
Algebraic Geometry (Math 6130)

Utah/Fall 2016.

4. Some Properties of Maps. The equivalence of categories between
affine varieties and k-algebra domains means that morphisms in the two
categories contain the same information. Since every rational map of
varieties is locally a regular map of affine varieties, the “algebra” of
homomorphisms of k-algebras governs the local “geometry” of maps of
varieties. In this section, we investigate some implications of this.

Injective Homomorphisms ↔ Dominant Maps. Let

f : k[Y ]→ k[X]

be an injective homomorphism of k-algebra domains. Then the image
of the corresponding map of affine varieties:

Φ = mspec(f) : X → Y

is (Zariski) dense, and conversely, a regular map of affine varieties with
a dense image corresponds to an injective map of coordinate rings.
Indeed, h ∈ ker(f) if and only if Uh ∩ im(Φ) = ∅, and the equivalence
follows since open sets of the form Uh are a basis for the topology.

Examples. (a) The inclusion k[X] ⊂ k[X][h−1] corresponds to the
inclusion of the basic open set Uh ⊂ X, which is dense.

(b) The inclusion k[x] ⊂ k[x, y] corresponds to the projection map
π1 : k2 → k, which is surjective.

(c) The homomorphism f : k[x, y] → k[s, t]; f(x) = s, f(y) = st is
injective and corresponds to the map Φ : k2 → k2 with:

Φ(0, ∗) = (0, 0) (i.e. the y-axis collapses to the origin)

Φ−1(a, b) = (a, b/a) whenever a 6= 0.

Thus Φ(k2) = {(0, 0)} ∪Ux ⊂ k2 is dense, but neither open nor closed.

We may capture the geometry with the following definition:

Definition 4.1. A rational map Φ : X − − > Y of varieties is
dominant if the image of the domain of Φ is dense in Y .

Observation. Every rational map of varieties is locally a regular map
of affine varieties. That is, for each y ∈ im(Φ) and x ∈ Φ−1(y), we can
find affine neighborhoods y ∈ U and x ∈ V such that:

Φ|V : V → U

is a regular map of affine varieties. This simply follows from the fact
that the affine open subsets form a basis for the topology of a variety.
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Proposition 4.1. A rational map Φ : X −− > Y is dominant if and
only if each local map

Φ|V : V → U

of affine varieties corresponds to an injective map Φ∗ : k[U ]→ k[V ].

Proof: Since varieties are irreducible Noetherian spaces and the
domain of Φ is open and nonempty, it follows that if the image of Φ
is dense, then the image of Φ|V is dense for any V ⊂ X and we have
reduced to the affine case.

Dominant rational maps “are” inclusions of rational function fields:

Definition 4.2. The field of rational functions k(X) of a variety X is:

k(X) = lim
V⊂X
OX(V ) (the inverse limit)

i.e. it is the ring of functions that are regular somewhere on X.

It is an exercise to see that for each open affine V ⊂ X,

k(V ) = k(X), where k(V ) is the field of fractions of k[V ]

and hence in particular that k(V ) is independent of V .

Corollary 4.1. The data of a dominant rational map from X to Y
is equivalent to an inclusion of their fields of rational functions:

k(Y ) ⊂ k(X)

Proof. The inclusion of fields associated to a dominant rational map
is obtained locally, since the maps on coordinate functions are injective.
Conversely, an inclusion of fields induces a dominant rational map on
affine varieties, via the map k[U ] ⊂ k(U) ⊂ k(V ), and this extends, by
definition, to a rational map of varieties.

Surjective Homomorphisms ↔ Closed Embeddings. A surjec-
tive k-algebra homomorphism:

f : k[Y ]→ k[X]

factors through:
k[Y ]→ k[Z] ∼= k[X]

where Z ⊂ Y is the closed irreducible subset defined by P = ker(f).
Thus X is isomorphic to Z ⊂ Y .

Example. Each surjection k[y1, ..., yn]→ k[Y ] corresponds to Y ⊂ kn.

To extend this geometry, we need to carefully explain what we mean
when we say that a closed irreducible subset Z ⊂ Y of a variety is
itself a variety. In case Y is affine, then Z ⊂ Y corresponds to k[Z] =
k[Y ]/I(Z), and it is clear what is meant.
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Proposition 4.2. Let Y be a variety and let Z ⊂ Y be a closed
irreducible subset. Then Z has the structure of a variety, with:

• the induced (Noetherian) topology

• the field of rational functions on Z defined by:

k(Z) := OY,Z/mZ

where OY,Z ⊂ k(X) is the subring consisting of rational functions that
are defined somewhere on Z, and mZ is the maximal ideal of such
rational functions that are identically zero on their domain in Z.

• the sheaf OZ(U) is defined by:

OZ(U) = {φ ∈ k(Z) | φ(y)is defined for all y ∈ U}
Proof. When restricted to an open affine W ⊂ Y , this structure on

Z ∩W coincides with the structure of Z ∩W ⊂ W as a closed affine
subvariety of W . Thus Z is locally affine, and it is an exercise to see
that Z is separated, hence a variety.

Definition 4.3. A regular map Φ : X → Y of varieties is a closed
embedding if it factors through an isomorphism Φ : X

∼→ Z for Z ⊂ Y
an irreducible closed subset with the induced variety structure.

It is also an exercise to see that a closed embedding Φ : X → Y of
varieties is locally a closed embedding, Φ|V : V → U , of affine varieties,
corresponding to surjective maps (Φ|V )∗ : k[U ]→ k[V ].

For a third relation between algebraic and geometric maps, we use:

Definition 4.4. A homomorphism f : B → A of commutative rings
is integral if A is finitely generated as a B-module (via f).

Remark. Since f is clearly integral if and only if f : B/ ker(f)→ A is
integral, we will usually reduce to injective homomorphisms.

Non-example. The inclusion k[X]→ k[X][h−1] corresponding to the
open inclusion Uh ⊂ X of affine varieties is not integral, since k[X][h−1]
cannot be finitely generated as a module over k[X].

An Important Example. Let k be an infinite field (not necessarily
algebraically closed) and let A = k[x1, ..., xn]/P be an integral domain
of transcendence degree m over k. Then there are:

yi =
n∑

i=1

ai,jxi; j = 1, ...,m

such that the homomorphism f : k[y1, ..., ym] → k[X] is injective and
integral. This is the Noether Normalization Theorem.
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Proof. By induction on n−m. If m = n, then P = 0 and there is
nothing to prove. If m < n then x1, ...., xn ∈ A satisfy a relation:

f(x1, ..., xn) = 0

and if it were the case that f = xdn + {lower order in xn} we’d be done
by induction since 1, xn, ..., x

d
n would generate A as a module over

B = k[x1, ..., xn−1]/P ∩ k[x1, ..., xn−1]

which is necessarily of the same transcendence degree over k as A. On
the other hand, if f is not of this form, then we may replace:

yi = xi + aixn for ai ∈ k and i < n

and get f(y1, ..., yn−1, xn) = g(a1, ..., an−1)xdn + {lower order in xn} for
some non-zero polynomial g(a1, ..., an−1). Since k is infinite, we may
choose a1, ..., an−1 ∈ k so that g(a1, ..., an−1) 6= 0 and then proceed with
our induction with the new variables y1, ..., yn−1.

Integral Homomorphisms ↔ Finite Maps.

Definition 4.5. A morphism of affine varieties: Φ : X → Y is finite
if the associated homomorphism Φ∗ is integral.

Example. The Noether Normalization example above is both finite
and dominant. It is also the restriction of the linear projection

π : kn → km; defined by π(b1, ...., bn) = (....,
∑

ai,jbj, ...)

so the theorem implies that each embedded affine variety X ⊂ kn of
dimension m projects via a finite and dominant map to km.

Theorem 4.1. If Φ : X → Y is a finite map of affine varieties, then:

(a) Φ−1(y) is a finite set, for all y ∈ Y .

(b) Φ maps closed sets to closed sets. In particular, if Φ is also
dominant, then Φ is surjective.

Proof. The closure of the image Z = Φ(X) ⊂ Y corresponds to the
prime ideal ker(Φ∗) ⊂ k[Y ], and we lose no generality by replacing Y
with Z and assuming that Φ is also dominant.

Let f = Φ∗ : k[Y ]→ k[X] be the associated integral map. Then via
the identification Y ↔ mspec(k[Y ]), we have:

Φ−1(my) = {mx ⊂ k[X] | mx ⊃ f(my)}
so the set Φ−1(my) is in bijection with the set of maximal ideals in:

A = k[X]/〈f(my)〉
where 〈f(my)〉 is the ideal generated by the set f(my) ⊂ k[X].
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Since f is integral, it follows that f : k[Y ]/my → A is also integral,
hence A is finitely generated as a vector space over k[Y ]/my = k. But
an algebra over k that has dimension n as a vector space over k has at
most n maximal ideals (Exercise). This proves (a).

Next, it is enough to show that Φ maps irreducible closed subsets of
X to (necessarily irreducible) closed subsets of Y , and indeed given such
a subset W = V (P ) ⊂ X, we may restrict Φ to W and obtain a map

Φ|W : W → V = Φ(W ), which is finite and dominant, corresponding
to the integral ring homomorphism f : k[Y ]/f−1(P ) → k[X]/P . In
other words, it suffices to show that every finite and dominant map of
affine varieties is surjective.

Looking back at the proof of (a), we simply need to show that A 6= 0.
This is accomplished by “going up.” Consider my ⊂ k[Y ] again and:

S = k[Y ]−my as a multiplicative system in both k[Y ] and k[X]

(the latter via the inclusion k[Y ] ⊂ k[X]). Then there is an inclusion:

k[Y ]S = k[Y ]my ⊂ k[X]S

of the local ring OY,y = k[Y ]my in the more mysterious ring k[X]S. But
k[X]S is integral over k[Y ]my , and from this it follows that:

Lemma 4.1. Each maximal ideal m ⊂ k[X]S satisfies:

m ∩ k[Y ]S = my · k[Y ]my

Proof. It suffices to show that the ring B = k[Y ]S/(m ∩ k[Y ]S) is
a field, since k[Y ]S = k[Y ]my is a local ring with unique maximal ideal
my · k[Y ]my . So let 0 6= φ ∈ B and suppose φ is not invertible in B.
Then because φ is invertible in k[X]S/m, we have proper inclusions:

B ⊂ φ−1B ⊂ φ−2B ⊂ · · · ⊂ k[X]S/m

producing an infinite ascending chain of submodules of k[X]S/m. But
k[X]S/m is finitely generated as a module over B, contradicting the
fact that any localization k[Y ]S of a Noetherian ring is Noetherian. �

Returning to (b), we have found a maximal ideal m ⊂ k[X]S whose
intersection with k[Y ]S is my, and it follows from the correspondences
of prime ideals under localization that the corresponding maximal ideal
mx ⊂ k[X] satisfies mx ∩ k[Y ] = my, as desired. �

Non-Example. Consider the non-integral inclusion of rings

k[x] ⊂ k[x, x−1]

corresponding to the non-finite open embedding k∗ ⊂ k.
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Letting S = k[x] − 〈x〉, we obtain k[x]〈x〉 ⊂ k[x, x−1]S = k(x), and
because k(x) is not a finitely generated module over k[x]〈x〉, there is no
contradiction in the infinite chain:

k[x]〈x〉 ⊂ x−1k[x]〈x〉 ⊂ x−2k[x]〈x〉 ⊂ · · · ⊂ k(x)

Indeed, φ = x is not invertible, and there is no ideal in the field k(x)
that intersects k[x]〈x〉 in the maximal ideal, reflecting the fact that
0 ∈ k is not in the image of the inclusion k∗ ⊂ k.

Remark. The same strategy gives a proof of the Nullstellensatz from
Noether Normalization. Namely, if m ⊂ k[x1, ..., xn] is a maximal ideal,
consider the field extension:

k ⊂ K = k[x1, ..., xn]/m

If K had transcendence degree d > 0 over k, then Noether Nor-
malization would give an integral inclusion of rings: k[y1, ..., yd] ⊂ K
and then every polynomial f ∈ k[y1, .., yd] would have an inverse in
k[y1, ..., yd] because otherwise:

k[y1, ..., yd] ⊂ f−1k[y1, ..., yd] ⊂ f−2k[y1, ..., yd] ⊂ · · · ⊂ K

would be an infinite ascending chain of submodules of a finitely gener-
ated module. This is absurd, since polynomials of positive degree do
not have inverse polynomials. We therefore conclude that K must be
an algebraic extension of k and the Nullstellensatz follows.

Warning. Unlike injective and surjective ring homomorphisms, the
geometric properties of a finite map in Theorem 4.1 are not equivalent
to integrality of the corresponding homomorphism. This explains why
the definition of a finite map of varieties isn’t made in geometric terms.

Definition 4.6. (a) A map Φ : X → Y of varieties is affine if the
inverse image of every open affine subvariety U ⊂ Y is an affine variety.

(b) An affine map Φ as above is finite if for each open affine U ⊂ Y
the map Φ|V : V = Φ−1(U)→ U is a finite map of affine varieties.

In practice, these properties are checkable because of the following:

Theorem 4.2. To conclude that a map is affine or finite, it suffices to
check the property for a single open affine cover Y =

⋃
Ui.

We use a Criterion for Affineness which is of independent interest.
If V is a variety with hi, gi ∈ Γ(V,OV ); i = 1, ..., n such that:

(i) Vi = {x ∈ V | hi(x) 6= 0} are affine open sets that cover V and

(ii)
∑
gihi = 1.

Then V is an affine variety.
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Proof (of the criterion). Let k[Vi] = k[xi,1, ..., xi,mi
]/Pi, and let:

A = Γ(V,OV ) = k[V1] ∩ · · · ∩ k[Vn] ⊂ k(V )

Each Vi ∩ Vj is a basic open affine subset of Vj (and Vi) since:

Vi ∩ Vj = Vj − V (ρV,Vj
hi) = (Vj)hi

Therefore if φ ∈ k[Vi] then φ ∈ k[Vi ∩ Vj] = k[Vj][h
−1
i ] for each j, and

φh
nj

i ∈ k[Vj] for some nj. If we let n = max{nj}, then φhni ∈ A. Thus:

(∗) k[Vi] = A[h−1
i ] for each i

In particular, each of the generators of k[Vi] as a k-algebra satisfies:

xi,lh
ni,l

i ∈ A
and we may choose n = max{ni,l} to make the power uniform over
all generators. We now claim that {gi, hi, xilhni } generates A as a k-
algebra. To see this, write a ∈ A as a polynomial in the generators of
each of the rings k[Vi]:

a = pi(xi1 , ..., xi,mi
) ∈ k[Vi]

and notice that the product ahNi for a sufficiently large N makes each
ahNi = pih

N
i expressible as a polynomial in the xi,lh

n
i and hi. Now use:

a ·
(∑

gihi

)(N−1)(n+1)

= a · 1 = a

to conclude that a is expressible as a polynomial in the ahNi and gi, hi,
hence also in xi,lh

n
i and gi and hi, as desired. Thus A is the image of:

k[yi,l, zi, wi]→ k(V ); yi,l 7→ xi,lh
n
i , zi 7→ gi, wi 7→ hi

and now it is straightforward to conclude from (∗) that V = mspec(A).

Proof of the Theorem. If U,U ′ ⊂ Y are affine open subsets, then
their intersection is covered by affines Uh = U ′h′ that are simultaneously
basic open affine subsets of U and U ′. To see this, first cover U ∩U ′ =⋃
Uhi

for hi ∈ k[U ] and then cover each Uhi
=
⋃
U ′h′ij

for h′ij ∈ k[U ′].

But then h′ij ∈ k[Uhi
], so hni h

′
ij ∈ k[U ], and U ′h′ij

= Uhn+1
i h′ij

, as desired.

Now, suppose Y =
⋃
Ui is an open cover such that Vi = Φ−1(Ui) is

affine for all i. Let U ⊂ Y be another open affine subset, and cover
U ∩ Ui by simultaneous basic open affines Uhi,l

= (Ui)h′i,l . It follows

from the fact that (Ui)h′i,l ⊂ Ui is a basic open that its inverse image in

Y is affine. It also follows from the fact that they cover U that there
are regular functions gi,l ∈ k[U ] such that

∑
gi,lhi,l = 1. Now we may

apply the criterion for affineness to V = Φ−1(U) and the cover by the
affine opens Φ−1(Uhi,l

). This takes care of the affine maps.
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Next, suppose additionally that each of the maps Φ|Vi
is finite and let

ai,s ∈ k[Vi] generate it as a module over k[Ui]. For each h′ ∈ k[Ui], the
same elements will generate k[(Vi)h′ ] as a module over k[(Ui)h′ ]. Given
U ⊂ Y and the cover by simultaneous basic open affines Uhi,l

, consider
the elements ai,sh

n
i,l ∈ k[V ] for a large enough value of n. These will

belong to k[V ] and generate it as a module over k[U ] by virtue of:

a
(∑

hi,lgi,l

)N
= a

for large enough values of N (Exercise!).

Example (a) The projections π : Pn
k − V (x0, ..., xm) → Pm

k onto the
first m+ 1 coordinates are affine since each π−1(Ui) = Vi is affine.

(b) If Z ⊂ Pn
k is closed and irreducible and Z ∩ V (x0, ..., xm) = ∅,

then π|Z : Z → Pm
k is a finite map. In particular, if dim(Z) = m, then

π|Z is finite and dominant. This is a projective version of the Noether
Normalization Theorem.

We end this section by studying the fibers of a dominant map:

Φ : X → Y

More generally, if W ⊂ Y is closed and irreducible (closed subvariety),
then we are interested in the dimensions of the irreducible components
Z1 ∪ · · · ∪ Zn = Φ−1(W ) of the inverse image of W .

For example, consider again Example (c) from the top of this section.
In this example, the map Φ : k2 → k2 has the following inverse images:

(a) The inverse image of a point p is either:
(i) empty, if p is on the y-axis minus the origin.
(ii) a point if p is off the y-axis.
(iii) the y-axis if p is the origin.

(b) The inverse images of a line l in k2 is:
(i) an irreducible curve if l does not contain the origin
(ii) the y-axis (mapping to the origin) if l is the y-axis
(iii) the union of a horizontal line and teh y-axis if l contains

the origin but is not the y-axis.

The following Proposition gets us started toward this goal.

Proposition 4.1. (a) If W ⊂ Y is a closed subvariety of codimension
c in an affine variety, then there are f1, ..., fc ∈ I(W ) such that all
components of V (f1, ..., fc) (including W ) have codimension c in Y .

(b) On the other hand, if g1, ..., gc ∈ Γ(X,OX) for a variety X, then
each irreducible component of V (g1, ..., gc) has codimension ≤ c in X.
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Proof. We prove (a) by induction. If f1, ..., fb ∈ I(W ) are chosen
so that every component of V (f1, ..., fb) has codimension b < c, then
for each such component Zi, choose pi ∈ Zi − W . Then there is an
fb+1 ∈ I(W ) that does not vanish at any of the pi. By Krull’s Theorem,
every component of V (f1, ..., fb+1) then has codimension b+ 1.

For (b), we also use induction. If Z is a component of V (g1, ..., gc),
then Z is contained in some component Z ′ of V (g1, ..., gc−1). We may
assume that Z ′ has codimension ≤ c − 1 in X, and then by Krull,
Z ⊂ Z ′ ∩ V (gc) has codimension 0 or 1 in Z ′, hence ≤ c in X.

Corollary 4.2. Let Φ : X → Y be a dominant map of varieties, and

r = dim(X)− dim(Y )

If W ⊂ Y is a closed subvariety, let Z be an irreducible component
of Φ−1(W ) that dominates W . Then dim(Z) ≥ dim(W ) + r, i.e.

codimension of Z in X ≤ codimension of W in Y

Note that as a special case, each irreducible component Z ⊂ Φ−1(y)
of each fiber of Φ has dimension at least r = dim(X)− dim(Y ).

Proof. Replacing Y with an open affine U ⊂ Y that intersects W ,
we lose no generality in assuming that Y is affine, in which case W is
an irreducible component of V (f1, ..., fc) as in Proposition 4.1., and Z
is contained in an irreducible component Z ′ ⊂ V (Φ∗(f1), ...,Φ∗(fc)) of
codimension ≤ c (also by the Proposition).

But W = Φ(Z) ⊂ Φ(Z ′) ⊂ V (f1, ..., fc) and since W is an irreducible

component of V (f1, ..., fc) it follows that Φ(Z ′) = W . Finally, since Z
is a component of Φ−1(W ) and Z ′ ⊂ Φ−1(W ), it follows that Z = Z ′

and the Corollary follows. �

We can eliminate all the components of larger than the “expected”
dimension by passing to an open subset of Y :

Theorem 4.3. In the setting of Corollary 4.2, there is a non-empty
subset U ⊂ Y such that:

(i) U ⊂ Φ(X) and

(ii) If W ⊂ Y is a closed subvariety that intersects U , then each
irreducible component Z ⊂ Φ−1(W ) that intersects Φ−1(U) satisfies:

dim(Z) = dim(W ) + r

Proof. As in the Corollary, we may as well assume that Y is affine.
We may also assume that X is affine since if the Theorem holds for each
of the restrictions Φ|Vi

: Vi → X for an open affine cover X = ∪Vi, with
Φ|Vi

(Vi) ⊂ Ui, then the Theorem holds for X itself, with Φ(X) ⊂ ∩Ui.
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So we assume X and Y are affine, and we consider the injective map:

f = Φ∗ : k[Y ]→ k[X]

Let K = k(Y ), and apply Noether Normalization to the K-algebra:

A = k[X]⊗k[Y ] k(Y ) ⊂ k(X)

which is an integral domain that is a finitely generated k(Y )-algebra
with fraction field k(X), which has transcendence degree r over k(Y ).

Thus, by Noether Normalization, there is an integral homomorphism:

(∗) k(Y )[x1, ..., xr] ⊂ A

and may also assume, clearing denominators of the xi ∈ A by mul-
tiplying by suitable elements of the coefficient field k(Y ), that each
xi ∈ k[X] ⊂ A. Consider now the inclusion:

k[Y ][x1, ..., xr] ⊂ k[X]

This may not be integral, but it follows from integrality of (∗) that
each φ ∈ k[X] is the root of a monic polynomial equation:

xn + f1(x1, ..., xr)x
n−1 + · · ·+ fn(x1, ..., xr) = 0

such that the fi are polynomials with coefficients in k(Y ). Therefore
each φ is integral over k[Y ][h−1][x1, ..., xr] for a common denominator
h of all the coefficients of the polynomials f1, ..., fn. Moreover, if we
let φ1, ..., φm ∈ k[X] be generators of k[X] as an algebra over k[Y ]
and hi be the common denominator of polynomials attached to each
φi, then the inclusion:

k[Y ][h−1][x1, ..., xr] ⊂ k[X][h−1]

is an integral extension for h = h1 · · ·hm. This follows from the fact
that sums and products of integral elements over a subring are integral.

Now, we take U = Uh ⊂ Y , and we claim that this choice of U
satisfies the Theorem. If we let V = Φ−1(U), then:

Φ|V : V
Ψ→ U × kr → U

is a finite map Ψ followed by a projection, hence it is surjective, proving
(i). And if W ⊂ Y intersects U and Z ⊂ Φ−1(W ) is a component that
intersects V , then let Z ′ = Z ∩V and W ′ = W ∩U , and note that Z ′ is
finite over Ψ(Z ′) ⊂ W ′ × kr, so dim(Z) ≤ dim(W ) + r. But the other
inequality was proved in the Corollary. �

Definition 4.7. A dominant rational map Φ : X −− > Y of varieties
is birational if it is associated to an isomorphism k(Y ) ∼= k(X) of
fields of rational functions.
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Corollary 4.3. Suppose Φ : X − − > Y is a dominant rational map
of varieties. Then there is a non-empty open subset U ⊂ Y for which
the restricted map Φ|V : V = Φ−1(U)→ U is an isomorphism.

Proof. We may restrict to the domain of X to assume that Φ is a
regular map. Next, we may restrict to an open affine subset U ⊂ Y
and assume that Y is an affine variety. Using the Theorem, we may
assume that X is affine.

Namely, let U ⊂ Φ(X) be an open affine satisfying the conditions
of the Theorem and let V ⊂ Φ−1(U) be an open affine. Then every
component Z ⊂ X−V has smaller dimension than dim(X) = dim(Y ),

and so its image Φ(Z) ⊂ Y also has smaller dimension. Thus X − V
does not dominate Y , and there is a function f ∈ k[Y ] such that
Φ(X−V ) ⊂ V (f) ⊂ Y . Then Uf ⊂ U is the image of VΦ∗f = Φ−1(Uf ),
which is affine. Thus we may assume that both X and Y are affine.

Now the proof is straightforward. We have the injective map:

Φ∗ : k[Y ]→ k[X]

that induces the isomorphism of fields. Let x1, ..., xn generate k[X],
and regarding them as elements of k(Y ), we may write xi = yi/g for
yi ∈ k[Y ] and a common denominator g ∈ k[Y ]. But then:

k[Y ][g−1]→ k[X][g−1]

is an isomorphism, and this corresponds to the restrictions of Φ to:

ΦVg : Vg → Ug

�


