Emre Gul Lesson Plan on Matrix Transformations

Objectives

Students will be able:

- to form transformation matrices for reflection on x-axis, y-axis, y = x and y = -x using unit square
- \bullet to form transformation matrices for rotation 90°, -90° and 180° using uniit square
- to find reflectional and rotational image of a figure using matrices

First Part of the lesson plan: Forming transformation matrices

Activity Directions:

- Cut out the unit square and place it with O at the origin.
- Now move the square according to transformations on the table below and write down the new positions for corner A and B.
- Write the coordinates for A down the first column and for B down the second column.
- Fill up the table

Transformation	Matrix
1. Reflect on x-axis	$M_{ref_x} = \begin{bmatrix} \dots & \dots \\ \dots & \dots \end{bmatrix}$
2.Reflect on y-axis	$M_{ref_y} = \begin{bmatrix} \dots & \dots \\ \dots & \dots \end{bmatrix}$
3. Reflect in the line $y = x$	$M_{ref_{y=x}} = \begin{bmatrix} \dots & \dots \\ \dots & \dots \end{bmatrix}$
4. Reflect in the line $y = -x$	$M_{ref_{y=-x}} = \begin{bmatrix} \dots & \dots \\ \dots & \dots \end{bmatrix}$
5. Rotate 90° counterclockwise	$M_{90^{\circ}} = \left[\begin{array}{cc} \cdots & \cdots \\ \cdots & \cdots \end{array} \right]$
6. Rotate 180°	$M_{180^{\circ}} = \begin{bmatrix} \dots & \dots \\ \dots & \dots \end{bmatrix}$
7. Rotate 90° clockwise	$M_{-90^{\circ}} = \left[\begin{array}{ccc} \cdots & \cdots \\ \cdots & \cdots \end{array} \right]$

Second Part of the Lesson:

Transform the figure using matrix multiplication

We have formed the transpormations matrices. Now we are going to transform the figures using matrix multiplications.

Here are the directions:

- 1. ABC is a triangle with the given vertices Q(1,-2), R(3,-2), S(1,-6)
- 2. Form the figure matrix using coordinates of the triagle. Write the coordinates for \mathbf{Q} down the first column, for \mathbf{R} down the second column, and for \mathbf{S} down the third column.
- 3. Multiply the matrix with the each transformation matrix
- 4. Figure out the coordinates of the image from the produc and draw the image on the coordinate plane

Here is the figure:

Perform the operation	Figure out coordinates, draw the image, and name the transformation
$\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \times \begin{bmatrix} 1 & 3 & 1 \\ -2 & -2 & -6 \end{bmatrix} =$	
	6
$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \times \begin{bmatrix} 1 & 3 & 1 \\ -2 & -2 & -6 \end{bmatrix} =$	
	6
c. $ \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \times \begin{bmatrix} 1 & 3 & 1 \\ -2 & -2 & -6 \end{bmatrix} = $	
	4 3 3 2 1 1 2 3 4 5 6

-2 -3 -4 -5

Perform the operation	Figure out coordinates, draw the image, and name the transformation
$\begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} \times \begin{bmatrix} 1 & 3 & 1 \\ -2 & -2 & -6 \end{bmatrix} =$	
	5 4
	3 2 1
	-6 -5 -4 -3 -2 -1 1 2 3 4 5 6 -2 -3 -3
	-4 -5 -6¥
$\begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix} \times \begin{bmatrix} 1 & 3 & 1 \\ -2 & -2 & -6 \end{bmatrix} =$	
	6 6
	3 2
	-6 -5 -4 -3 -2 -1 1 2 3 4 5 6
	-2
	-4 -5 -6¥
f.	
$\begin{bmatrix} \cos 90^{\circ} & -\sin 90^{\circ} \\ \sin 90^{\circ} & \cos 90^{\circ} \end{bmatrix} \times \begin{bmatrix} 1 & 3 & 1 \\ -2 & -2 & -6 \end{bmatrix} =$	
	6
	5 4 3
	2 1

-6 -5 -4 -3 -2 -1

5

-2 -3

Perform the operation	Figure out coordinates, draw the ima Name transformation	ge,
$\begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix} \times \begin{bmatrix} 1 & 3 & 1 \\ -2 & -2 & -6 \end{bmatrix} =$		
	64	
	5	
	4	
	3	
	2	
	1	
	-6 -5 -4 -3 -2 -1 1 2 3 4 5 6	
	-2	
	-3	
	-4	
	-5	
	-6	

Third Part of the Lesson:

Students are going to solve an aplication question in this part of the lesson. Here is the application problem:

Perform the indicatated transformation to the figure below using matrices.

- 1. Reflect the figure with respet to x-axis
- 2. Reflect the figure with respect y-axis
- 3. Reflect the figure with respecto y = x
- 4. Reflect the figure with respecto y = -x
- 5. Rotate the figure 90° counterclockwise
- 6. Rotate the figure 180° counterclockwise
- 7. Rotate the figure -90° clockwise
- 8. Dialate the figure by $r = \frac{1}{2}$