University of Utah, Department of Mathematics January 2020, Algebra Qualifying Exam

There are ten problems on the exam. You may attempt as many problems as you wish; five correct solutions count as a pass. Show all your work, and provide reasonable justification for your answers.

- 1. Prove that there are at most 5 groups of order $2 \cdot 7^2$ up to isomorphism.
- 2. Suppose (G, +) is a finite Abelian group of order $3^3 \cdot 2^3$. Suppose that $6 \cdot G = \{6x | x \in G\}$ has 6 elements. Classify *G* as a direct sum of cyclic groups.
- 3. Prove that there are no simple groups of order $2^7 \cdot 3^2$.
- 4. Let $R := \mathbb{Z}[x]$ and *I* the ideal (3, x). How many elements are in $\operatorname{Ext}^{i}(R/I, R)$ for i = 0, 1, 2?
- 5. Consider $R := \mathbb{Q}[x]$ and the matrix:

$$A = \begin{bmatrix} x - 1 & 0 \\ 1 - x & x^2 \end{bmatrix}$$

Let *M* be the cokernel of the map $R^2 \xrightarrow{A} R^2$. Compute the rank of the \mathbb{Q} -vector space Hom_{*R*}(*M*,*R*/(*x*²)).

6. Let *n* be a positive integer, *V* a \mathbb{C} -vector space of rank *n*, and $T: V \longrightarrow V$ a \mathbb{C} -linear map with the property that the for each $c \in \mathbb{C}$ the eigen space $\{v \in V \mid T(v) = cv\}$ has rank at most 1.

Prove that there exists a $w \in V$ such that the set $\{w, T(w), \dots, T^{n-1}(w)\}$ is a basis for V.

- 7. With $\alpha = \sqrt{6 + \sqrt{11}}$, prove that the extension $\mathbb{Q}[\alpha]/\mathbb{Q}$ is Galois and compute its Galois group.
- 8. Describe a primitive generator for the degree two extension of \mathbb{Q} inside the extension $\mathbb{Q}(\zeta)$, where $\zeta := e^{2\pi i/7}$. Justify that the extension you identify is of degree two.
- 9. Describe all the prime ideals in the ring $\mathbb{Z}[x]/(x^3+1,6)$.
- 10. For each positive integer *n* let $R_n = \mathbb{Z}[2^{1/2}, \dots, n^{1/n}]$ viewed as a subring of the field of real numbers. Prove that the ring $R := \bigcup_{n \ge 1} R_n$ is not Noetherian.