
Math 4030-001/Foundations of Algebra/Fall 2017

Foundations of the Foundations: Sets

A set is a collection of objects, which are the elements of the set.
We denote sets with capital letters, elements with small letters, and

a ∈ A and b 6∈ A

means a is an element of the set A and b is not an element of A.

There is one set containing no elements, namely the empty set ∅.
A (finite) set is written as the list of its elements:

A = {a, e, d, x, c}
in any order, and no element may appear twice in the list.

Sets A and B have the same cardinality if there is a function:

f : A→ B

that is both one-to-one (injective) and onto (surjective), which is the
case exactly when there is an inverse function f−1 : B → A.

Remark. A one-to-one and onto (invertible) function is a bijection.

Two sets with a finite number of elements have the same cardinality
if and only if they have the same number of elements, but there are
infinite sets (e.g. natural vs real numbers) with different cardinalities.

The intersection A∩B is the set of elements in both A and B, and
the union A ∪ B is the set of elements in A or B (or both of them).
For example, if A is as above and B = {b, e, f, y, c}, then:

A ∩B = {e, c} and A ∪B = {a, b, e, d, f, x, y, c}
For sets with finitely many elements, we write:

|A| = the number of elements in A

and the “principle of inclusion and exclusion” tells us that:

|A|+ |B| − |A ∩B| = |A ∪B|
Sets A and B are disjoint if A ∩B = ∅.
B is a subset of A, written B ⊂ A if all of the elements of B are

elements of A, which is equivalent to each of the following:

B = A ∩B and A = A ∪B

Often we will consider sets that are subsets of one universe set U .
The sets A and B above are subsets of the universe of (small) letters:

U = {a, b, c, ...., x, y, z},
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Within a universe U , the complement of A is:

Ac = the set of elements in U that do not belong to A

so, in the example above, Ac is the set of the 21 letters of the alphabet
that are not a, e, d, x or c.

A collection of subsets of U is a partition if every element of U is
in exactly one of the subsets. For example, in the universe of letters,

V = {vowels} and C = {consonents}
is a partition into two sets (let’s agree that y is a consonent).

The two subsets of even and odd integers partition the integers:

Z = {...− 3,−2,−1, 0, 1, 2, 3, ...}
As another example, the three sets: Z<0, {0}, Z>0 of negative inte-
gers, zero and positive integers partition Z. and a final example, the
singleton sets {a} for a ∈ Z partition Z into infinitely many subsets.

The Cartesian product of sets A and B is the set of ordered pairs:

A×B = {(a, b) | a ∈ A and b ∈ B}
Remarks. (a) The vertical slash means “such that,” so the line reads:

“A×B is the set of ordered pairs (a, b) such that a is an element of A
and b is an element of B.”

(b) If A and B are finite sets, then |A×B| = |A| · |B|.
Given a partition of U into (possibly infinitely many) subsets A, let:

x ∼ y when x, y ∈ A

belong to the same set A of the partition. This is the equivalence
relation associated to the partition of U , and the sets of the partition
are called the equivalence classes. Thus, for example, in the partition
of Z into odd and even integers,

x ∼ y when x and y are either both odd or both even integers

In this example, we can describe the relation with a rule:

x ∼ y when x− y is even

A relation on U is a subset of the Cartesian product:

R ⊂ U × U with x ∼ y when (x, y) ∈ R

For example, the subset:

R = {(1, 1), (2, 1), (2, 2)} ⊂ {1, 2} × {1, 2}
is the relation x ≥ y on the universe U = {1, 2}.



A given relation R on a universe U is:

Reflexive if x ∼ x for all x ∈ U

Symmetric if x ∼ y implies that y ∼ x.

Transitive if x ∼ y and y ∼ z imply that x ∼ z.

For example, x ≥ y is not symmetric, but it is reflexive and transitive.

The relation associated to a partition satisfies all three properties.
Conversely, any relation R that satisfies the three properties is called an
equivalence relation, and it partitions U into equivalence classes.
In other words, partitions and equivalence relations are the same thing!

Given an equivalence relation, such as the odd/even relation on Z:

x ∼ y if x− y is even

there is a conundrum, namely, what do we name the equivalence classes?
One way to do this is by choosing a single element from each, and using
the element to name the equivalence class. Thus, we could let:

[0] = {even integers} and [1] = {odd integers}
This can be useful, but it has one drawback, which is that a single

equivalence classes has as many names as it has elements. Thus:

..., [−4],−[2], [0], [2], [4], ... are all names for the even integers

Next, we turn briefly to the question of counting elements of sets.
Every finite set can be counted by a bijection from one of the sets:

A1 = {1}, A2 = {1, 2}, A3 = {1, 2, 3}, ..., An = {1, 2, 3, ..., n}, ...
which are all subsets of the universe of natural numbers:

N = {1, 2, 3, ....}
A bijection from N itself to a set S is an “infinite” count of S, and

such a set is said to be countable or countably infinite.

Next, we consider the bijections from a finite set to itself.

Definition. A bijection from An to An is a permutation on n letters.

Remarks. (a) A permutation f on n letters is the list:

f(1), f(2), . . . , f(n) ∈ An

of distinct values of f , and there are n! ways to create this list:

n ways to choose f(1) times n− 1 ways to choose f(2), etc.

(b) Because they are bijections from An to itself, permutations can be
composed, and composing permutations has some interesting features.



Example. We can list all 6 permutations of A3 in a table:

f f1 f2 f3 f4 f5 f6
f(1) 1 1 2 2 3 3
f(2) 2 3 1 3 1 2
f(3) 3 2 3 1 2 1

Some immediate things to notice:

• The first permutation f1 is the identity (do nothing) permutation.

• Each of the permutations f2, f3 and f6 fix a single element and
switch the other two. This means, in particular, that:

f2 ◦ f2 = f1, f3 ◦ f3 = f1 and f6 ◦ f6 = f1

• The remaining pair of permutations cycle the elements of A3, and:

f4 ◦ f4 = f5, f4 ◦ f4 ◦ f4 = f1, f5 ◦ f5 = f4 and f5 ◦ f5 ◦ f5 = f1

We can capture the cycles of a permutation with cycle notation.
In this notation, we “write out the cycles.” So, for instance:

(1 3 2) is the permutation that takes f(1) = 3, f(3) = 2, f(2) = 1

(the last value of f completes the cycle). Thus (1 3 2) = f5.

(1)(2 3) is the permutation that takes f(1) = 1, f(2) = 3, f(3) = 2

and comparing with the table above, we see that (1)(2 3) = f2. Also:

(1)(2)(3) = f1

and similarly, all the other permutations can be put in cycle notation.

Cycle notation is useful for composing permutations. For example:

f5 ◦ f2 = (1 3 2) ◦ (1)(2 3)

and we can use the cycle notation (reading right to left) to track:

1
f27→ 1

f57→ 3, 3
f27→ 2

f57→ 1, 2
f27→ 3

f57→ 2

Putting this together, we get the cycle notation for the composition:

f5 ◦ f2 = (1 3 2) ◦ (1)(2 3) = (1 3)(2) = f6

We will revisit this later in the course.



Exercises 1.1. The power set of A is the set of all subsets of A.

(a) What is the power set of the empty set?

(b) What is the power set of A1 = {1}?
(c) What is the power set of A2? of A3?

(d) How many elements are there in the power set of An?

(e) Can you “see” Pascal’s triangle in the elements of the power set?

1.2. Show that union and intersection satisfy both distributive laws:

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)

and
A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C)

(use a Venn diagram).

1.3. Justify the principle of inclusion and exclusion.

1.4. What are all the relations on U = {1, 2}? Which of them are
equivalence relations?

1.5. Find cycle notation for each of the permutations f1, ..., f6.

1.6. Find a pair of permutations of A3 that do not commute. That
is, find a pair of permutations fi and fi so that:

fi ◦ fj 6= fj ◦ fi

1.7. Make a 6 × 6 “composition table” for f1, ...., f6.


