Polynomials.
Math 4800/6080 Project Course

1. Introduction. Polynomials in one variable are already a rich source
of mathematics. Why study polynomials in more variables? Here are
three of many possible reasons.

(1) Polynomials are functions. One variable polynomials only have
a one-dimensional domain, but our world is three-dimensional,
and our minds can imagine any number of dimensions. As with
functions of one variable, a “reasonable” function can be well
approximated by a Taylor polynomial, so polynomials in several
variables can be used to model more interesting phenomena.

(2) The level sets of a polynomial in two variables are curves, and
in three variables they are surfaces. These are shapes with very
interesting geometric (and “arithmetic”) properties.

(3) Polynomials can provide useful information. For example, the
determinant of an n X n matrix is a polynomial in the entries
of the matrix. A matrix is a transformation of n-space, and by
Cramer’s rule, this transformation has an inverse if and only if
its determinant is not zero.

The conic is certainly the most familiar polynomial level set:
azx® +bxy+cy’ +dr+ey+ f=0

where z,y are the variables, and a,b, c,d, e, f are the coefficients. We
will review these later, and “close them up” in the projective plane. We
will contrast them with the less familiar (but important) plane cubics:

az® + by + cay® + dy® + ex’z + fr2® + 922 + hy*z +ih2? + jayz = 0
among which are the elliptic curves (of Fermat’s Last Theorem fame).
One celebrated example of a conic equation is Pell’s Equation
2 —dy? =1

where d is a non-square positive integer. The set of real solutions to
this is a hyperbola, the set of rational solutions is a dense subset of the
hyperbola, but the integer solutions are perhaps the most interesting
(and fascinated number theorists of the 17th and 18th centuries).

It turns out that there are infinitely many integer solutions. Finding
the smallest integer solution other than the two obvious ones (£1,0)

can be quite a challenging problem.
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When d = 2, it isn’t so bad. By inspection, (3,2) is a solution, since:
3 —2(2°)=9-8=1

Once we have this solution, we can create infinitely many with a trick.
Rewrite the equation above as:

32229 =(3+2v2)3-2v2) =1
and then square both sides to get:
12 = (34+2v2)%(3 - 2v2)? = (1T +12V2) (17— 12v/2) = (17)? — 2(12)?
since (3 +£2v2)2=9412V/2+8 =17+ 12V2.

Thus we get another solution (17,12). But why stop with squaring?
We can cube both sides, take fourth powers, etc. to get infinitely many
solutions (and up to signs, these turn out to be all of them).

Polynomials are linear combinations of finitely many monomials.
The monomials in one variable are just the powers of the variable:
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In two variables, the monomials are:
ziy?
and in three variables:
syl 2k
while in n variables, we’ll need to use subscripts:
() ol
The degree of the monomial (x) is:
it it F iy
so that, looking back, we see that the conic polynomial:
az® + bry +cy? +dx +ey+ f
is a linear combination of monomials of degrees 2,1 and 0 while the
cubic is a linear combination of monomials of degrees 3,2, 1 and 0.

Here is an important

Definition. A polynomial is homogeneous of degree d if it is a linear
combination of monomials of degree d.

Unlike the space of all polynomials, the space of all homogeneous
polynomials of a given degree d in n variables is finite dimensional.
How many dimensions does it have? Let’s try some examples.
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One Variable. The homogeneous polynomials of degree d in one
variable are scalar multiples of:

2
This is one-dimensional, for any degree.

Two Variables. The homogeneous polynomials of degree d in two
variables are linear combinations of:

A A TR L T e Tk
There are d+ 1 of them, and they are a basis, so the dimension is d+ 1.

Three Variables. In degree zero, there is one monomial, namely 1.
The next few degrees yield:

(a) Degree one. The three monomials of degree one are:
x,y and z

(b) Degree two. There are 6 monomials of degree two:

22, zy, y?, vz, yz, and 2

(c) Degree three. There are 10 monomials of degree three:
Recall that 1,3, 6,10 are the first four triangle numbers.

Proposition. The number of monomials of degree d in 3 variables is:
(d + 2)
2
Proof. Group the monomials of degree d by the power of z:
24 (there is one of these)
22971 y2971 (two of these)

222972 pyz72 4229292 (three of these)

w7 i lyzd=t L pyt e izt (44 1 of these)
2820 28 y20 ) 2yt yd20 (d + 1 of these).

so all together, in three variables and degree d, there are:

d+2
1+2—|—3+---+(d—|—1):( ; )monomials



Adding symmetry to the definition yields a more subtle question.

Definition. A (homogeneous) polynomial P is symmetric if it is

unchanged when the variables are permuted.

Examples. (a) A monomial is symmetric if every power is the same:
z'y’ or x'y'z" or, more generally, zizb--- 2!

are the symmetric monomials.

(b) In two variables, the symmetric homogeneous polynomials are
the linear combinations of:

1 in degree zero,

x + 9y in degree one

2% + 2 and zy in degree two

23 + 9% and 2%y + 2y? in degree three

ot +yt, 23y + 29® and 2%y? in degree four, etc.

What would be a good basis (analogous to the monomials) for the
symmetric homogeneous polynomials of degree d in 3 or more variables?
We will explore this and related questions.

Exercises. 1. Using induction (on the number of variables) and:
(d+k:) _ (k—l) +( k ) I (d+k—1)
k kE—1 kE—1 E—1
conclude that the number of monomials of degree d in n variables is:
(d +n— 1)
n—1
2. Minor changes to Pell’s equation have major impacts. Show that:
(a) The hyperbola of real solutions to:
-4yt =1
contains a dense set of rational solutions but only two integer solutions.
(b) The hyperbola of real solutions to:
2 — 2% =3
contains no integer solutions, and no rational solutions!
(¢) The circle of real solutions to:
4yt =d

contains either a dense set of rational solutions, or no rational solutions,
depending upon d. It never has an infinite set of integer solutions.



