Math 4200-001/Complex Analysis/Fall 2017 Second Midterm

1. (20 points) Calculate:

$$\int_{\gamma} \frac{z}{z^2 - 1} dz$$

for each of the following paths $\gamma: [0, 2\pi] \to \mathbb{C}$

(a) $\gamma(t) = \frac{1}{2}e^{it}$ (b) $\gamma(t) = \frac{1}{2} + \frac{3}{4}e^{2it}$. (c) $\gamma(t) = \frac{1}{2} - \frac{3}{4}e^{2it}$. (d) $\gamma(t) = 2e^{-it}$

2. (10 points) Suppose the polynomial:

$$f(z) = c_d z^d + c_{d-1} z^{d-1} + \dots + c_0$$

satisfies:

$$|f(z)| \leq M$$
 for all points of the circle $|z| = R$

Find an upper bound for the leading term:

 $|c_d|$

in terms of M and R.

3. (20 points) In your own words, give the full story why a function with one complex derivative at all points of an open set $U \subset \mathbb{C}$ must in fact have infinitely many complex derivatives at all points of U.

4. (20 points) Suppose $z_0, z_1 \in \mathbb{C}$ are distinct points with

$$|z_1 - z_0| = s < r$$

and that f(z) has an isolated singularity at z_1 , but is otherwise analytic on $D_r(z_0)$. Prove that the radius of convergence of the power series:

$$f(z) = \sum_{k=0}^{\infty} c_k (z - z_0)^k$$

is s if and only if z_1 is **not** a removable singularity.

5. (10 points) Show that if f(z) is an entire function and:

$$|f(z)| < M|z|$$

for some M > 0, then f(z) = cz for some $c \in \mathbb{C}$.

6. (20 points) Give examples of analytic functions with singularities at the integers of each of the following types.

(a) f(z) has a pole of order one at each $n \in \mathbb{Z}$.

(b) f(z) has a pole at each $n \neq 0$ and a removable singularity at 0.

(c) f(z) has a pole at each square integer n^2 all other integers are removable singularities.

(d) f(z) has an essential singularity at each $n \in \mathbb{Z}$.