
Categories, Symmetry and Manifolds

Math 4800, Fall 2020

3. Metric Spaces. A metric space is a set M together with a metric d that
measures the distance between two points of M . That is, d is a function:

d : M ×M → [0,∞) = R≥0

that is required to satisfy the following:

(0) d(p, p) = 0 for all p ∈M .

(1) d(p, q) > 0 whenever p 6= q (social distancing).

(2) d(p, q) = d(q, p) for all p and q (distance is observer-independent).

(3) The triangle inequality d(p, r) ≤ d(p, q) + d(q, r) for all p, q, r ∈M .

Examples. (a) Rn is a metric space with many different notions of distance.

If p = (p1, ..., pn) and q = (q1, ...., qn), then each of the following is a metric:

(Max distance)
dmax(p, q) = max

i=1,...,n
{|pi − qi|}

(Manhattan distance)

dMan(p, q) =

n∑
i=1

|pi − qi|

(Euclidean distance)

d(p, q) =

√√√√ n∑
i=1

(pi − qi)2

(b) The two-sphere has a great circle (spherical) metric:

S2 = {(x, y, z) | x2 + y2 + z2 = 1}
Each pair of distinct points p, q ∈ S2 determines a great circle through p and q and
d(p, q) is the arc length of the (smaller) of the arcs of the great circle with endpoints
p and q. (This generalizes to a great circle metric on the n-sphere).

(c) Metric graphs. If Γ is a connected graph with edge set E, then an assignment

l : E → R>0

of a length to each edge makes Γ into a metric graph, in which:

d(p, q) = length of the shortest path from p to q

This is a metric on the set V of vertices of the graph. With some thought, one can
replace the edges of the graph with line segments of the given lengths and obtain
a shortest path distance function for pairs of points on the “tinkertoy” structure
consisting of the edge segments joined at the vertices.

Remark. This last example is a discrete analogue of a Riemannian metric on a
manifold, with respect to which one defines lengths of paths between two points.
The shortest paths between points are geodesics and their lengths define a distance
function on the manifold. Come to think of it, (b) is an example of this, as is the
Euclidean distance, in which the shortest paths are arcs of great circles and line
segments, respectively.
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Given two metric spaces (M,d) and (N, e),

Definition 3.1. A function f : (M,d)→ (N, e) is distance decreasing if:

d(p, q) ≥ e(f(p), f(q)) for all p, q ∈M

Examples. (a) The projection π : Rn+1 → Rn given by π(x1, ..., xn+1) = (x1, ..., xn)
is distance decreasing (and linear). It is not a bijection, so it has no two-sided
inverse, but the “zero section” of the projection z(x1, ..., xn) = (x1, ...., xn, 0) is
distance preserving and a right inverse of π, in the sense that π ◦ z = 1Rn .

(b) A strictly distance decreasing function can be a bijection. The function:

f(x1, ..., xn) =

(
1

2
x1, ...,

1

2
xn

)
from Rn to Rn scales distances by 1/2 and has a (distance increasing) inverse.

(c) The identity 1Rn is a distance decreasing function from (Rn, d) to (Rn, dmax),
since the max distance is always less than (or equal to) the Euclidean distance.

Metric Spaces. The collection of metric spaces with distance decreasing functions
is a category, which we will denote by Met. One needs to check that:

(i) The identity function 1(X,d) is distance decreasing from (X, d) to (X, d).

(ii) The composition of distance decreasing functions is distance decreasing.

but these are easily seen to be true.

Definition 3.2. The isomorphisms in Met are the distance-preserving bijections,
also called isometries, and the symmetries of X are the isometries from X to itself.

Any property of a metric space that is defined solely in terms of the metric is
shared by any isometric space. Since Cauchy sequences and convergent sequences
are defined in terms of the metric, the following is an example:

Definition 3.3. A metric space X is complete if every Cauchy sequence of points
in X converges to a (unique) point x ∈ X.

Example. Remove the origin from Rn but retain the Euclidean metric. This is
not a complete metric space because we punched a hole in it. On the other hand
Rn is complete, so there is no isometry from Rn − {origin} to Rn. The open disk:

D = {(x, y) | x2 + y2 < 1} ⊂ R2

is also not complete for the Euclidean metric. However there is an interesting
hyperbolic (Poincaré) metric on D, with respect to which it is complete. In this
metric the geodesics (shortest paths) are arcs of circles that meet the unit circle
bounding D at right angles. But unlike the arcs of great circles on the sphere, this
distance is not the ordinary length of the arc.

Symmetries of Rn. A symmetry of (Rn, d) is also called a rigid motion.
Our aim is to “classify” all of these. Let’s start with the symmetries of (R, | · |).

(i) Translation by r ∈ R. This is the symmetry τr(x) = x+ r.

(ii) Reflection across s ∈ R. This is the symmetry ρs(x) = −x+ 2s.
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It is an easy exercise (and intuitive) to see that translations and reflections are
symmetries of (R, | · |). Notice that a translation has no fixed points (except for τ0).
Each reflection ρs on the other hand fixes the single point s. Moreover,

τr1 ◦ τr2 = τr1+r2 and ρs ◦ ρs = τ0

More generally, the composition of two reflections is a translation:

ρs1 ◦ ρs2(x) = ρs1(−x+ 2s2) = (x− 2s2) + 2s1 = x+ 2(s1 − s2)

and the composition of two different reflections does not commute!

Proposition 3.4. Every symmetry of R is a translation or a reflection.

Proof. We prove this by “deconstructing” the symmetry f : R→ R.

(1) Let f(0) = r. Then by composing with the translation τ−r we obtain:

φ = τ−r ◦ f with φ(0) = τ−r(f(0)) = τ−r(r) = 0

which is a symmetry of R fixing the origin.

(2) A symmetry of R that fixes the origin is either φ(x) = x or φ(x) = −x.

A symmetry φ that fixes the origin must satisfy:

1 = |1− 0| = |φ(1)− φ(0)| = |φ(1)|
so either φ(1) = 1 or φ(1) = −1. More generally,

|x| = |x− 0| = |φ(x)− 0| = |φ(x)|
so either φ(x) = x or φ(x) = −x. But if φ(1) = 1, it is easy to see that φ(x) = x
for all x, and if φ(1) = −1, then it is easy to see again that φ(x) = −x for all x.
Thus either:

φ(x) = x and f(x) = τr(x) = r + x

or else

φ(x) = −x and f(x) = τr(−x) = r − x
i.e. f(x) is either the translation by r or else the reflection across r/2. �

To handle symmetries of Rn in the same way, we introduce:

Definition 3.5. Given vectors ~v = (v1, ..., vn) and ~w = (w1, ..., wn) in Rn,

~v · ~w = v1w1 + · · · vnwn ∈ R
is their dot product. This is:

(a) Commutative and Bilinear (~v · ~w = ~w ·~v and (~u+~v) · ~w = ~u · ~w+~v · ~w). And

(b) Computes the Euclidean length of the vector ~v via |~v|2 = ~v · ~v
(c) Computes the angle θ between vectors ~v and ~w via:

cos(θ) =
~v · ~w
|~v||~w|

Definition 3.6. ~ei are the unit vectors (0, ..., 1, .., 0) (with 1 in the ith position).

Proposition 3.7. Write |p− q| = d(p, q) for the length of the vector from p to q.

(a) If ~v1, ...., ~vn ∈ Rn are mutually perpendicular unit vectors, then:

φ(x1, ..., xn) = x1~v1 + · · ·+ · · ·xn~vn
is a symmetry of Rn that fixes the origin.
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(b) The identity is the only symmetry that fixes the origin and each ~e1, ...., ~en.

Proof. (a) The function φ is linear by construction, so φ(0) = 0 and:

|φ(x1, ..., xn)− φ(y1, ..., yn)| = |φ(x1 − y1, ..., xn − yn)|
and we may conclude that φ is a symmetry once we show that:

|φ(x1, ..., xn)| = |(x1, ...., xn)| for all (x1, ..., xn) ∈ Rn

But because ~v1, ..., ~vn are unit vectors and mutually perpendicular, we have:

|φ(x1, ..., xn)|2 = (x1~v1 + · · ·+ xn~vn) · (x1~v1 + · · ·+ xn~vn)

= x21 + · · ·+ x2n = |(x1, ..., xn)|2

which gives (a). When we arrange the vectors ~vi as columns in a matrix, then:

φ(x1, ..., xn) = [~v1 · · ·~vn]

 x1
...
xn


But the inverse of this matrix is given by the vectors ~vi arranged as rows:

φ−1(y1, ..., yn) =

 ~v1
...
~vn


 y1

...
yn


i.e. the transpose of this matrix is the inverse. It follows that φ is a bijection, and
also, amusingly, that the rows of the original matrix are another set of mutually
perpendicular unit vectors since the inverse matrix is also a symmetry.

(b) We prove this by brute force. If f is a symmetry that fixes 0 and ~e1, let
(y1, ..., yn) = f(x1, ..., xn). Then:

y21 + · · ·+ y2n = x21 + · · ·+ x2n

(y1 − 1)2 + y22 + · · ·+ y2n = (x1 − 1)2 + x22 + · · ·+ x2n
and we conclude that y1 = x1. In the same way, if f fixes 0 and ~ei, then yi = xi. �

Corollary 3.8. If φ is a symmetry of Rn that fixes 0, let ~vi = φ(~ei). Then:

φ(x1, ..., xn) = x1~v1 + · · ·+ xn~vn

is the symmetry in (a) above. Thus every symmetry that fixes the origin is linear.

Example. Let φ be a symmetry of R2 that fixes the origin. Then:

φ(1, 0) = (cos(θ), sin(θ)) for some angle θ, and then

φ(0, 1) = (− sin(θ), cos(θ)) or φ(0, 1) = (sin(θ),− cos(θ))

because these are the only two unit vectors that are perpendicular to (cos(θ), sin(θ)).
In the first case,

φθ(x, y) =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

] [
x
y

]
is the rotation by θ (counterclockwise) and in the second case,

ρθ/2(x, y) =

[
cos(θ) sin(θ)
sin(θ) − cos(θ)

] [
x
y

]
is the reflection across the line y = tan(θ/2)x.

Definition 3.9. A linear symmetry φ of Rn is an orthogonal transformation.
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Remark. The determinant of the matrix distinguishes rotations from reflections.
A rotation has determinant +1 and a reflection has determinant −1. Rotations
preserve the “orientation” of the plane and reflections switch the orientation. In §4
we will see that the determinant of an orthogonal transformation is always ±1 and
we will use the characteristic polynomial of an orthogonal transformation to prove:

Theorem 3.10. Every orientation-preserving orthogonal transformation φ of R3

is a rotation about a (unit) vector ~v ∈ R3 that is fixed by φ.

As for symmetries of Rn, we can say the following:

Proposition 3.11. If f : Rn → Rn is a symmetry and f(0) = r ∈ Rn, then:

f(p) = r + φ(p)

for some orthogonal transformation φ.

This is the exact analogue of Proposition 3.4. The only difference is that there
are a wealth of symmetries other than translations and reflections when n > 1.

Remark. The composition of f(p) = r + φ(p) and g(p) = s+ ψ(p) is:

(f ◦ g)(p) = r + φ(s+ ψ(p)) = (r + ψ(s)) + (φ ◦ ψ)(p)

since φ is linear and the inverse of f(p) = r + φ(p) is f−1(q) = φ(−r) + φ−1(q)

Symmetries of Regular Polyhedra.

Definition 3.12. The regular inscribed n-gon Pn is the polygon in R2 with vertices:

pm = e2πim/n =

(
cos

(
2πm

n

)
, sin

(
2πm

n

))
; m = 1, ..., n

i.e. the vertices are regularly spaced around the unit circle.

Proposition 3.13. There are 2n symmetries of Pn.

A symmetry of Pn fixes the origin, since the origin is the only point of R2 that is
at a unit distance from all the vertices. Thus it is either a rotation or a reflection.
The rotations and reflections that fix the polygon are:

φθ and ρθ/2 for θ = 0,
2π

n
,

4π

n
, ...,

(2n− 2)π

n
The rotations alone form a cyclic group which, in this context, we denote by:

Cn = the rotational symmetries of Pn

and the collection of all symmetries, we denote by:

D2n = rotational symmetries and reflections of Pn

We can completely describe the symmetries by specifying their compositions:

(1) φθ1 ◦ φθ2 = φθ1+θ2 (2) ρθ1/2 ◦ ρθ2/2 = φθ2−θ1

(3) φθ1 ◦ ρθ2/2 = ρ(θ1+θ2)/2 (4) ρθ1/2 ◦ φθ2 = ρ(θ1−θ2)/2

This is often written abstractly, letting:

x = φ 2π
n

be the generator of Cn and y = ρ0 be the reflection across the x-axis

from which we conclude that xm = φ2πm/n and xmy = ρ2πm/n and, finally:

D2n = {1, x, x2, ...., xn−1, y, xy, x2y, , , ,mxn−1y | xn = 1, y2 = 1 and yx = x−1y}
which is enough information to completely specify D2n and its multiplication.
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Definition 3.14. The platonic solids are the five regular solids:

The Tetrahedron (4 triangular faces, 6 edges, 4 vertices)

The Heptahedron, aka The Cube (6 square faces, 12 edges, 8 vertices)

The Octahedron (8 triangular faces, 12 edges, 6 vertices)

The Dodecahedron (12 pentagonal faces, 20 edges, 20 vertices)

The Icosahedron (20 triangular faces, 30 edges, 12 vertices)

which may be inscribed in the unit sphere.

These five solids come in dual pairs, from the point of view of their symmetries,
since a symmetry of a solid S is a symmetry of the dual solid T whose vertices are
the midpoints of the faces of S. The vertices of T correspond to the faces of S and
the faces of T correspond to the vertices of S. The tetrahedron is dual to itself, but

S = Heptahedron ↔ T = Octahedron, S = Dodecahedron ↔ T = Icosahedron

Using Theorem 3.10, we can tabulate the orientation-preserving symmetries of
the regular solids S. These are analogous to the rotations of a regular polygon.

The Tetrahedron. The symmetries rotate about:

(1) 4 lines through a vertex and the midpoint of an opposite face (three rotations)

(2) 3 lines through the midpoints of opposite edges (two rotations)

One of each set of rotations is the identity, so this gives:

1 + 2× 4 + 1× 3 = 12 symmetries

These symmetries do not commute. They form a non-Abelian group (see §5) that
is isomorphic to the alternating group A4 of even permutations of [4]. One can see
this by considering how these symmetries permute the 4 vertices of the tetrahedron.

The Heptahedron. The symmetries rotate about:

(1) 4 diagonals joining opposite vertices (three rotations)

(2) 3 lines through the midpoints of opposite faces (four rotations)

(3) 6 lines through the midpoints of opposite edges (two rotations)

Altogether this gives

1 + 2× 4 + 3× 3 + 1× 6 = 24 symmetries

forming a non-Abelian group isomorphic to the group S4 of all permutations of [4].
One sees this by permuting the 4 diagonals of the cube with these symmetries.

The Dodecahedron. The symmetries rotate about:

(1) 10 lines joining opposite vertices (three rotations)

(2) 6 lines joining the midpoints of opposite faces (five rotations)

(3) 15 lines joining the midpoints of opposite edges (two rotations)

Giving us a total of:

1 + 2× 10 + 4× 6 + 1× 15 = 60 symmetries

which is isomorphic to the alternating group A5 of even permutations of [5]. It’s an
interesting question to find the five things that are permuted by the symmetries.
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Assignment 3.

1. (a) The product of two metric space (X1, d1) and (X2, d2) in the category Met
is the Cartesian product X1 ×X2. What is the metric?

(b) Show that there is no coproduct of metric spaces, because in X1 t X2 the
points of X1 would need to be infinitely far from points of X2 in order to satisfy
the universal property.

2. The standard unit ball in Rn is the set of points p ∈ Rn such that:

d(0, p) < 1 where 0 ∈ Rn is the origin

Describe the unit balls in R2 and in R3 for each of the following metrics:

(a) The max distance metrix

(b) The Manhattan metric

(c) The Euclidean metric

3. Find a graph with six vertices and unit edge lengths in which:

• nine pairs of vertices v, w satisfy d(v, w) = 1, and

• six pairs of vertices v, w satisfy d(v, w) = 2.

4. Check that f−1(q) = φ−1(−r)+φ−1(q) is a two-sided inverse of f(p) = r+φ(p).

5. (a) The reflection across the line y = mx+ b is a symmetry of R2.
Express it in the form f(p) = r + φ(p).

(b) Rotation by an angle θ around a point c ∈ R is a symmetry of R2.
Express it in the form f(p) = r + φ(p).

6. Verify the compositions (1)-(4) for the dihedral group D2n.

7. Verify that D6 is the same as the permutations of [3]. Verify the equality:

yxky−1 = x−k

for all the dihedral groups D2n. (We’ll be using this later....)

Possible Projects.

3.1. Explore the hyperbolic metric on the unit disk. Find the distance between
points of the unit disk for this metric. Check that the triangle inequality holds and
explain why the metric is complete.

3.2. Verify that there are only five regular solids and carefully check that their
symmetries are A4, S4 and A5, as advertised.

3.3. What are the symmetries of the tesseract (four-dimensional cube)?


