
Algebraic Geometry (Math 6130)
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2. Projective Varieties. Classically, projective space was obtained
by adding “points at infinity” to kn. Here we start with projective
space and remove a hyperplane, leaving us with an affine space. Even
though they are not functions on projective space, there is a well-
defined notion of vanishing of a homogeneous polynomial at a point of
projective space. This allows us to define algebraic sets and varieties
in projective space analogous to the algebraic sets and varieties in §1.

Let V be a finite-dimensional vector space over a field k and denote
the dual space Hom(V, k) by V ∗. In the 1960s and 70s, there was some
trans-Atlantic controversy over whether the projective space associated
to V ought be the set of minimal subspaces (lines through the origin)
in V or else the set of minimal quotient spaces of V . We’ll use both
definitions here (with different fonts to distinguish them).

Definition 2.1. (i) (American projective space) Let P(V ) be the set
of lines through the origin in V , i.e.

P(V ) = (V − {0})/ ∼
where v ∼ v′ if if v = λv′ for some λ ∈ k∗.

(ii) (European projective space) Let P(V ) be the set of one-dimensional
quotients of V , i.e.

P(V ) = (V ∗ − {0})/ ∼

where (V
q→ k) ∼ (V

q′→ k) if there is a linear isomorphism k
λ→ k

(multiplication by λ ∈ k∗) such that q = λ ◦ q′.

Remarks. (a) To each non-zero (hence surjective) map V
q→ k, we may

associate the kernel W = ker(q) ⊂ V , which is a maximal subspace,
i.e. a hyperplane in V . Conversely, to each hyperplane W ⊂ V , the
quotient V → V/W ∼= k is uniquely determined up to the equivalence.
So P(V ) may be thought of as the set of hyperplanes in V .

(b) Clearly there is a natural identification P(V ) = P(V ∗), but just
as a vector space is not canonically isomorphic to its dual, there is no
canonical isomorphism between P(V ) and P(V ). On the other hand,
once an isomorphism V ∼= V ∗ is chosen (e.g. from a choice of basis)
then an isomorphism between P(V ) and P(V ) results.

This bit of pedantry will be important when we replace vector spaces
with vector bundles (and the reader may have noticed that we have not
yet even defined an isomorphism of projective spaces).
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Example 2.1. (a) P(k) = P(k) is a point.

(b) A short exact sequence of vector spaces:

(∗) 0→ U
f→ V

g→ W (= V/U)→ 0

determines inclusions: P(U) ⊂ P(V ) and P(W ) ⊂ P(V ).

These are the projective subspaces of P (V ) and P(V ) respectively.
Maximal projective subspaces are called projective hyperplanes. In
particular, if P (U) ⊂ P (V ) is a hyperplane then W is a line, and in
that case we lose no generality by letting W = k.

(c) Suppose W = k in (∗). A map l : k → V splits the sequence (∗)
if the composition k

l→ V
g→ k is nonzero. A pair of splittings l, l′ differ

(after a uniquely determined scaling of l′) by an element l′− l : k → U .
This gives the set of splittings the structure of an affine space with U
as the underlying vector space.

In a bit more detail, a splitting l gives rise to an isomorphism:

(f, l) : U ⊕ k ∼→ V

The points of P (V )−P (U) may be identified with maps l′ : k → U ⊕k
(using the isomorphism above) with l′(1) = (u, 1). In other words, once
the splitting l is chosen, we have: P (V ) − P (U) = U with the chosen
splitting l representing the origin in U .

Without the choice of splitting, P (V )−P (U) is “only” affine space.

This is important enough to record it as:

Proposition 2.1: Each point of P(V ) yields a sequence:

(∗) 0→ U → V → k → 0

and a projective hyperplane P (U) ⊂ P (V ). The complement of P (U)
is an affine space with underlying vector space U , which acquires an
origin with a choice of p ∈ P (V )− P (U) (splitting the sequence (∗)).

Conversely, given a vector space U , we may let V = U ⊕ k and then:

P (U) ∪ U = P (V )

is a disjoint union of U and a projective space of lines in U .

Definition 2.2. Projective n-space is Pnk = P (kn+1). It contains:

coordinate hyperplanes Hi = P (Ui) and their complements Ui ⊂ Pnk
for each i = 0, ..., n corresponding to the split sequences:

0→ Ui = 〈ej | j 6= i〉 → kn+1 → 〈ei〉 → 0



3

Remarks. (a) Projective n-space is covered by subsets that we may
identify with the vector spaces Ui:

Pnk =
n⋃
i=0

Ui

with [l : k → kn+1] ∈ Ui if and only if l(1) =
∑n

j=0 ajej with ai 6= 0.

(b) Projective n-space is a disjoint union of vector spaces:

Pnk = U0 ∪ Pn−1
k = U0 ∪ (U01 ∪ Pn−2

k ) = · · · = U0 ∪ U01 ∪ · · · ∪ U0...n

where U01...,i = 〈ei+1, ..., en〉 ⊂ kn+1 and in particular U0...n = {0}.
Warning! Do not confuse the subspaces U0...i = U0 ∩ · · · ∩ Ui ⊂ kn+1

with the subsets U0 ∩ · · · ∩ Ui ⊂ Pnk . The former are vector spaces
of dimension n − i, and the latter (as we will see) are all open, dense
subsets of Pnk of the ssame dimension n

Notation 2.1. If l : k → kn+1 with l(1) =
∑n

i=0 aiei 6= 0, then:

(a0 : · · · : an) ∈ Pnk
are the projective coordinates of the point associated to l, with the
colons between coordinates indicating the ambiguity:

(a0 : · · · : an) = (λa0 : · · · : λan) for λ ∈ k∗

Next we revisit homogeneous polynomials in this context.

Observation. If F ∈ Sd = k[x0, ..., xn]d and 0 6= a ∈ kn+1, then

F (a) 6= 0⇔ F (λa) = λdF (a) = 0

for all λ ∈ k∗, hence V (F ) ⊂ kn+1 is a union of lines through the origin
and more generally, V (I) ⊂ kn+1 is a union of lines through the origin
if I = 〈F1, · · ·Fm〉 ⊂ S is a homogeneous (graded) ideal. Conversely,

Definition 2.3. A subset C ⊂ V of a vector space is a cone over the
origin if C is a union of lines through the origin (the rulings of C).

Proposition 2.2. The ideal I(C) ⊂ S of a cone over the origin in
kn+1 is homogeneous if k is an infinite field.

Proof. For f ∈ S, let f = f0 + · · · + fd be the decomposition of f
into homogeneous terms. Then:

f(λa) = f0(a) + λf1(a) + · · ·+ λdfd(a)

Thus if f(a) = 0 for a 6= 0, then f(λa) vanishes for all (infinitely many)
values of λ ∈ k, i.e. it has infinitely many roots, as a polynomial in
λ, so. it is the zero polynomial. It follows that if f ∈ I(C), then each
fe ∈ I(C), i.e. I(C) is a homogeneous ideal.
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Definition 2.4. Given a homogeneous ideal I ⊂ S, then:

Vh(I) = {rulings of the cone V (I) ⊂ kn+1} ⊂ Pnk
is the associated algebraic set, and given X ⊂ Pnk , let C(X) ⊂ kn+1

be the cone over the origin with rulings indexed by X, and:

I(X) := I(C(X)) ⊂ S

is the associated geometric homogeneous ideal (assuming k is infinite).

Convention. If X = ∅, let C(X) = {0} and I(X) = m = 〈x0, ..., xn〉.
This is often called the irrelevant homogeneous ideal. It is the only
homogeneous ideal that is also a maximal ideal in the traditional sense.

Let k be algebraically closed (hence in particular, infinite).

Nullstellensatz for Pnk . Homogeneous ideals I ⊂ 〈x0, ..., xn〉 satisfy:

I(Vh(I)) =
√
I

Proof. This follows from the Nullstellensatz (or rather Corollary 1.2)
whenever Vh(I) 6= ∅, and from the convention when Vh(I) = ∅, since
we require that I ⊂ 〈x0, ..., xn〉 so that in that case, V (I) = {0}.
Corollary 2.1. Vh(I) = ∅ if and only if there is an N > 0 such that
xNi ∈ I for all i = 0, .., n.

Via the Nullstellensatz, we have “graded” correspondences:

X ↔ I(X)↔ k[X]• := S/I(X)

among subsets of Pnk , homegeneous ideals in S and quotient rings of S:

algebraic sets↔ radical homogeneous ideals↔ reduced graded quotients

projective varieties↔ homogeneous primes↔ graded quotient domains

points↔ submaximal homogeneous ideals of the form I = 〈l1, .., ln〉
where l1, .., ln ∈ S1 are n linearly independent forms.

The graded quotient ring S → R corresponding to a point has Hilbert
function dim(Rd) = 1 for all d ≥ 0 and graded Koszul resolution:

0→ S(−n)→ · · ·
(n
2)⊕
S(−2)→

n⊕
S(−1)→ S → R→ 0

Definition 2.5. (a) The graded homogeneous coordinate ring of
a projective variety X ⊂ Pnk is the graded domain:

k[X]• := k[x0, ..., xn]/I(X)

which coincides with the coordinate ring of the cone C(X) ⊂ kn+1.
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(b) The field of rational functions k(X) of X ⊂ Pnk is:

k(X) =

{
F

G
| F,G ∈ k[X]d for some d, G 6= 0

}
⊂ k(C(X))

Proposition 2.2. The fields k(X) and k(C(X)) of rational functions
associated to a (nonempty!) projective variety X = Vh(P ) ⊂ Pnk and
the cone C(X) = V (P ) ⊂ kn+1 over the origin are related by:

k(C(X)) ∼= k(X)(x)

Proof. Define the integer-graded ring:

R• =

{
F

G
| F ∈ k[X]d, G ∈ k[X]e, G 6= 0

}
⊂ k(C(X))

and choose 0 6= x ∈ k[X]1 which is always possible if X 6= ∅. Then:

(i) R• is isomorphic to k(X)[x, x−1] (graded by the power of x)

(ii) The ordinary field of fractions of R• is k(C(X)).

from which the Proposition immediately follows.

Definition 2.6. Let X ⊂ Pnk be a projective variety. Then:

(a) dim(X) is the transcendence degree of k(X) over k.

(b) X is nonsingular at a ∈ X if:

rank

((
∂Fi
∂xj

)
(a)

)
= n− dim(X)

i.e. the rank of the Jacobian matrix agrees with the codimension of X
in Pnk , where P = I(X) = 〈F1, ..., Fm〉 (with homogeneous generators).
The variety X is nonsingular if it is nonsingular at every point.

Remarks. (i) The field k(a) = k when a ∈ Pnk is a point!

(ii) By Proposition 2.2, the dimension of X satisfies:

dim(X) + 1 = dim(C(X))

where C(X) is the associated cone in kn+1.

(iii) The point a ∈ X is nonsingular if and only if every nonzero
point a ∈ C(X) in the ruling corresponding to a is nonsingular since
the codimension of X in Pnk agrees with the codimension of C(X) in
kn+1 and the Jacobian matrices are the same!

(iv) In the next section, we will cover projective varieties X with
affine varieties X ∩ Ui, and see that there, too, the definitions above
are sensible if we think of the X ∩ Ui as being “local” affine charts of
the “global” projective variety.
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Definition 2.7. A nonsingular projective variety X is a geometric
model for its function field k(X).

Theorem (Resolution of Singularities): If k is algebraically closed
of characteristic zero, then every finitely generated field K of finite
transcendence degree over k has a nonsingular geometric model.

Remark. This is unknown when char(k) = p and tr deg(K/k) ≥ 4.

Birational algebraic geometry extracts information about a field K
from its nonsingular geometric models.

We end with some basic examples from (multi)linear algebra.

Example 2.1 (Continued) A projective subspace P (U) ⊂ Pnk coming
from a sequence of vector spaces:

0→ U → kn+1 → W → 0

is a projective variety, cut out by the linear forms in W ∗ ⊂ (kn+1)∗. If
we let y0, . . . , ym be a basis for U∗ = (kn+1)∗/W ∗, then:

k(P (U)) ∼= k(y1, ..., ym)

and the cone over the origin in kn+1 with rulings indexed by P (U) is,
simply, U ⊂ kn+1 itself, with k(U) ∼= k(y0, ..., xm).

Example 2.2. Quadrics. Consider a quadratic polynomial:

F =
∑
i>j

cijxixj ∈ S2 = k[x0, ..., xn]2

We may convert F into a symmetric matrix:

ΓF := (γij) with γii = cii and γij =
1

2
cij for i 6= j

With this conversion, we see that:

F (a0 : ... : an) = 0 ⇔ (a)TΓF (a) = 0

i.e. the points of the quadric hypersurface Q = V (F ) ⊂ Pnk are the
lines λa ⊂ kn+1 that are isotropic with respect to the inner product
defined by ΓF . In particular, if U = ker(ΓF ) ⊂ kn+1, then P (U) ⊂ Q.
In fact, P (U) ⊂ Q is the locus of singular points of the quadric Q. In
particular, when ΓF is invertible, tthe quadric Q is nonsingular.

Since we assume that k is algebraically closed, the Gramm-Schmidt
process for the inner product yields a basis for kn+1 with respect to
which the inner product diagonalizes with 1’s and 0’s on the diagonal.
That is, with respect to this new basis v0, ..., vn ∈ kn+1 and dual basis
w0, ..., wn ∈ (kn+1)∗, F = w2

0 + · · ·+ w2
m and the singular locus of Q is

the projective subspace P (〈em+1, ..., en〉).
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We may also consider the projective space of quadrics. This is:

P(n+2
2 )−1

k

for k(n+2
2 ) = Sym2(kn+1) with basis ei ⊗ ei and ei ⊗ ej + ej ⊗ ei with

dual basis (xij; i < j), so this projective space is associated to the ring:

S = k[xij; i < j]

Via the Nullstellensatz, specifying a quadric Q ⊂ Pnk is the same as
specifying its homogeneous ideal 〈

∑
cijxixj〉 up to scalar multiple, so

the quadrics are in bijection with he points P(n+2
2 )−1

k via:

Q↔ (γij) ∈ P(n+2
2 )−1

k

with the exception of the polynomials
∑
cijxixj that are perfect squares.

But these are the image of the Veronese embeddings:

vn,2 : Pnk → P(n+2
2 )−1

k ;
∑

aiei 7→ (
∑

aiei)
⊗2

This image is a projective variety that is an intersection of quadrics.

Subexamples. (i) In the case n = 1, we have:

v1,2 : P1
k → P2

k; (a0 : a1) 7→ (a2
0 : a0a1 : a2

1)

and the image is the conic C = V (x00x11 − x2
01) ⊂ P2

k.

(ii) In the case n = 2, we have the Veronese surface:

v2,2 : P2
k → P5

k; (a0 : a1 : a2) 7→ (a2
0 : a0a1 : a2

1 : a0a2 : a1a2 : a2
2)

and the equations for the image are the quadrics appearing as the 2×2
minors of the following symmetric matrix:

A =

 x00 x01 x02

x01 x11 x12

x02 x12 x22


Here are a couple of interesting features of this example:

(i) There are five independent quadratic polynomials among the 2×2
minors of A, and these generate the homogeneous ideal I(v2,2(P2

k)), yet
v2,2(P2

k) ⊂ P5
k has codimension three. In general, a homogeneous ideal

P ⊂ S requires more generators than the codimension of the variety
X = V (P ) ⊂ Pnk . The rare homogeneous ideals P that are generated
by codim(X) generators are called complete intersection ideals.

(ii) The cubic hypersurface in P5
k cut out by G = det(A) parametrizes

the locus of singular quadrics in P2
k, together with the image of v2,2.

This is itself a singular hypersurface, singular along the image of v2,2!
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Example 2.3 d-uple embeddings generalize the Veronese embeddings.
Let V = kn+1, and consider the mapping:

vn,d : P (V )→ P (SymdV ); vn,d(
∑

aiei) = (
∑

aiei)
⊗d

to the space of symmetric tensors. With the natural basis for:

Symd(V ) ⊂ V ⊗d

we have:

vn,d(· · · : ai : · · · ) = (· · · :
n∏
i=0

adii : · · · ) for d0 + · · ·+ dn = d

i.e. it is given by the collection of a monomials of degree d in the ai.
From this, it is not difficult to see that the image of vn,d is always
cut out by quadratic polynomials, and indeed the homogeneous ideal
I(vn,d(Pnk)) is generated by quadratic polynomials.

The case n = 1 is particularly nice. Here:

v1,d(a0 : a1) = (ad0 : ad−1
0 a1 : · · · : a0a

d−1
1 : ad1)

and the image is the rank one locus of the matrix:[
x0 x1 · · · xn−1

x1 x2 · · · xn

]
The image of v1,d in Pdk is the rational normal curve of degree d.

Example 2.4 Segre embeddings are of the form:

sV,W : P (V )× P (W )→ P (V ⊗W ); (λa, µb) 7→ λµa⊗ b

In coordinates, if V = km+1 and W = kn+1, then:

sm,n((a0 : ... : am), (b0 : · · · bn)) = (· · · aibj · · · )

and once again the image of sm,n is cut out by quadratic polynomials
and the homogeneous ideal is generated by quadratic polynomials.

For example, the image of s1,1 : P1
k × P1

k → P3
k is:{

(a0b0 : a1b0 : a0b1 : a1b1) ∈ P3
k

}
= V (x0x3 − x1x2)

which is “the” nonsingular quadric in P3
k.

Segre embeddings can be generalized to finite sets of vector spaces:

sV1,...,Vm : P (V1)× · · · × P (Vm)→ P (V1 ⊗ · · ·P (Vm)

in the obvious way.
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Example 2.5. The Grassmannian Let V be a vector space over k
of dimension n. Then G(m,V ) is the subset:

G(m,n) ⊂ P (∧mV )

of decomposable elements. That is, points of G(m,n) are of the form:

(∗)
∑
σ∈Σm

(−1)sgn(σ)vσ(1) ∧ · · · ∧ vσ(m); v1, ..., vm ∈ V

for linearly independent vectors v1, ..., vm ∈ V .

The points of the Grassmannian are in a natural bijection with the
set of subspaces of V , so that for example:

G(m,V ) = P (V ) and G(n− 1, V ) = P(V )

Once again, the Grassmannian is cut out by (Plücker) quadrics
both set-theoretically and ideal-theoretically, and the Grassmannians
G(m,V ) are projective varieties. This involves some combinatorics,
but the case m = 2 and dim(V ) = 4 is particularly simple. Here,

G(2, 4) ⊂ P (∧2V )

is a subset of the space of skew-symmetric maps, and:

G(2, 4) ⊂ P




0 γ12 γ13 γ14

−γ12 0 γ23 γ24

−γ13 −γ23 0 γ34

−γ14 −γ24 −γ34 0




is the quadric cut out by the Pfaffian of the matrix of indeterminates:

x12x34 − x13x24 + x14x23

The Grassmannian G(m,V ) is the image of the mapping

V m ⊃ U → P (∧mV )

defined by (∗) above. This is well-defined on the subset: U ⊂ V m of
linearly independent m-tuples of vectors, which is the complement of
an algebraic subset of V m = (kn)m.
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Exercises.

2.1. Consider the inclusion: kn = 〈e1, ..., en〉 ⊂ Pnk associated to:

0→ U0 → kn+1 → k → 0

and the splitting e0 : k → kn+1. This geometry is associated to the
process of homogenizing and dehomogenizing polynomials:

Deomogenizing. The dehomogenization of F ∈ Sd is:

f(x1, ...., xn) := F (1, x1, ..., x0)

Homogenizing. For each f ∈ k[x1, ..., xn] and d ≥ deg(f),

F (x0, ..., xn) := xd0f

(
x1

x0

, · · · , xn
x0

)
∈ Sd

produces a homogeneous polynomial that dehomogenizes to f .

(a) Show that dehomogenizing and homogenizing all the elements of
an ideal converts homogeneous ideals in S to homogeneous ideals in
k[x1, ..., xn] and vice versa. Notice that on the level of ideals, there is
no ambiguity....all values of d ≥ deg(f) must be chosen when homoge-
nizing an ideal containing f .

(b) Show that radical ideals and prime ideals are preserved under
homogenizing and dehomogenizing. Moreover, show that:

I ⊂ k[x1, ..., xn] 7→ hom(I) ⊂ S 7→ dehom(hom(I)) ⊂ k[x1, ..., xn]

returns the ideal I. What happens to a homogeneous ideal under:

I ⊂ S 7→ dehom(I) ⊂ k[x1, ..., xn] 7→ hom(dehom(I) ⊂ S

2.2. (a) Under the bijections between ideals and varieties, we see from
Exercise 2.1 (b) that the set of algebraic subsets of kn is in bijection
(via homogenization) with a subset of the set of algebraic subsets of
Pnk . What geometric property must an algebraic subset of Pnk have in
order to be in the image of this identification?

(b) Consider the twisted cubic curve in k3:

C = {(s, s2, s3) | s ∈ k} ⊂ k3

Identify the curve C ⊂ P3
k associated to C via homogenizing, and

show that I(C) requires only two generators, whereas I(C) = hom(I)
requires three generators. Thus, it is not sufficient to homogenize the
generators of an ideal to find the generators of the homogenized ideal.
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2.3. (a) If X ⊂ kn is a variety and X ⊂ Pnk is the associated projective
variety, find an isomorphism between the field of fractions:

k(X) ∼= k(X)

(b) Show that a point x ∈ X is non-singular as a point of X if and
only if it is non-singular when viewed as a point x ∈ X of X.

Hint: Try it first for a hypersurface. Euler’s identity may be useful:

dF =
n∑
i=0

xi
∂F

∂xi
for F ∈ Sd

(c) Consider the nonsingular curve:

C = V (y2 −
d∏
i=1

(x− λi)

for distinct roots λ1, ..., λd. Find the complement C − C ∈ P2
k and

decide whether the points of the complement are singular or not.

(d) Find C for C = V (y− x3) and show that it has a singular point.

2.4. Show that the singular locus of the quadric Q = V (F ) ∈ Pnk for
F ∈ S2 − {0} is precisely the projective subspace P (ker(ΓF )), where
ΓF is the associated symmetric matrix.

2.5. Show that the images of the d-uple and Segre embeddings are non-
singular projective varieties. Show that each G(m,V ) is a variety. Show
that the ideals of each of these is generated by quadratic polynomials.

2.6. Let G be the determinant of the matrix:

A =

 x00 x01 x02

x01 x11 x12

x02 x12 x22


Show that the singular locus of X = V (G) is the Veronese surface.


