
Math 4030-001/Foundations of Algebra/Fall 2017

Numbers at the Foundations: The Integers

Next, we consider the Integers. This is the set

Z = {...,−3,−2,−1, 0, 1, 2, 3, , ...}
which is ordered, but which does not enjoy well-ordered axiom since,
for example, there is no smallest integer. The integers consist of the
natural numbers, zero and the negative integers. Proofs and definitions
generally treat the three cases separately.

The integers have a symmetry that the natural numbers lack, namely:

Definition 5.1. The negation of an integer is defined by:

−(n) = −n for all natural numbers

−(0) = 0

−(−n) = n for all negative integers

Remark. Two key properties of negation are:

(a) Negation reverses order. If a ≤ b, then −a ≥ −b, and

(b) Negating twice returns to the original. That is, −(−a) = a.

If we think of the integers evenly spaced on the number line, then
negation is the reflection across the origin, which explains (a) and (b).

Notation. We will let the letters a, b, c, ... denote integers, reserving
k, l,m, n to stand more specifically for natural numbers.

Definition 5.2. Addition of integers may be defined inductively:

(o) a + 0 = a

(i) a + 1 = the integer after a.

a + (−1) = the integer before a

(ii) (∀n ∈ N) a + (n + 1) is the number after a + n.

(∀n ∈ N) a + (−(n + 1)) is the number before a + (−n).

From this definition, we can prove by induction that:

Zero is the Additive Identity. That is, 0 + a = 0 for all integers a.

Proof. (o) 0 + 0 = 0 by definition.

(i) 0 + 1 = 1 and 0 + (−1) = −1 also by definition.

(ii) If 0 + n = n, then 0 + (n + 1) is the number after n, which is
n + 1 and if 0 + (−n) = −n, then 0 + (−(n + 1)) is the number before
−n, which is −(n + 1). This completes the proof by induction!
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Remark. If n ≥ m are natural numbers, we may interpret n + (−m)
as the number of elements remaining after removing (subtracting) m
elements from a set with n elements. In particular, n + (−n) = 0.

To prove the associative law, it is useful to think geometrically.

Observation. (a) The function f(x) = x + n shifts all of the integers
(on the number line) to the right by n units.

(b) f(x) = x + (−n) shifts the integers to the left by n units.

(c) f(x) = x + 0 leaves all the integers in place.

If we know in advance that f is a shift (translation) function, then

f(0) = a

is the shift (left or right or none), since 0 + a = a.

Addition of Integers is Associative.

Proof. Let x be a variable and a, b be fixed integers, and:

f(x) = x + a, g(x) = x + b

Then (g ◦ f)(0) = (0 + a) + b = a + b and therefore:

(g(f(x)) = (x + a) + b and (g ◦ f)(x) = x + (a + b)

since (g ◦ f)(0) = a + b. But by the associativity of composition of
functions, g(f(x)) = (g ◦ f)(x) for every x, so addition is associative.

Remark. In the proof, we assumed that the composition g ◦ f of two
shift functions is once again a shift function. This is an appeal to
geometric intuition that might make some uncomfortable.

Negation Distributes with Addition.

(∀a ∈ Z)(∀b ∈ Z)− (a + b) = (−a) + (−b)
Proof. Fix a. We will prove this for all b. It is clearly true for b = 0.

(i) Since a + 1 is the number after a and (−a) + (−1) is the number
before−a, it follows that−(a+1) = (−a)+(−1) since negation reverses
the ordering. Similarly, a+(−1) is the number before a and (−a)+1 is
the number after (−a), so −(a + (−1)) = (−a) + 1 = (−a) + (−(−1)).

(ii) For all n, if −(a + n) = (−a) + (−n), then −(a + (n + 1)) is the
number before −(a + n) = (−a) + (−n), i.e. it is (−a) + (−(n + 1)),
and similarly, if −(a + (−n)) = (−a) + n, then −(a + (−(n + 1))) is
the number after (−a) + n, i.e. it is (−a) + (n + 1). �

Remark. The order-reversing property of negation was the key to this
proof, and it was also the key to proving that 0 is an additive identity.



The Additive Inverse of a is −a. That is, (∀a ∈ Z) a + (−a) = 0.

Proof. This is true when a = 0 and when a = n (by subtraction).
Since negation distributes with addition, we also have:

−(n + (−n)) = −0 = 0 so (−n) + n = 0

since negation distributes with addition. �

Remark. The preposition “the” before “additive inverse” is premature
since we only proved uniqueness of additive inverses assuming that
addition is commutative and associative. We remedy this below.

Addition is Commutative.

Proof. We already know that n + m = m + n and 0 + a = a + 0
for all natural numbers m and n and integers a. We can also use the
distributive property of negation to conclude that:

(−n) + (−m) = −(n + m) = −(m + n) = (−m) + (−n)

So addition also commutes when both integers are negative. This leaves
the case where one of the integers is positive and the other is negative.
Suppose n ≥ m. Then:

n + ((−m) + n) = (n + (−m)) + n = n + (n + (−m))

using the associative law and the proven case of the commutative law.
Adding −n we then get (−m) + n = n + (−m). We can similarly use
−n in the case where n < m to take care of this final case. �

For multiplication, let’s first think about the properties we want:

List of Desired Properties for the Multiplication of Integers.

• Multiplication of natural numbers should be repeated addition.

• Multiplication by −1 should be negation.

•Multiplication should be associative and commutative and it should
distribute with the addition of integers.

Proposition 5.1. These properties determine multiplication.

Proof. The desired properties tell us:

m ∗ n = mn is the product of natural numbers

(−m) ∗ n = ((−1) ∗m) ∗ n = (−1) ∗ (mn) = −mn

m ∗ (−n) = m ∗ ((−1) ∗ n) = (−1) ∗ (m ∗ n) = −mn

(−m) ∗ (−n) = ((−1) ∗ (−1)) ∗ (mn) = −(−mn) = mn

In fact, this only used the associative and commutative properties.
We use the distributive property to determine multiplication by 0:

a ∗ 0 = a ∗ (1 + (−1)) = a + (−a) = 0 �



Remark. This multiplication rule now should undergo an examination.
Does it actually satisfy all the desired properties? In particular, does
it really satisfy all the laws of arithmetic? This can be done with a
case by case analysis, using the fact that the multiplication of natural
numbers satisfies the laws and that negation distributes with addition.

We have enlarged the natural numbers to the integers and we have
extended the addition and multiplication operations. This gives us a
(unique) additive identity (0) and (unique) additive inverses (−a). The
negation operation, which defines multiplication by −1, is a symmetry
that we can use to define the subtraction operation on integers as:

a− b = a + (−b)
addition of the additive inverse. Of course, we don’t have division....

Division with Remainder. Given a ∈ Z and n ∈ N, there is a
unique quotient q ∈ Z and remainder r ∈ {0, 1, ...., n− 1} so that:

a = qn + r

Proof. The set of integers:

S = {a + bn | b ∈ Z}
has neither a maximum nor a minimum, since n can be added to or
subtracted from any element of S to get a new element. It follows that:

S ∩ N 6= ∅
and therefore S ∩ N has a unique smallest element r = a + bn with

r ∈ {1, 2, ...., n}
because otherwise r − n would be a smaller element in R. So either:

(i) r = a + bn ∈ {1, ...., n− 1} and then a = (−b)n + r or else

(ii) r = a + bn = n, and then a = (−b + 1)n + 0 �

We are now ready for something new and exciting.

Definition 5.3. Let m,n ∈ N. Their greatest common divisor,

gcd(m,n)

is the largest natural number d that divides both m and n. We say
that m and n are relatively prime if gcd(m,n) = 1.

Remark. Every pair of natural numbers has a gcd, since 1 is a common
divisor and every common divisor is no bigger than min{m,n}.

In middle school we find gcd’s by factorizing m and n and looking for
common prime factors, but we haven’t yet proven unique factorization
of natural numbers into primes, and in any case there is a better way.



Euclid’s Algorithm (for finding gcd(m,n)). Assume m ≤ n.

Loop. Use division with remainder to write:

n = qm + r with r ∈ {0, 1, ...,m− 1}
If r = 0, STOP. The gcd is m. Otherwise, reset the n and m to:

n := m and m := r and REPEAT

Since each remainder generated by the algorithm is smaller than the
previous one, there are no infinite loops (well-ordered axiom!).

Example. To find gcd(512, 1000), we run the algorithm:

1000 = 1(512) + 488
512 = 1(488) + 24
488 = 20(24) + 8
24 = 3(8) + 0

STOP. The gcd is 8.

Verification. Euclid’s algorithm does actually produce the gcd.

Proof. Any common divisor of n and m also divides r since

r = n− qm

This is true for every iteration of the loop, so the gcd divides n,m, r
and each subsequent remainder r as long as the loop repeats. Thus the
gcd divides the number returned by the algorithm.

On the other hand, the number d returned by the algorithm divides
both n and m in the last iteration of the loop, which were m and r in
the previous iteration, and:

n = qm + r

from that iteration shows that d divides n as well. Tracing back the
loop to the original pair n and m, we see that d divides the original
pair of natural numbers. Thus d is a common divisor of m and n and
the gcd divides d, so the gcd must be the number d. �

Example. In the example above, gcd(512, 1000) divides:

1000, 512, 24 and 8

and 8 divides 24, 488, 512 and 1000, so 8 is the gcd.

Remark. This algorithm is easy to code and quick to run. A slightly
souped up version of it will finish in approximately log2(m) steps, which
means it can quickly find gcd’s of pairs of numbers with many digits.
On the other hand, factoring such numbers is very slow.

There is also a very important Corollary of Euclid’s Algorithm.



Corollary 5.2. If d = gcd(m,n), then there are a, b ∈ Z such that:

am + bn = d

In particular, if m and n are relatively prime, then am + bn = 1.

Proof. Let m0 = m and n0 = n (to distinguish them from the
redefined values of m and n in the algorithm). We recursively define
two pairs of integers a1, b1, a2, b2 in the loop satisfying:

a1m0 + b1n0 = n and a2m0 + b2n0 = m

When the algorithm returns m, we set a = a2 and b = b2.

Initialize: Set a1 = 0, b1 = 1 and a2 = 0, b2 = 1. Then:

a1m0 + b1n0 = n and a2m0 + b2n + 0 = m

in the first iteration of the loop.

Loop: When we reset n to m and m to r = n− qm, then reset

a2 := a1 − qa2 and b2 := b1 − qb2

a1 := (previous) a2, and b1 := (previous) b2
to preserve the two equations. �

Example. The earlier example, annotated with a’s and b’s, gives:

1000 = 1(512) + 488 a1 = 0 b1 = 1 a2 = 1 b2 = 0
512 = 1(488) + 24 a1 = 1 b1 = 0 a2 = −1 b2 = 1
488 = 20(24) + 8 a1 = −1 b1 = 1 a2 = 2 b2 = −1
24 = 3(8) + 0 a1 = 2 b1 = −1 a2 = −41 b2 = 21

STOP. The gcd is 8 and (−41)(512) + (21)(1000) = 8.

Exercises. 5.1. The absolute value function:

| · | : Z→ N ∪ {0} is defined by |n| = n, |0| = 0 and | − n| = n

(a) Prove that |a| = | − a| for all integers a.

(b) Prove by induction that:

|a + n| ≤ |a|+ n

for all natural numbers n. When does equality hold?

5.2. Prove that multiplication of integers is commutative.

5.3. Prove that multiplication of integers is associative.

5.4. Prove that multiplication of integers distributes with addition.

5.5. Find d = gcd(m,n) and solve am + bn = d for:

(a) m = 91, n = 343 (b) m = 101, n = 150


