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4. Projective Varieties.

A projective variety over k is obtained from a Z-graded k-algebra domain A•
(via the functor maxproj) analogously to the realization of an affine variety from
an k-algebra (ungraded) domain A (via the functor maxspec). The key difference
is that unlike the affine case, in which the domain is recovered from the regular
functions, the only regular functions on a projective variety are the constants.

Definition 4.1. As a set, projective space Pn
k is the locus of lines through 0 ∈ kn+1.

Definition 4.2. The polynomial ring graded by degree:

S• =

∞⊕
d=0

k[x0, ..., xn]d is defined by

Sd =

∑
|I|=d

cIxI | xI = xi00 · · ·xinn , cI ∈ k


i.e. Sd is the vector space of homogeneous polynomials of degree d, with:

Sd · Se ⊂ Sd+e

Definition 4.3. An ideal I ⊂ S• is homogeneous if:

I =

∞⊕
d=0

I ∩ k[x0, ..., xn]d, and in that case we let Id = I ∩ k[x0, ..., xn]d

i.e. I is generated by (finitely many!) homogeneous polynomials, so that

f = f0 + · · ·+ fd ∈ I ⇔ fe ∈ Ie for all e

The quotient by a homogeneous ideal is a graded ring:

S•/I = A• with Ad = Sd/Id and Ad ·Ae ⊂ Ad+e

Example. (a) The irrelevant homogeneous maximal ideal in S• is:

S+ =

∞⊕
d=1

k[x0, ..., xn]d = 〈x0, ...., xn〉

This ideal contains all homogeneous ideals in S• other than the ideal 〈1〉.
(b) If X ⊂ Pn

k , then the affine cone over X is:

C(X) = {(a0, ...., an) ∈ kn+1 | k · (a0, ...., an) ∈ X} ∪ {(0, ..., 0)}
The ideal I(X) := I(C(X)) ⊂ S• is a homogeneous ideal (if k is infinite), and:

k[X]• = k[x0, ..., xn]•/I is the quotient ring

(with this convention, I(∅) = S+, though one could argue for I(∅) = 〈1〉)
(c) For a homogeneous ideal I ⊂ S+,

X(I) = C(X) ⊂ kn+1 is an affine cone over some X ⊂ Pn
k

and we let X := X(I) ⊂ Pn
k be the associated algebraic subset of Pn

k .

This sets up a version of the Nullstellensatz for radical homogeneous ideals:
1
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The Projective Nullstellensatz. The radical homogeneous ideals I ⊂ S+ are in
bijection with the algebraic subsets X = X(I) ⊂ Pn

k via the mappings X and I,
with the prime ideals corresponding to irreducible algebraic sets and the maximal
prime ideals properly contained in S+ corresponding to the points x ∈ Pn

k via:

mx = 〈ajxi − aixj〉 for x = k · (a0, ..., an)

Proof. This follows from the ordinary Nullstellensatz applied to affine cones
and the fact that rad(I) is a homogeneous ideal when I is a homogeneous ideal.

Projective Coordinates. We will write x ∈ Pn
k in coordinates as the ratio:

(a0 : · · · : an)

with the understanding that (a0 : · · · : an) = (λa0 : · · · : λan) for λ ∈ k∗.
Remark. If F ∈ Sd is homogeneous of degree d, then:

F (λa0 : .... : λan) = λdF (a0 : · · · : an)

so although the value F (x) is not well-defined, it does make sense to say F (x) = 0.
When F is not homogeneous, even this statement is not well-defined.

Example. In the projective space Pn2−1
k of n× n matrices,

X(∆) is the locus (hypersurface) of singular matrices

where ∆ ∈ Sn is the determinant polynomial. The complement is PGL(n, k).

The following Lemma is useful.

Lemma 4.4. For a homogeneous ideal I ⊂ S•,
X(I) = ∅ ⇔ S+ ⊆ rad(I) ⇔ Sd ⊂ X(I) for some d

Proof. The first equivalence is immediate, and if S+ ⊆ rad(I), then

xdi
i ∈ I for some d0, ...., dn

and then Sd ⊂ I for d > (d0 + · · ·+ dn)− n. The converse is clear. �

We now enlarge our stable of Z-graded k-algebra domains to include:

k[X]• = S•/P for homogeneous prime ideals P ⊂ S+

the homogeneous coordinate rings of irreducible subsets of Pn
k . These rings are:

• Z-graded k-algebra integral domains, with k[X]0 = k

• finitely generated in degree one by a basis x1, ..., xn of k[X]1.

We now construct a prevariety (X,OX) out of each such graded k-algebra A•.

The Set X is the collection of maximal prime ideals mx ⊂ A+.

The Topology is the Zariski topology, in which the algebraic sets:

X(I) = {mx | I ⊂ mx}
are the closed sets, for (radical) homogeneous ideals I ⊂ A+.

The Field of Rational Functions is:

k(X) =

{
F

G
| F,G ∈ Ad and G 6= 0

}
⊂ k(A)

This is a subfield of k(A). The elements of k(X) are homogeneous of degree zero,
which makes them (rational) functions on X.
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Concretely, a choice of basis x0, ..., xn of A1 identifies A• = k[x0, ..., xn]/P and:

maxproj(A•) = X = X(P ) ⊂ Pn
k

This is an irreducible Zariski topological space by the Projective Nullstellensatz.
For x = (a0 : ... : an) ∈ X, and φ ∈ k(X),

φ(a0, ..., an) =
F (a0, ..., an)

G(a0, ...., an)
=

λdF (a0, ..., an)

λdG(a0, ...., an)
= φ(λa0, ...., λan)

is well-defined, provided that G(a0, ..., an) 6= 0. More abstractly,

Definition 4.5. A rational function φ ∈ k(X) is regular at x ∈ X if

φ =
F

G
with G 6∈ mx

The rational functions that are regular at x ∈ X are elements of A(mx) ⊂ k(X), a
local ring with residue field k, in which the value φ(x) is taken. The assignment:

OX(U) = {φ ∈ k(X) | φ is regular at all points of U}
defines the sheaf OX and the sheaved (Noetherian, irreducible) space maxproj(A•).

In contrast to Proposition 2.7, we have:

Proposition 4.6. OX(X) = k when (X,OX) = maxproj(A•).

Proof. Let φ ∈ OX(X) and let I = 〈G ∈ Ad | Gφ ∈ Ad〉 be the homogeneous
ideal of denominators of I. By assumption X(I) is empty, and if we could conclude
(as in the affine case) that 1 ∈ I, we’d have φ ∈ A0 = k. Instead, we have:

Ad ⊂ I for some d (Lemma 4.4)

In other words, Gφ ∈ Ad for all G ∈ Ad. This has the odd consequence that:

Gφ2 = (Gφ)φ ∈ Ad, Gφ
3 = (Gφ2)φ ∈ Ad, etc

which gives an increasing chain of submodules:

A• ⊂ A• + φA• ⊂ A• + φA• + φ2A• ⊂ · · · ⊂ G−1A•

of a principal graded A-module. Since A• is Noetherian, the chain stabilizes, and:

φn = f0 + f1φ+ · · ·+ fn−1φ
n−1 for elements fi ∈ A•

In degree 0, this is an identity φn = c0 + c1φ+ · · ·+ cn−1φ
n−1 with coefficients in

k = A0, and then since k = k, it follows that φ ∈ k, as desired. �

So X isn’t affine (unless it is a point). But it is covered by affine varieties:

Proposition 4.7. Each sheaved space (X,OX) = maxproj(A•) is a prevariety.

Proof. Let G ∈ Ad be a non-zero element of positive degree d. Then

A(G) =

{
F

Gm
| deg(F ) = md

}
⊂ k(X)

is a k-algebra domain, generated by yi/G, where yi are a basis for Ad. Moreover,

k(A(G)) = k(X)

and (UG,OX |UG
) is isomorphic to maxspec(A(G)), where UG = X −X(G). In this

case, we can conclude that Gm is in the ideal of denominators of each φ ∈ OX(UG)
by the Projective Nullstellensatz, as in Proposition 2.7.

�
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Example. The open cover of Pn
k by n+ 1 affine spaces U0, ..., Un.

For each of the coordinate functions x0, ...., xn ∈ k[x0, ..., xn]1,

Uxi = maxspec(k[x0, ..., xn](xi)) = maxspec(k[
x0

xi
, ....,

xn
xi

])

is the affine n space of points:

Uxi
= {(a0 : ... : an) | ai 6= 0} = {(a0

ai
, ...., 1, ....,

an
ai

)}

Notice in passing that, PGL(n, k) = U∆ is an affine variety, by this Proposition.

A morphism from a prevariety X to affine space An
k is given by regular functions:

g1 = f∗(x1), ..., gn = f∗(xn) ∈ OX(X)

via f(x) = (g1(x), ...., gn(x)). In particular, the only morphisms from a projective
prevariety (or any prevariety with OX(X) = k) to An

k are the constant maps.

But what about morphisms from X to Pn
k? Is there a way to characterize these?

The key is rational functions. Each prevariety X has its rational function field:

k(X) = lim
→
OX(U)

When X = maxspec(A) this is k(A) and when X = maxproj(A•), it is k(X).
Moreover, if U ⊂ X is any open subset, then k(U) = k(X).

Definition 4.8. Rational functions φ0, ...., φn ∈ k(X) determine a rational map:

f : X −− > Pn
k ; f(x) = (φ0(x) : · · · : φn(x))

The domain of the rational map f is larger than one might expect, since:

(φ0, ..., φn) and (φ · φ0, ...., φ · φn)

determine the same rational map to Pn
k whenever φ ∈ k(X)∗. This means that one

may be able to expand the domain not just by different forms of φi = Fi/Gi, but
also by multiplying by convenient rational functions φ.

Example. (a) The rational projection map π : P2
k −− > P1

k given by:

(
x1

x0
:
x2

x0
) = (1 :

x2

x1
) = (

x1

x2
: 1)

is well-defined on the open set P2
k − {(1 : 0 : 0)} but it cannot be extended further.

When restricted to the projective line X(x1) ⊂ P2
k, we get π(a0 : 0 : a1) = (0 : 1)

and when restricted to X(x2), we get π(a0 : a1 : 0) = (0 : 1), so there is no way to
give a value to π(1 : 0 : 0) to extend π to a continuous map. In fact, when restricted
to each line through (1 : 0 : 0), the projection map is a different constant.

(b) When π is restricted to the conic C = X(x2
1 − x0x2) ⊂ P2

k, however:

π|C = (1 :
x2

x1
) = (

x1

x2
: 1) = (1 :

x1

x0
)

with the last form of the map coming from the identity x2/x1 = x1/x0 in k(C).
Moreover, this rational map, defined everywhere, inverts i : P1

k → C given by:

i = (1 :
x1

x0
: (
x1

x0
)2) = ((

x0

x1
)2 :

x0

x1
: 1)

Proposition 4.9. A morphism f : (X,OX) → Pn
k in the category of sheaved

spaces is the same as a rational map that is defined at all points of X.
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Proof. We use the open cover of Pn
k by affine spaces in the Example above.

Specifying a morphism f : X → Pn
k is the same as specifying morphisms:

fi : Wi → Ui = An
k for an open cover Wi ⊂ X

with the property that fi = fj as maps from Wi ∩Wj to Pn
k . Focusing on one i,

f∗i (
xj
xi

) = φi ∈ OWi
(Wi) ⊂ k(X)

gives the set (φ0, ..., φn) with φi = 1 exhibiting f as a rational map. The agreement
on the overlap corresponds to replacing each φi by φ · φi for φ = f∗j ( xi

xj
) �

Corollary 4.10. P1
k and C from Example (b) above are isomorphic prevarieties.

On the other hand, these two projective prevarieties come from the graded rings:

A• = k[x0, x1]• and A2• = k[x2
0, x0x1, x

2
2]•

Exercise. maxproj(A•) and maxproj(Ad•) are isomorphic prevarieties for all d > 0.

Proposition 4.11. Products of projective prevarieties are projective.

Proof. It suffices to prove that Pn
k ×Pm

k is a projective prevariety, i.e. to locate
this prevariety as a closed, irreducible subset of some Pr

k. Here it is:

X = {rank one m× n matrices} ⊂ P(n+1)(m+1)−1
k

with projective coordinates (aij) for i = 0, ..., n and j = 0, ...,m and

X = X(xijxkl − xilxjk) (the vanishing of the two by two minors)

Then X is set-theoretically equal to Pn
k × Pm

k via the Segre embedding

((a0 : ... : an), (b0 : ... : bm)) 7→ (aibj)

and the Cartesian projections are realized by restricting the rational projections:

πPn
k

= (x10/xij : x20/xij : ... : xn0/xij) and πPm
k

= (x01/xij : · · · : x0m/xij)

to X (for any choice of xij), where they are defined everywhere, hence morphisms.
On each of the open affines Ui × Uj = An

k × Am
k , this agrees with the product of

affine varieties, and so (X,πPn , πPm
k

) is the universal triple. �

Corollary 4.12. Projective prevarieties are varieties.

Proof. The diagonal in Pn
k × Pn

k is the closed subset X({xij − xji}) ⊂ X.

It follows that quasi-projective prevarieties U ⊂ maxproj(A•) are also varieties.

This choice of an arbitrary xij in the proof of Proposition 4.11 points to a useful
way to think about morphisms from a projective variety X to Pn

k . If φ0, ...., φn are
rational functions defining a morphism φ, then we may choose G ∈ Ad for some
(large) d so that Gφi = Fi ∈ Ad for all i. We may then write f as:

f(x) = (F0(x) : · · · : Fn(x))

and although the values of each Fi(x) individually do not make sense, the ratio
does give a well-defined point of projective space, provided that some Fi(x) 6= 0.
Thus, from this point of view, the projection from (1 : 0 : 0):

π : P2
k −− > P1

k can be written as π(x0 : x1 : x2) = (x1 : x2)

and the isomorphism from P1
k to the conic C can be written as:

i : P1
k → P2

k; i(x0 : x1) = (x2
0 : x0x1 : x2

1)
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We finish this section with the “completion” of an affine variety. Let

A = k[x1, ..., xn]/P with X = X(P ) ⊂ An
k

Then we may homogenize the ideal P by homogenizing its elements:

Phom = 〈fhom = f(x1/x0, ..., xn/x0) · xd0〉| f ∈ P, d = deg(f)〉 ⊂ k[x0, ..., xn]•

into generators of Phom. This is a homogeneous prime ideal defining:

Y = X(Phom) ⊂ Pn
k satisfying Y ∩ U0 = X

This is the Zariski closure of Y0mX ⊂ U0 as a subset of Pn. The main point is that
this closure has an open cover by affine varieties Yi = Y ∩Ui for all the other open
affine space subsets Ui ⊂ Pn, allowing us to place each of the points in the closure
of X in the interior of an open affine subvariety of Y .

Example. By this prescription, the closure of the affine curve:

X = X(x2
2 − (x3

1 +Ax1 +B)) ⊂ A2
k

in the projective plane P2
k is:

E = X(x0x
2
2 − (x3

1 +Ax2
0x2 +Bx3

0)) ⊂ P2
k

which is obtained from X by adding the single point (0 : 0 : 1) = E ∩X(x0).

The two other affine spaces U1, U2 ⊂ P2
k intersect E in affine curves:

X1 = X(x0x
2
2 − (1 +Ax0x

2
2 +Bx3

0)) and X2 = X(x1 − (x3
1 +Ax2

0 +Bx3
0))

and it is in X2 that we may study the elliptic curve “near” the extra point.

Assignment 4.

1. Prove that the projection: π(x0 : ... : xn) = (x0 : ... : xm) is not defined at the
points of Λ = X(〈xm+1, ..., xn〉). (a) Show that this is the case by finding:

π−1(a0 : ... : am) ⊂ Pn
k − Λ for each point (a0 : ... : am) ∈ Pm

k

This is called the linear projection πΛ : Pn
k −− > Pm

k from Λ ⊂ Pn
k .

(b) If Q = X(x0x3 − x1x2) ⊂ P3
k, completely describe the projection:

π(0:0:0:1)|Q : Q−− > P2
k

Does it extend across (0 : 0 : 0 : 1) ∈ X(Q)? (c) On the other hand, describe:

πΛ|Q : Q−− > P1
k for Λ = {(∗ : ∗ : 0 : 0)} = X(〈x2, x3〉)

and show that this does extend across the points of Λ (as in Proposition 4.11.)

2. The d-uple embedding:

fd : Pn
k → P(n+d

d )−1

is given by fd(x0 : ... : xn) = (... : xI : ...) over all the multi-indices I of degree d.

(a) If n = 1, the image of the d-uple embedding is the rational normal curve:

Cd = {(ad0 : ad−1
0 a1 : · · · : ad1) | (a0 : a1) ∈ P1

k}
corresponding to multi-indices (d− i, i) generalizing the conic from Corollary 4.10.
Show that I(Cd) is generated by the 2× 2 minors of the matrix:[

x(d,0) x(d−1,1) · · · x(1,d−1)

x(d−1,1) x(d−2,2) · · · x(0,d)

]
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(b) If d = 2, the embedding f2 : Pn
k → P(n+2

2 )−1

k is the Veronese embedding.
In this case, the monomials of degree 2 are all of the form xixj , and f2 can be
thought of as:

f2(a0 : .... : an) = (... : aiaj : ...)

whose coordinates can be arranged in a symmetric n+ 1×n+ 1 matrix A = (ai,j).
Show that the image is the rank one locus in symmetric all matrices (xi,j), and is
therefore cut out by the quadratic equations of the principal 2 × 2 minors. Work
out the explicit quadratic equations for the Veronese embedding of P2.

(c) In general, arrange the multi-indices in a convenient ordering to show that
that d-uple embedding is an isomorphism from Pn

k to its image via an appropriate
inverse projective mapping.

3. The Grassmannian G(m,n) is the set of m-planes in kn (e.g. G(1, n) = Pn−1
k ).

Consider the rational map:

P(Hom(km, kn))−− > P(n
m)−1

given by the m×m minors of a matrix A ∈ Hom(km, kn). Work this out explicitly
for the case m = 2 and n = 4 and convince yourself that the image is X(q) ⊂ P5

k

for a suitable nonsingular (see Problem 5) quadratic polynomial. The image also
can be interpreted as the set of indecomposable alternating tensors:

v1 ∧ · · · ∧ vm in ∧m kn

4. (a) Prove Euler’s formula for homogeneous polynomials F ∈ k[x0, ..., xn]d.
n∑

i=0

xi
∂F

∂xi
= dF

(b) The projective tangent plane Tp(X(F )) ⊂ Pn
k to X(F ) at p ∈ X(F ) is:

n∑
i=0

xi
∂F

∂xi
(p) = 0

provided that the gradient ∇(F )(p) 6= 0.

The affine tangent plane to X(f) for f ∈ k[x1, ..., xn] vanishing at (0, ..., 0) is:

X(f1) where f = f1 + f2 + · · ·+ fd are the homogeneous terms of f

Show that if F (p) = 0 and p = (1 : 0 : ... : 0), then:

Tp(X(F )) ∩ U0 is the affine tangent plane to X(f) = X(F ) ∩ U0 at (0, ..., 0)

and that if∇(F )(p) = 0, then f1 = 0 for the polynomial f = F (1, x1/x0, ...., xn/x0).

Thus, p ∈ X(F ) is a singular point (no tangent plane) if and only if ∇(F )(p) = 0.
In particular, if k = C and ∇(F )(p) 6= 0, then X(F ) is a complex manifold of
dimension n in a Zariski open neighborhood of p ∈ X(F ).

(c) Show that the elliptic curve X(y2−x3−Ax−B) is non-singular at the “point
at infinity” and find its projective tangent line.

5. In the projective plane P2
k, the simplest singularities are simple nodes and cusps.

If f(x1, x2) = f2 + f3 + · · ·+ fd is singular at (0, 0), then:

f2(x1, x2) = (a1x1 − a2x2)(b1x1 − b2x2)
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(we’re assuming k = k), and then:

(i) X(F ) has a simple node at (1 : 0 : 0) if (a2 : a1) 6= (b2 : b1) ∈ P1, i.e. if the
linear factors of f2 define different lines through (0, 0).

(ii) X(F ) has a simple cusp at (1 : 0 : 0) if the linear factors of f2 are dependent
(but not zero).

Question. How do we interpret this in terms of the tangent cone:∑
i,j

xixj
∂2F

∂xi∂xj
= 0

at p ∈ X(F ) of a singular point of X(F ) ⊂ P2
k?

5. A homogeneous quadric is a quadratic form:

q =
∑
i≤j

ci,jxixj ∈ k[x0, ..., xn]2

which is identified with the symmetric matrix:

Q =


c0,0

1
2c0,1 · · · 1

2c0,n
1
2c0,1 c1,1 · · · 1

2c1,n
...

1
2c0,n

1
2c1,n · · · cn,n


so that

q(x0, ..., xn) = ~xTQ~x for the column vector ~x =


x0

x1

...
xn


Prove that the singular locus of the quadric hypersurface X(q) is:

Λ = P(ker(Q)) ⊂ Pn
k

so that in particular, X(q) is non-singular if and only if det(Q) 6= 0.

Show (diagonalizing the quadric if like) that the projection from Λ realizes X(q)
as the inverse image of a nonsingular quadric X(q0) (closed up to include Λ) under
the projection map:

πΛ : Pn −− > P(im(Q))

This is called the cone over the quadric X(q0) ⊂ P(im(Q)).

6. Prove that the only automorphisms of Pn
k (as projective varieties) are the natural

(transitive) action of PGL(n, k) What are the automorphisms of a non-singular
quadric Q ⊂ Pn

k?


