Algebraic Geometry I (Math 6130)
Utah/Fall 2020

4. PROJECTIVE VARIETIES.

A projective variety over k is obtained from a Z-graded k-algebra domain A,
(via the functor mazproj) analogously to the realization of an affine variety from
an k-algebra (ungraded) domain A (via the functor mazspec). The key difference
is that unlike the affine case, in which the domain is recovered from the regular
functions, the only regular functions on a projective variety are the constants.

Definition 4.1. As a set, projective space P! is the locus of lines through 0 € k" *1.

Definition 4.2. The polynomial ring graded by degree:

oo
Se = @kz[mo, ey Zplq s defined by
d=0
Sy = Z crey | oy = xé” cexln e ek
|T|=d

i.e. Sy is the vector space of homogeneous polynomials of degree d, with:

Sd : Se C Sd+e

Definition 4.3. An ideal I C S, is homogeneous if:
(oo}
I= @Iﬂ klxg, ..., Tnld, and in that case we let Iy = I Nk[zg, ..., Tn]d
d=0

i.e. I is generated by (finitely many!) homogeneous polynomials, so that
f=fo++facl & foel, foralle
The quotient by a homogeneous ideal is a graded ring:
Se/I = Aq with Ay = Sy/I; and Ay - Ae C Agqe

Example. (a) The irrelevant homogeneous maximal ideal in S, is:
Sy = @H%y wos Tpla = (T, ooy Tn)
d=1

This ideal contains all homogeneous ideals in S, other than the ideal (1).
(b) If X C P}, then the affine cone over X is:
C(X) ={(ag, ..., an) € K" | k- (ag,....,a,) € X} U{(0,...,0)}
The ideal I(X) := I(C(X)) C S, is a homogeneous ideal (if & is infinite), and:
k[X]e = E[x0, ..., Tnle/I is the quotient ring
(with this convention, I()) = S, though one could argue for I()) = (1))
(c) For a homogeneous ideal I C Sy,
X(I)=C(X) C k™! is an affine cone over some X C P}
and we let X := X (I) C P} be the associated algebraic subset of P} .

This sets up a version of the Nullstellensatz for radical homogeneous ideals:
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The Projective Nullstellensatz. The radical homogeneous ideals I C S are in
bijection with the algebraic subsets X = X (I) C P} via the mappings X and I,
with the prime ideals corresponding to irreducible algebraic sets and the maximal
prime ideals properly contained in S corresponding to the points x € P} via:

mg = (ajx; — a;x;) for ¢ =k - (ao, ..., an)

Proof. This follows from the ordinary Nullstellensatz applied to affine cones
and the fact that rad(I) is a homogeneous ideal when I is a homogeneous ideal.

Projective Coordinates. We will write x € P} in coordinates as the ratio:
(ag:-+-:ap)
with the understanding that (ag: ---: an) = (Aag : -+ : Aay) for A € k*.
Remark. If F € Sy is homogeneous of degree d, then:
F(Xag : ... : Map) = MF(ag : - : ay)

so although the value F(x) is not well-defined, it does make sense to say F(z) = 0.
When F' is not homogeneous, even this statement is not well-defined.

Example. In the projective space Pzzfl of n X n matrices,
X (A) is the locus (hypersurface) of singular matrices
where A € S, is the determinant polynomial. The complement is PGL(n, k).
The following Lemma is useful.
Lemma 4.4. For a homogeneous ideal I C S,,
X(I)=0«< Sy Crad(I) & Sy C X(I) for some d
Proof. The first equivalence is immediate, and if S; C rad(/), then
xfi € I for some dy, ....,d,
and then Sq C I for d > (do + - - + d,) — n. The converse is clear. O
We now enlarge our stable of Z-graded k-algebra domains to include:
k[X]e = Se/P for homogeneous prime ideals P C S
the homogeneous coordinate rings of irreducible subsets of P}. These rings are:
e Z-graded k-algebra integral domains, with k[X]o = k
e finitely generated in degree one by a basis z1, ..., x, of k[X];.
We now construct a prevariety (X, Ox) out of each such graded k-algebra A,.
The Set X is the collection of maximal prime ideals m, C A;.
The Topology is the Zariski topology, in which the algebraic sets:
X(I)={my | I CTmy}
are the closed sets, for (radical) homogeneous ideals I C A.
The Field of Rational Functions is:

k(X) = {g | F,G € Aq andG;«éO} C k(A)

This is a subfield of k(A). The elements of k(X) are homogeneous of degree zero,
which makes them (rational) functions on X.
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Concretely, a choice of basis xg, ..., x,, of Ay identifies Ay = k[xo, ..., z,]/P and:
maxproj(4.) = X = X(P) C P}

This is an irreducible Zariski topological space by the Projective Nullstellensatz.
For x = (agp : ... 1 a,) € X, and ¢ € k(X),

_ Flag,...,an) M F(ag,...,an) B
d(ag, ..., an) = Glao, nan) ~ NGlag, o an) d(Aag, ..., Aay,)

is well-defined, provided that G(aq, ..., a,) # 0. More abstractly,
Definition 4.5. A rational function ¢ € k(X) is regular at € X if

F
¢ = el with G &€ m,
The rational functions that are regular at x € X are elements of A, ) C k(X), a
local ring with residue field k&, in which the value ¢(z) is taken. The assignment:
Ox(U) ={¢ € k(X) | ¢ is regular at all points of U}
defines the sheaf Ox and the sheaved (Noetherian, irreducible) space maxproj(A,).
In contrast to Proposition 2.7, we have:
Proposition 4.6. Ox(X) =k when (X, Ox) = maxproj(A.).

Proof. Let ¢ € Ox(X) and let I = (G € Ay | Gp € Ag) be the homogeneous
ideal of denominators of I. By assumption X (I) is empty, and if we could conclude
(as in the affine case) that 1 € I, we’d have ¢ € Ag = k. Instead, we have:

Ay C I for some d (Lemma 4.4)
In other words, G¢ € Ay for all G € Ay. This has the odd consequence that:
G¢® = (Go)¢ € Ay, G§* = (Gg*)p € Ay, ete
which gives an increasing chain of submodules:
Ae C Ae + dAe C Ag + pAe + ¢*Ag C --- C G A,
of a principal graded A-module. Since A, is Noetherian, the chain stabilizes, and:
"= fo+ fro+ -+ fa_1¢" ! for elements f; € A,

In degree 0, this is an identity ¢" =co +c19 +--- + Ch_1¢" ! with coefficients in
k = Ay, and then since k = k, it follows that ¢ € k, as desired. O

So X isn’t affine (unless it is a point). But it is covered by affine varieties:
Proposition 4.7. Each sheaved space (X, Ox) = maxproj(A,) is a prevariety.
Proof. Let G € Ay be a non-zero element of positive degree d. Then
F
Ay = {Gm | deg(F) = md} C k(X)
is a k-algebra domain, generated by y; /G, where y; are a basis for A;. Moreover,
KA) = K(X)

and (Ug, Ox|v,) is isomorphic to maxspec(A(q)), where Ug = X — X (G). In this
case, we can conclude that G™ is in the ideal of denominators of each ¢ € Ox (Ug)
by the Projective Nullstellensatz, as in Proposition 2.7.

O



Example. The open cover of P} by n 4+ 1 affine spaces Uy, ..., Uy,.

For each of the coordinate functions xg, ..., z, € kg, ..., Tn]1,
U, = maxspec(k[zo, ..., Tn](2;)) = maucspec(k[@7 ey x—"])
ZT; xX;

is the affine n space of points:
ao
Ug, ={(ag: ... 1 an) | a; #0} = {(;, vy Ly, —)}

Notice in passing that, PGL(n, k) = Ua is an affine variety, by this Proposition.

[¢2%
a;

A morphism from a prevariety X to affine space A} is given by regular functions:

via f(x) = (g1(2),...., gn(x)). In particular, the only morphisms from a projective

prevariety (or any prevariety with Ox(X) = k) to A} are the constant maps.

But what about morphisms from X to P;? Is there a way to characterize these?
The key is rational functions. Each prevariety X has its rational function field:

E(X) = liLnOX(U)
When X = maxspec(A) this is k(A) and when X = maxproj(4.), it is k(X).
Moreover, if U C X is any open subset, then k(U) = k(X).
Definition 4.8. Rational functions ¢y, ..., ¢, € k(X) determine a rational map:
[ X ==>Pp f(z) = (do(x) -2 dn(2))
The domain of the rational map f is larger than one might expect, since:

(¢0,--:¢n) and (¢ - Go, ... & - )

determine the same rational map to P} whenever ¢ € k(X)*. This means that one
may be able to expand the domain not just by different forms of ¢; = F;/G;, but
also by multiplying by convenient rational functions ¢.

Example. (a) The rational projection map 7 : PZ — — > P} given by:
X1 T2 ) X
— ) =1:=)=(=:1
Zo an0) (L: ) =(_ 1)

is well-defined on the open set P2 — {(1:0:0)} but it cannot be extended further.
When restricted to the projective line X (z1) C P2, we get m(ag : 0:ay) = (0: 1)
and when restricted to X (z2), we get m(ap : a1 : 0) = (0 : 1), so there is no way to
give a value to m(1 : 0 : 0) to extend 7 to a continuous map. In fact, when restricted
to each line through (1:0:0), the projection map is a different constant.

(b) When 7 is restricted to the conic C' = X (2% — zox2) C P, however:
Z1
= l)=(1:—
2) - @iy-a:
with the last form of the map coming from the identity za/x1 = 21/ in k(C).
Moreover, this rational map, defined everywhere, inverts i : P;, — C' given by:

%) = ((-0)*

Zo Z1 z1

T2 T

mle = (1:

T

Nt
To

Proposition 4.9. A morphism f : (X,0x) — P} in the category of sheaved
spaces is the same as a rational map that is defined at all points of X.

T Lo Lo

i=(1: 1)



Proof. We use the open cover of P} by affine spaces in the Example above.
Specifying a morphism f : X — P} is the same as specifying morphisms:

fi : Wiy = U; = Ay for an open cover W; C X
with the property that f; = f; as maps from W; N W; to P}. Focusing on one ¢,

* Z 5
fI(Z5) = ¢ € Ow,(Wi) C k(X)
gives the set (¢o, ..., ¢r) With ¢; = 1 exhibiting f as a rational map. The agreement
on the overlap corresponds to replacing each ¢; by ¢ - ¢; for ¢ = f;(i"—:) O

Corollary 4.10. P} and C from Example (b) above are isomorphic prevarieties.
On the other hand, these two projective prevarieties come from the graded rings:
Ay = E[z0,21]e and Age = k[23, x021, T3]0
Exercise. maxproj(A.) and maxproj(Age) are isomorphic prevarieties for all d > 0.
Proposition 4.11. Products of projective prevarieties are projective.

Proof. It suffices to prove that P} x P{* is a projective prevariety, i.e. to locate
this prevariety as a closed, irreducible subset of some IPj. Here it is:

X = {rank one m X n matrices} C ]P’,in'irl)(nﬂ'l)_1
with projective coordinates (a;;) for i = 0,...,n and j =0, ...,m and
X = X(zijxp — zyxjk) (the vanishing of the two by two minors)
Then X is set-theoretically equal to P} x P}* via the Segre embedding
((ao : ...t an), (bo : ... : b)) — (asbj)
and the Cartesian projections are realized by restricting the rational projections:
Tpn = (x10/®ij : T20/Tij ¢ ...t Tno/i;) and Tpm = (xo1/xij + -+ Tom/Tij)
to X (for any choice of z;;), where they are defined everywhere, hence morphisms.

On each of the open affines U; x U; = A} x A}", this agrees with the product of
affine varieties, and so (X, mpn, Tpy ) is the universal triple. O

Corollary 4.12. Projective prevarieties are varieties.
Proof. The diagonal in P} x P} is the closed subset X ({z;; — z;;}) C X.
It follows that quasi-projective prevarieties U C maxproj(A,) are also varieties.

This choice of an arbitrary x;; in the proof of Proposition 4.11 points to a useful
way to think about morphisms from a projective variety X to P}. If ¢y, ...., ¢, are
rational functions defining a morphism ¢, then we may choose G € A, for some
(large) d so that G¢; = F; € Aq for all i. We may then write f as:

f(z) = (Fo(z) : - : Fu(x))
and although the values of each Fj(z) individually do not make sense, the ratio
does give a well-defined point of projective space, provided that some F;(z) # 0.
Thus, from this point of view, the projection from (1:0: 0):

7 :P? — — > P} can be written as 7(zg : z1 : 22) = (21 : T2)
and the isomorphism from P} to the conic C' can be written as:

i:PL— P2 i(xg:ay) = (22 : wowy ¢ a})



We finish this section with the “completion” of an affine variety. Let
A = k[z1,...,z,]/P with X = X(P) C A}
Then we may homogenize the ideal P by homogenizing its elements:
Prom = (from = f(@1/%0, s wn/20) - 25)| [ € P,d = deg(f)) C k[zo, ..., zne
into generators of P,om. This is a homogeneous prime ideal defining:
Y = X (Phom) C P} satisfying Y NUy = X

This is the Zariski closure of YomX C Uy as a subset of P”. The main point is that
this closure has an open cover by affine varieties Y; = Y NU; for all the other open
affine space subsets U; C P™, allowing us to place each of the points in the closure
of X in the interior of an open affine subvariety of Y.

Example. By this prescription, the closure of the affine curve:
X = X(23 — (23 + Az, + B)) C A}
in the projective plane ]P’% is:
E = X (wox3 — (23 + Axdxs + Bxd)) C P}
which is obtained from X by adding the single point (0:0: 1) = EN X (z0).
The two other affine spaces Uy, Us C IP’% intersect E in affine curves:
X1 = X(zoz3 — (1 + Awox3 + Bzd)) and Xy = X (21 — (25 + Axd + Bxd))
and it is in X5 that we may study the elliptic curve “near” the extra point.
Assignment 4.

1. Prove that the projection: 7(xg : ... : &) = (zg : ... : Ty, ) is not defined at the
points of A = X ({41, ..., 2n)). (a) Show that this is the case by finding:

7 (ag : ... : am) C P} — A for each point (ag : ... : ap) € P

This is called the linear projection my : Py — — > Pi* from A C P}.

(b) If Q = X (zow3 — z122) C P}, completely describe the projection:

T0:0:0:)]Q 1 @ —— > P
Does it extend across (0:0:0:1) € X(Q)? (c) On the other hand, describe:
mAlg:Q——>Pp for A= {(x:%:0:0)} = X((x2,73))
and show that this does extend across the points of A (as in Proposition 4.11.)
2. The d-uple embedding;:
. n (n+d)71
fa: PP —PLa

is given by fq(zg : ... : xp) = (... : xy : ...) over all the multi-indices I of degree d.

(a) If n = 1, the image of the d-uple embedding is the rational normal curve:

Ca={(ad:alay:---:af) | (ap:a1) € P}

corresponding to multi-indices (d — 4,4) generalizing the conic from Corollary 4.10.
Show that I(Cy) is generated by the 2 x 2 minors of the matrix:

T(d,0) T@—1,1) - T(1,d-1)
T(d—1,1) L(d-2,2) "°° Z(0,d)



n+2

(b) If d = 2, the embedding f, : P} — JP’,(C )1 is the Veronese embedding.
In this case, the monomials of degree 2 are all of the form z;z;, and fo can be
thought of as:

fg(a() P an) = ( : aiaj : )

whose coordinates can be arranged in a symmetric n+ 1 x n+ 1 matrix A = (a; ;).
Show that the image is the rank one locus in symmetric all matrices (x; ;), and is
therefore cut out by the quadratic equations of the principal 2 x 2 minors. Work
out the explicit quadratic equations for the Veronese embedding of P2.

(¢) In general, arrange the multi-indices in a convenient ordering to show that
that d-uple embedding is an isomorphism from P} to its image via an appropriate
inverse projective mapping.

3. The Grassmannian G(m, n) is the set of m-planes in k" (e.g. G(1,n) =P}~ 1).
Consider the rational map:

P(Hom(k™, k™)) — — > P(n) =1

given by the m x m minors of a matrix A € Hom(k™, k™). Work this out explicitly
for the case m = 2 and n = 4 and convince yourself that the image is X (¢) C P}
for a suitable nonsingular (see Problem 5) quadratic polynomial. The image also
can be interpreted as the set of indecomposable alternating tensors:

VI A AUy, In ATED

4. (a) Prove Euler’s formula for homogeneous polynomials F' € k[x, ..., Zn]4.

n

oF

K2

(b) The projective tangent plane T,,(X(F)) C P} to X(F) at p € X(F) is:

"~ OF
;xi%(p) =0

provided that the gradient V(F)(p) # 0.

The affine tangent plane to X (f) for f € k[z1, ..., x,] vanishing at (0, ...,0) is:

X(f1) where f = f1 + fo+ -+ fq are the homogeneous terms of f

Show that if F(p) =0and p=(1:0:...:0), then:

T,(X (F)) NUp is the affine tangent plane to X (f) = X(F)N Uy at (0, ...,0)
and that if V(F)(p) = 0, then f; = 0 for the polynomial f = F(1,21/xq, ..., Tn/To).

Thus, p € X (F) is a singular point (no tangent plane) if and only if V(F')(p) = 0.
In particular, if & = C and V(F)(p) # 0, then X(F) is a complex manifold of
dimension n in a Zariski open neighborhood of p € X (F).

(c) Show that the elliptic curve X (y? — 3 — Az — B) is non-singular at the “point
at infinity” and find its projective tangent line.

5. In the projective plane ]P’i, the simplest singularities are simple nodes and cusps.
If f(x1,22) = fo+ f3+ -+ + fq is singular at (0,0), then:

f2($1,$2) = (a1$1 - G2$2)(b1$1 - b2$2)
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(we're assuming k = k), and then:
(i) X(F) has a simple node at (1:0:0) if (ag : a1) # (ba : b1) € P!, i.e. if the
linear factors of fy define different lines through (0, 0).

(ii) X(F) has a simple cusp at (1: 0 : 0) if the linear factors of fy are dependent
(but not zero).

Question. How do we interpret this in terms of the tangent cone:

at p € X(F) of a singular point of X (F) C P3?
5. A homogeneous quadric is a quadratic form:
q= Zci’jxixj € kl[xo, ...s T2
i<j
which is identified with the symmetric matrix:

1 1

€0,0 30,1 con
T i,
Q . 2¢0,1 1,1 2¢1n
1 1
QCO,n §Cl,n e Cn,n
so that
Zo
T 1
q(xo, ..., xy) = & QF for the column vector T =
Ln

Prove that the singular locus of the quadric hypersurface X (q) is:
A =P(ker(Q)) C P}
so that in particular, X (q) is non-singular if and only if det(Q) # 0.

Show (diagonalizing the quadric if like) that the projection from A realizes X (q)
as the inverse image of a nonsingular quadric X (qo) (closed up to include A) under
the projection map:

A P? — — > P(im(Q))
This is called the cone over the quadric X(q) C P(im(Q)).

6. Prove that the only automorphisms of P} (as projective varieties) are the natural
(transitive) action of PGL(n,k) What are the automorphisms of a non-singular
quadric @ C P37



