
Course Notes for Math 780-1 (Geometric Invariant Theory)

4. Vector Bundles on a Smooth Curve. In this section, we will construct
projective moduli spaces for semistable vector bundles on a smooth projective
curve C using GIT. The construction we present is due to Simpson, and will
be generalized to higher dimensions in §5.

Let F and E be vector bundles on a smooth curve C of genus g.

Definition: (a) The slope µ(E) = deg(E)/rk(E).

(b) E is stable if µ(F ) < µ(E) for all proper subbundles F ⊂ E.

(c) E is semistable if µ(F ) ≤ µ(E) for all F ⊂ E.

Lemma 4.0: If 0 → F → E → G → 0 is an exact sequence of vector
bundles, then µ(F ) ≥ µ(E) (resp.>) if and only if µ(E) ≥ µ(G) (resp. >).

Proof: Arithmetic! If a, b, c, d > 0, then a
c
> a+b

c+d
if and only if b

d
< a+b

c+d
.

Examples: (i) Every vector bundle on P1 splits as a sum of line bundles, so
there are no stable bundles on P1, and the only semistable ones are ⊕O(d).

(ii) E is stable (resp. semistable) iff E∗ is stable (resp. semistable).

(iii) A line bundle L is always stable. E is stable (resp. semistable) iff
E ⊗ L is stable (resp. semistable).

(iv) If E is semistable and:

(a) deg(E) < 0, then H0(C,E) = 0.

(b) deg(E) > 2r(g − 1), then H1(C,E) = 0.

(c) deg(E) > 2rg − r, then E is generated by its global sections.

(Schur’s) Lemma 4.1: (a) If E and F are stable with the same slope, then
any map f : E → F is either 0 or an isomorphism.

(b) The only automorphisms of a stable bundle E are multiplication by
scalars.

(c) If E is semistable, then there is a filtration 0 = E0 ⊂ E1 ⊂ ... ⊂
En = E such that Fi := Ei/Ei−1 is a stable vector bundle with µ(Fi) =
µ(E). Moreover, the associated graded ⊕n

i=1Fi is independent of the choice
of filtration.
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Proof: If f : E → F is nonzero and ker(f) ̸= 0, then ker(f) and
E/ker(f) are bundles. Now the stability of E implies µ(ker(f)) < µ(E),
which implies µ(E/ker(f)) > µ(E) = µ(F ), contradictng the stability of F .
So f is injective, and surjective, by the stability of F . This gives (a).

If α : E → E is an automorphism, let λx be an eigenvalue of the restriction
of α to the fiber of E over x ∈ C. Then α − λx(id) drops rank at x, so it
must be zero(!) and we have (b). Finally, (c) follows from (a) by the usual
Jordan-Hölder decomposition.

(Harder-Narasimhan) Lemma 4.2: If E is any vector bundle on C, then
there is a unique filtration:

0 = E0 ⊂ E1 ⊂ ... ⊂ En = E

with the property that Fi := Ei+1/Ei are all semistable bundles, and µ(Fi) >
µ(Fi+1). (This is called the Harder-Narasimhan filtration of E.)

Proof: Let S = {a ∈ Q|a = µ(F ) for some quotient bundle E → F}.
We claim first that S contains a minimal element. Indeed, let D be a divisor
of large enough degree so that E(D) is generated by its sections. Then for
any quotient F , the twist F (D) is also generated by its sections, hence is of
nonnegative slope. Thus S is bounded from below by −deg(D), and since
the elements of S have bounded denominators, it follows that S contains its
lower bound, say amin.

Suppose α : E → F and α′ : E → F ′ are two quotients, with µ(F ) =
µ(F ′) = amin. Then the image of α ⊕ α′ : E → F ⊕ F ′ is necessarily
semistable, of slope amin, and surjects onto F and F ′. So there is a unique
quotient αmax : E → Fmax of maximal rank. Let K = ker(αmax). Then any
quotient β : K → Q has strictly larger slope than amin, because otherwise
E/ker(β), since it is an extension of Fmax by Q, would have smaller slope
than amin, or else would be of the same slope and larger rank than Fmax
by Lemma 4.0. We may assume by induction on the rank that there is a
Harder-Narasimhan filtration of K, so we are done.
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Definition: For fixed C, let SStabr,dC be the functor from schemes to sets
defined by:

SStabr,dC (S) =

{
locally free sheaves E of rank r on C × S such that
for all closed s ∈ S, E|s is semistable of degree d

}
/ ∼

where E ∼ E ′ if E|s and E ′|s have the same associated graded for all closed
s ∈ S.

Notice that from the definition it is immediate that if SStabr,dC is coarsely
represented by a scheme X, and if there is a “universal” vector bundle on
C ×X, then X is a fine moduli space.

The following theorem is due to Narasimhan and Seshadri.

Theorem 4VB: There is a projective coarse moduli space Mr,d(C) for the
functor SStabr,dC . Moreover, if d and r are relatively prime, then Mr,d(C) is
a fine moduli space.

We begin with two key lemmas, the first solving the relevant GIT problem,
and the second having to do with the boundedness of certain families of
sheaves on a smooth curve. The second lemma poses difficulties when we try
to generalize to higher dimension.

(Linear Algebra) Lemma 4.3: If V and W are vector spaces and M is an
integer, then a point ψ ∈ G(V ⊗W,M) (the Grassmannian parametrizing
quotients V ⊗W → T of rankM) is semistable (resp. stable) with respect to
the canonical linearization of SL(V ) if and only if for every subspace H ⊂ V ,
we have:

(i) H ⊗W is not in the kernel of ψ and

(ii) dim(H)

dim(ψ(H⊗V ))
≤ dim(V )

dim(T )
(resp. <).

Proof: Let N = dim(V ). The action of SL(V ) on the Grassmannian is
linearized by the induced action on the dual space of ∧M(V ⊗W ). If a basis
e1, ..., eN of V is given, then we say that the Plücker vector ei1 ⊗ w1 ∧ ... ∧
eiM ⊗ wM contains the (not necessarily distinct!) basis vectors ei1 , ..., eiM .
If λ = diag{tr1 , ..., trN} is a 1-PS of SL(V ) with respect to this basis, then
the weight of the Plücker vector above is

∑M
j=1 rij . An element ψ of the
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Grassmannian is λ-unstable if and only if ∧Mψ vanishes on every Plücker
vector of nonpositive weight.

Suppose that there is a nontrivial H ⊂ V such that H ⊗ W is in the
kernel of ψ. Then let e1, ..., eN be a basis of V such that e1 ∈ H, and let λ be
the 1-PS diag{t1−N , t, ..., t} of SL(V ). Then ψ is λ-unstable, because every
Plücker vector of nonpositive weight must contain e1, hence ∧Mψ vanishes
on it.

Suppose that H ⊂ V is of dimension n, dim(ψ(H ⊗ W )) = mn, and
n
N
> mn

M
. Then let e1, ..., en be a basis of H, and extend it to a basis e1, ..., eN

of V . Let λ = diag{tn−N , ..., tn−N , tn, ..., tn}. If ∧Mψ does not vanish on some
Plücker vector, then that vector must contain at most mn of the e1, ..., en,
by assumption, so its weight must be at least mn(n−N) + (M −mn)n > 0,
and so ∧Mψ is λ-unstable, and we see that if ψ is semistable, then (i) and
(ii) must hold.

Conversely, suppose that ψ is λ-unstable for some 1-PS λ of the form
diag{tn−N , ..., tn−N , tn, ..., tn}. Let H ⊂ V be the hyperplane spanned by
e1, ..., en. Since ∧Mψ must vanish on any Plücker vector of nonpositive
weight, it follows that either ψ(V ⊗W ) ̸= T , or else the dimension mn :=
dim(ψ(H ⊗W )) must satisfy mn(N − n) < (M −mn)n, so (i) or (ii) must
fail.

Finally, suppose λ is a general 1-PS, diagonalized as λ = diag{tr1 , ..., trN}
with respect to a basis e1, ..., eN of V , and suppose that ψ is λ- unstable. Let
Hn be the span of e1, ..., en, and let mn = dim(ψ(Hn ⊗W )). Assuming (as
we may) that ψ(V ⊗W ) = T , we have:

(∗) L(r1, ..., rN) := r1m1 + r2(m2 −m1) + ...+ rN(M −mN−1) > 0

because the left side is the minimal weight of a Plücker vector on which ∧Mψ
is nonzero, and ψ is λ-unstable.

But L(r1, ..., rN) is linear in the ri, which are nondecreasing and sum to
zero. So (∗) holds if and only if L(n − N, ..., n − N, n, ..., n) > 0 for some
n, and it follows that ψ is also λ-unstable for this choice of weights, which
completes the proof of the lemma for semistability, and stability is checked
in the same way.
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(Boundedness) Lemma 4.4: Let p ∈ C, and OC(1) := OC(p). Then
for each degree d and rank r (or equivalently, for each Hilbert polynomial
P (n) = rn+ d− r(g − 1)), there is an integer N such that n ≥ N implies:

(a) If E is a semistable bundle of rank r and degree d, then H1(C,E(n))
vanishes, and E(n) is generated by global sections.

(b) If E is a semistable bundle of rank r and degree d and F ⊂ E is any
subbundle, then we have:

h0(C,F (n))

rank(F )
≤ h0(C,E(n))

rank(E)

Moreover, equality implies that:

χ(C,F (m))

rank(F )
=
χ(C,E(m))

rank(E)

for all m.

(c) If E is a coherent sheaf on C of Hilbert polynomial P (n) such that
every vector bundle quotient E → G satisfies:

h0(C,G(n))

rank(G)
≥ P (n)

r
,

then E is a semistable vector bundle.

Proof: The key point for curves is the following. If F is a semistable
bundle of rank r′ and h0(C,F ) ̸= χ(C,F ), then h0(C,F ) ≤ r′g. (Reference?)

Choose N > 2g − 1 − d
r
. We already saw that (a) is satisfied in Ex-

ample (iv). Moreover, for n ≥ N , any semistable bundle F of rank r′ ≤ r
and slope µ ≤ d

r
must satisfy h0(C,F (n)) = χ(C,F (n)) ≤ r′

r
P (n), or else

h0(C,F (n)) ≤ r′g < r′

r
P (n).

If F ⊂ E and E is semistable, then every subquotient in the Harder-
Narasimhan filtration of F has slope at most d

r
, so for n > N , each subquo-

tient Fi satisfies
h0(C,Fi(n))

rank(Fi)
≤ P (n)

r
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and by a repeated application of Lemma 4.0, we have the same inequality
for F , which is the first part of (b). If equality holds, then it must hold for
every subquotient Fi, and we conclude that every Fi has slope exactly d

r
, so

µ(F ) = µ(E) and χ(C,F (m))

rank(F )
= P (m)

rank(E)
for all m.

Finally, suppose E is the sheaf in (c). Let T ⊂ E be the torsion sub-
sheaf, and let G be the last (semistable) quotient in the Harder-Narasimhan
filtration of E/T . Since µ(G) ≤ µ(E/T ) ≤ d

r
, it follows that:

h0(C,G(n))

rank(G)
≤ P (n)

r

with equality if and only if h0(C,G(n)) = χ(C,G(n)), E/T = G and T = 0,
i.e. E = G(!)

We are ready to prove Theorem 4VB now.

Proof of Theorem 4VB: For fixed r and d, let N be chosen as in
the boundedness Lemma 4.4. As in that lemma, let P (n) be the Hilbert
polynomial of a vector bundle of rank r and degree d. For n > N , consider
the Quot scheme: QuotP (V ⊗ OC(−n)/C) (to be abbreviated QuotP,n(V ))
parametrizing quotients

V ⊗OC(−n) → E

where V is a vector space of dimension P (n). As we have already remarked,
every semistable bundle of rank r and degree d will appear as such a quotient.

Recall that we proved in the fall that there is an M such that for all
m ≥ M , the maps V ⊗ OC(m − n) → E(m) are all surjective on global
sections, and if we let W = H0(C,OC(m− n)) then we get an embedding:

ιm,n : QuotP,n(V ) ↪→ G(V ⊗W,P (m)).

We therefore choose to linearize the SL(V ) action on QuotP,n(V ) via the
canonical linearization on the Grassmannian. (Note that the linearizing line
bundle is isomorphic to ∧P (m)π∗U(m), where π is the projection to the Quot
scheme from its product with C, and U is the universal quotient sheaf.)
If x ∈ QuotP,n(V ), let Ex stand for the corresponding quotient sheaf, let

ψx : V ⊗W → H0(C, Ex(m)) be the induced map, and let XU , XSS and XS
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be the loci of unstable, semistable and stable points, respectively, of the Quot
scheme.

Step 1: After possibly increasing M independently of x, if

(a) Ex is semistable and

(b) V → H0(C, Ex) is an isomorphism,

then x ∈ XSS.

Proof of Step 1: If x ∈ XU , then by Lemma 4.3, there is a nonzero
H ⊂ V so that either ψx(H ⊗W ) = 0, or else

(∗) dim(H)

dim(ψx(H ⊗W ))
>

P (n)

P (m)

If the first holds, then in fact H ⊂ V is in the kernel of the map
V → H0(C, Ex), because recall that W = H0(C,OC(m − n)), and ψx is
just multiplication of sections. So (b) fails.

A point x of the Quot scheme corresponds to a quotient V ⊗OC(−n) →
Ex. For eachH ⊂ V , let Fx,H ⊂ Ex be the subsheaf generated byH⊗OC(−n),
and let Kx,H be the kernel:

0 → Kx,H → H ⊗OC(−n) → Fx,H → 0

Since the set of Fx,H and Kx,H vary in a bounded family (indexed by a
product of the Quot scheme and Grassmannians), we can therefore chooseM
so that m ≥ M implies that H1(C,Kx,H(m)) = 0 and H1(C,Fx,H(m)) = 0,
simultaneously for all H ⊂ V and all x in the Quot scheme. So ψ(H⊗W ) =
H0(C,Fx,H(m)) is of dimension χ(C,Fx,H(m)).

Thus if (∗) holds, then:

dim(H0(C,Fx,H(n)))

χ(C,Fx,H(m))
>

P (n)

P (m)
.

On the other hand, if Ex were semistable, then Lemma 4.4 (a) and (b)
would imply that:

(∗∗) dim(H0(C,Fx,H(n))

rank(Fx,H)
≤ dim(H0(C,E)(n))

rank(E)
=

P (n)

rank(E)
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But χ(C,Fx,H(m)) = r′m + d′ − r′(g − 1), where r′ = rank(Fx,H) and
d′ = deg(Fx,H). Similarly, P (m) = rm + d− r(g − 1). Then since there are
only finitely many possible degrees d′ (the Fx,H vary in a bounded family!),
it follows that there is an M independent of x and H so that for m > M ,
a strict inequality in (∗∗) would contradict (∗). On the other hand, by the
second part of Lemma 4.4 (b), equality in (∗∗) would also violate (∗), which
completes the proof.

Step 2: After possibly increasing M again, if x ∈ XSS then:

(a) The map V → H0(C, Ex(n)) is an isomorphism and

(b) The quotient Ex is a semistable vector bundle.

Proof of Step 2: By Lemma 4.3, if x ∈ XSS, then V → H0(C, Ex) must
be injective, because any kernel would yield a kernel of ψx after tensoring by
W . Moreover, for all H ⊂ V , we must have:

(∗) dim(H)

dim(ψx(H ⊗W ))
≤ P (n)

P (m)

Suppose Ex were not a bundle or not semistable. Then by Lemma 4.4(c),

we could find a quotient bundle Ex → G so that h0
(C,G(n))

rank(G)
< P (n)

r
. Then let

H be the kernel of the map V → H0(C,G(n)) for such a quotient, and let
Fx,H be the image of H in Ex. If Fx,H is torsion, then there is a universal

bound on its length, say by K, and we can choose M so that P (n)
P (m)

< 1
K

for

m > M , violating (∗).
Otherwise, by the arithmetic of Lemma 4.0, we have:

(∗∗) dim(H)

rank(Fx,H)
>
P (n)

r

where the rank of Fx,H is the generic rank, or if you prefer, the coeffi-
cient of m in the Hilbert polynomial χ(C,Fx,H(m)). Since χ(C,Fx,H(m)) =
dim(ψx(H ⊗W )) for m > M as before, then just as in Step 1, we get a con-
tradiction to (∗), perhaps after boosting M again, from the fact that there
is a uniform upper bound on the constant terms of the Hilbert polynomials
of the Fx,H . So Ex is semistable.

Finally, since Ex is semistable, the map V → H0(C, Ex(n)), which we
already saw was injective, must be an isomorphism by Lemma 4.3(a).
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Step 3: (a) x ∈ XS ⇐⇒ x ∈ XSS and Ex is stable.
(b) For any x ∈ XSS, the unique closed orbit O(x′) ⊂ O(x) corresponds

to a quotient such that Ex′ is isomorphic to the associated graded of Ex.

Proof of Step 3: (a) follows the same argument as Steps 1 and 2,
replacing the inequalities (∗∗) of Step 1 and (∗) of Step 2 by strict inequalities.

If x ∈ XSS − XS, then let F ⊂ Ex be a proper subbundle of the same
slope, and let H ⊂ V be the kernel of the map V → H0(C,G(n)), where
G = Ex/F . Consider the induced extension:

(†) : 0 → F → Ex → G→ 0

of vector bundles of the same slope.
If we take e1, ..., en spanning H, extend to a basis of V , and consider

the 1-PS subgroup λ = diag{tn−N , ..., tn−N , tn, ..., tn}, then λ acts on the
extension class of † in H1(C,G∗ ⊗ F ) by multiplication by tN , taking it to
the split extension in the limit as t→ 0. We can repeat the process until we
get to the associated graded of Ex. Since the associated graded is uniquely
determined by Schur’s Lemma, and there must be some closed orbit in the
closure of the orbit of Ex, this must be the one!

Step 4: The GIT quotient Mr,d(C) of XSS by SL(V ) is a coarse moduli
space for the functor SStabr,dC .

We saw in Step 3 that the closed points of Mr,d(C) correspond to equiva-
lence classes of semistable bundles, hence to the points of SStabr,dC (Spec(C)).
Suppose that ES is a family of semistable bundles on C×S of rank r and rela-
tive degree d. Then we have the (surjective) evaluation map π∗

S(πS)∗ES(n) →
ES(n), which we may trivialize in neighborhoods Us of each closed point s ∈ S
to get quotients V ⊗OC×Us(−n) → EUs . In other words, we get a map from
each Us to X

SS, and via the quotient, to Mr,d(C). Since two different triv-
ializations differ fiberwise (after scaling) by an element of SL(V ), the local
maps glue to S → Mr,d(C).

If there were another projective scheme Y with this property, then the
universal quotient V ⊗ OC×XSS(−n) → U induces a map XSS → Y which
is constant on fibers, hence a uniquely determined map Mr,d(C) → Y , since
Mr,d(C) is a categorical quotient, by Theorem 2P.
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Step 5: Mr,d(C) is a fine moduli space if d and r are relatively prime.

Every semistable bundle is stable if r and d are relatively prime. Recall
that by Schur’s Lemma, if E is stable, then Aut(E) = C∗. If g ∈ SL(V )
stabilizes a point x ∈ XSS, then this implies g acts on Ex as a P (n)th
root of unity times the diagonal, since it acts by multiplication by the same
constant on every section of Ex(n). Since d and r are relatively prime by
assumption, there are integers a and b so that 1 + ar = bP (n). (Recall that
P (n) = nr + d− r(g − 1).) Thus, the action of g on Ex ⊗ (∧rEx)⊗a is trivial.
An obvious (!?!) extension of the descent lemma of Kempf (Theorem 3D)
implies that the twist U ⊗ (∧rU)⊗a of the universal subbundle on C ×XSS

descends to a bundle on C ×Mr,d(C). On the other hand, the bundle ∧rU
on C × XSS determines a map XSS → Picd, which must factor through
the categorical quotient Mr,d(C). So by the universal property of Pic, there
is a line bundle L on Picd(C) with the property that the pullback of L to
C × XSS coincides with ∧rEx on each C × {x}. (Reference?) But if we
let det : Mr,d(C) → Picd(C) be the induced map, then this implies that
tensoring the descended vector bundle with det∗(L∗)⊗a yields a universal
bundle.

Proposition 4.5: There is a scheme structure on the subset

Θ := {E | H0(C,E) ̸= 0} ⊂ Mr,r(g−1)(C)

making it an ample Cartier divisor.

Proof: Let n be chosen as in Lemma 4.4, letXSS ⊂ QuotP (V⊗OC(−D)/C)
be the semistable locus, where P (m) = mr, and D =

∑n
i=1 pi is a divisor on

C consisting of distinct points. If U is the universal quotient on C × XSS,
then pushing down the exact sequence:

0 → U → U(D) → ⊕n
i=1U(D)pi → 0

yields the sequence:

0 → πXSS
∗
U → πXSS

∗
U(D)

f→ ⊕n
i=1U(D)pi → R1πXSS

∗
U → 0

where the middle two sheaves are both locally free of rankN = rn. Moreover,
since there exist semistable bundles E of degree r(g− 1) with H1(C,E) = 0,
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(e.g. E = ⊕rL where H1(C,L) = 0), the first sheaf vanishes! Finally, the
map f is G-invariant, so f descends, and ∧N(f), a (nonzero) section of the
line bundle L := Hom(∧NπXSS

∗
U(D),⊗n

i=1∧rU(D)pi) descends to a section s
which vanishes precisely on Θ. Ifm > M is fixed, then OX(1) := ∧mrπ∗U(m)
is the linearization used in Theorem 4VB to define XSS. In particular, some
power of O(1) descends to an ample line bundle on Mr,d(C). We claim that
there are integers a and b such that La and O(b) differ by the pullback of a
line bundle from Picd(C). This implies that Θ is ample.

But ∧NπXSS
∗
U(D) is trivial, naturally isomorphic to ∧NV ⊗ O, and the

difference between ∧crπXSS
∗
U(c) and ∧(c+1)rπXSS

∗
U(c+1) is a translate of the

bundle ∧rUp by the pullback of a line bundle from Picd(C) (p ∈ C is an
arbitrary point). The result is therefore immediate, since up to translation,
L and O(1) are powers of the same line bundle.
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