledge: Numbers n and m with GCD(m, ¢(n)) = 1.

How to Encode: Use a cipher and blocks to convert the message to
a string of numbers (x * %) of approximately the same size as n. Then
replace each string of numbers with (x * %)™ mod n.

Private Knowledge: The prime factorization n = pq, from which
¢(n)=(p—1)(¢g—1) and am + bp(n) = 1 are easily computed.

How to Decode: Replace each encoded () with (% %) to recover
the original! Then use the blocks and cipher to recover the message.

What could go wrong? Some string (x * %) might not be relatively
prime to n. But the chances of this happening are infinitesimal.

