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7. Riemann-Roch. Let D be a divisor (not necesarily effective) on
a non-singular curve C' C CP". Recall that:

L(D)={¢ e K(C)" | div(p) + D >0} U{0} C K(C)
is a finite-dimensional vector space over C of dimension /(D).
Theorem 7.1 (“Classical” Riemann-Roch).

(D) —I(Kc— D)=deg(D)+1—g
where g is defined by the equation deg(K¢) = 29 — 2.

We will prove this with a mix of algebra and analysis, following
Mumford’s Algebraic Geometry I; Complex Projective Varieties.

A Plausibility Argument. A (rational) differential w € Q(C) has
a well-defined notion of a residue at each point p € C. If z is a local
(analytic) coordinate near p, with z = 0 at p, and if:

w=(b_gz %4+ b1z b+ ..)dz
then

1
res,(w) = — /w =b,
gl

27

where v is an oriented (small) loop around p. This is remarkable, since
it tells us that the coefficient of 27! is intrinsic to the differential, and
does not depend upon the choice of analytic local coordinate.

If D=> d;p; >0 and z; are local coordinates near p;, we may let:
V = {aij,diz;di + ...+ ai,,lzfl}jzl

be the vector space of “potential Laurent parts” of a function f € L(D).
The Mittag-Loeffler problem asks when a potential Laurent part is the
collection of Laurent tails of some f € L(D). Notice that if fi, fo both
solve the same Mittag-Loeffler problem, then:

f1 — f2 is holomorphic everywhere, hence constant
so the solutions are unique, up to addition of a constant.

With residues, we see that the regular differentials on C' produce
conditions on solvability of the Mittag-Loefler problem. Specifically:
> resy(fw) =0

i=1
for any f € L(D) and w € Q[C] by Stokes’ Theorem.
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This is a linear condition on Laurent parts in V. If
{(bio + -+ big12 N dz iy

are the initial parts of the differential w at each p;, then:

n n

Z resp,(fw) = Z(ai,—dibi,di—l + ...+ a;—1bip)

i=1 i=1
and this is only identically zero if all the initial parts of w are zero, i.e.
w € L(K¢) fails to impose a linear condition on V' iff w € L(K¢ — D).
Thus:

dim(L(D)/C) < dim(V) — dim(L(K¢)/L(Kc — D))
which (since dim(V') = deg(D)) gives an inequality:
I(D) — I(K¢ — D) < deg(D) + 1 — I(K¢)

We will see that the inequality is an equality, and that I[(K¢) = ¢
which will give us the Riemann-Roch Theorem.

A Reduction. Suppose for every D there is a divisor £ such that:
(i) E—D >0 (i.e. D “is contained in” FE), and
(ii) the Riemann-Roch Theorem holds for E.

Then the Riemann-Roch Theorem holds for every D.

Proof. If D =) d;p; and E = )_ e;p; with e; > d;, let:

o —e; —d;+1\n
V=Aai ez "+ -+ ai_ag1z "},

be the space of Laurent tails “between” an f € L(D) and a g € L(E).
Then the natural “Laurent tail map” T has kernel L(D):

0— L(D)—= L(E) 5V
since a rational function in L(D) is a rational function in L(F) with
no Laurent tail between D and E.

Next, consider the residue pairing with a differential w € L(K¢— D):
res:V x L(Ke—D) - C; v Xxwr— Zrespi(v-w)
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where v -w is understood to be the set of n locally defined differentials:

{Gi e+ + tianz, "} w
near each point p; € C. Then res(v,w) =0Vv € V & we L(Kc—E)
since only a differential with zeroes of order e; or more at each p; will

produce a zero overall residue (as in the plausibility argument above).



But if g € L(F), then

n n

Z Tespi(T(g> : w) — Z TESp, (gw) =0

i=1 i=1
by Stokes’ theorem, so the image of T pairs with zero against any
differential in L(Ko — D). This gives us the following sequence of
vector spaces that is exact everywhere except (possibly) the middle:

0— L(E)/L(D) 5 V™ L(Kc — D)*/L(Ke — E)* = 0
where the latter map res is defined via the residue pairing.
It follows that:
deg(F) — deg(D) = dim(V) > (E) — (D) + (K¢ — D) — (K¢ — E)
and therefore that if:
I(E)—l(Kg—FE)=deg(E)+1—g
then:
I(D) = I(Kc — D) > deg(D) +1 - g
On the other hand, we may apply the same argument with the roles

of D and K¢ — D reversed (containing K¢ — D in a divisor E for which
Riemann-Roch holds) to get:

(Kc—=D)—1(D) 2 deg(Kc —D)+1—g=(29g—2)—deg(D)+1—g
which gives us the opposite inequality and hence equality. O

Now we get to the heart of the matter by connecting linear series
with the homogeneous coordinate ring:

R = Clxy, ..., z,)/I(C) of the embedded curve C C CP"

Observation. Each homogeneous F; € R, defines an effective divisor
E; on C' via the following:

ord,(Fy) := ord,(Fy/G) for any G € Ry with G(p) # 0 and
Ey:=div(Fy) =Y ord,(Fa)-p

peC
and notice that if div(F}) = E/, then div(F}/Fy;) + E4 = E/; so all such
divisors are linearly equivalent. We get injective maps:

fd Ry — L(Ed), G — G/Fd forall d >0

Proposition 7.1. There is a dy such that f; is surjective for all d > d,.
In other words, there is a dy such that:
(*) If d > dy and D € |E,| then D = div(G) for some G € R,.



This will show, in particular, that {(Ey) = dim(Ry) for all d > dj is
computed by the Hilbert polynomial of R.

Assume C does not lie in any of the coordinate hyperplanes, and let
H; = div(z;), and consider any of the exact sequences:

0— Rd—l iﬁ Rd E? (RHl)d
Then:
Ry, = Clxo, ...,z /{xi, I1(C))

has constant Hilbert polynomial 6 = deg(H;), the degree of C' C CP",
so the Hilbert polynomial of R is hr(d) = dd + ¢ for some constant c,
and therefore (after possibly raising the value of dy),

[(Eq) = dd + ¢ = deg(Ey) + ¢ for all d > dy

since deg(Ey) = d - deg(H;). Also, since deg(Ey) > 2g — 2 for large d,
if we can additionally show that

c=1—g
then we have the Riemann-Roch theorem for all £ = E; and d > d,.
To prove the Proposition, we will use three tools:
(a) Noether Normalization. Under a “general” projection:
my : C — CP!

(from a codimension two subspace V' C C"*1)| R is a finitely generated
graded module over the homogeneous coordinate ring C[z, 21| of CP*

(with zp = > a;x; and 2y = ) bx;).

(b) Nullstellensatz. If ¢ € K(C) is regular at all points of C' N U;,
ie. if p € O¢,, for all p € CNU;, then:

qbe(C[CﬂUi]—{x%lFeRN} c K(C)

)

is in the coordinate ring of the affine curve C N U; C U; = C™.

(¢) Let M be a finitely generated graded torsion-free module over
Clzo, .., zr], and let Mk be the localization of M with respect to the
field C(zo, ..., z,). Then there is a dy such that, for all d > d, if

m € My and zévm, ,zivm € My 4 for some N

then
m € M,y
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Let us assume (a)-(c) for now and use them to prove the Proposition.
Suppose D € |Ey|. Since |E;| = |dH;| for each i, there are rational
functions ¢; € K(C) such that:

div(¢;) = D — dH,

from which we conclude that div(¢;/¢;) = div(z/x]) hence ¢;/; is
a constant multiple of x;-l /x¢. After multiplying each ¢; by a suitable
constant, we can arrange for:

F:%xg:%ﬁf:"':QﬁanEK(R)

and moreover div(F) = D, so we need to show that there is a dy such
that F' € Ry if d > dy. We now invoke (a)-(c) as follows:

(a) Choose a generic projection so that R is a finitely generated
(graded) module over Clzg, z1]. It follows that the field of fractions
K(R) agrees with the localization Ry of R at K = C(zo, 21), and in
particular that if my,...,my generate R as a C[zy, z;]-module, then a
subset of the mjs are a basis for Rx as a vector space over C(zp, 21).

(b) Since div(¢;) = D — dH; only has negative coefficients at points
of C — C'NU, it follows that the ¢; € O¢,, for all p € C'N U;, hence
¢; € C[C NU;], and so for some N and all i, we have ¥¢; € Ry, so:

N N
To F,.o,x, F' € Ryiq

(c) It follows that for N’ > (n+1)(/N —1), every monomial of degree
N’ in x, ..., x, has degree N or more in some z;, hence:

! /
2'F 2 F € Ryiyg
n

(since zg = Y o ya;x; and 2y = > . bix;). Thus there is a dy such
that, for all d > dy, we have F' € Ry, proving Proposition 7.1. 0

Computation of the Constant. Consider a projection:
v C — CP?
for V' C™*! a general subspace of codimension three.
Claim. The image of 7y is a nodal curve, and my “resolves” the nodes.
Sketch of the Proof. Any projection 7y is a composition:
Tg 0+ 0y : C — CP?

of projections from points (in successively smaller projective spaces).
So it suffices to show that for general choice of ¢ € CP",

g C — cp!

is an embedding if n > 3 and a resolution of a nodal curve if n = 3.



This is accomplished with a dimension count. Namely, if C' C CP",
consider the “secant” mapping to the Grassmannian:

5:CxC— Gr(2,C"Y); (p1,p2) = Dib2
and the incidence correspondence:
FI(1,2,C*)
v T2 N\
CP™ Gr(2,Crt)
from the flag manifold. Then the locus of points ¢ € CPP" that lie on a
secant line of C' is:
mi(my ' (s(C x 0)))

which has dimension at most 3, and therefore cannot fill CP" if n > 3

and the projection is injective if ¢ lies on no secant line. Similarly, for
the tangent map ¢t : C — Gr(2,C"):

mi(my '(C))
is (at most) two-dimensional, and it follows that the projection is an
immersion if ¢ lies on no tangent line. This shows that the general
projection to CP? (or higher) is an embedding, and moreover a general
projection to CP? is an immersion. To see that all the singular points

of the latter are nodes requires a more delicate but similar analysis of
the loci of trisecant lines and “parallel tangent” lines to a curve in CIP3.

We are now ready to invoke the genus computation of §6. Namely,

0—1
= —v
g 2
where 2g —2 = deg(K ) and v is the number of nodes in 7y (C) C CP2.
Finally, we need a Hilbert polynomial computation:

hay (o) (d) = (d;Z) - (d+§_5> =ds+1— (5;1)

because my (C) C CP™ is a plane curve of degree §, and the Hilbert
polynomial of C' C CP" can be shown to satisfy:

ho(d) = hay o)(d) +v
giving the desired computation of the constant term.

Finally, Riemann-Roch follows from the reduction since every divisor
D on C can be evidently contained in a divisor of the form E, for any
sufficiently large value of d! O



