Math 4030-001/Foundations of Algebra/Fall 2017

Linear Algebra at the Foundations: Number Fields Definition 12.1 A vector space consists of the following:

- (i) A field F of scalars (e.g. $F = \mathbb{R}$ or \mathbb{Q})
- (ii) A set V of vectors with vector addition and scalar multiplication:

$$v + w \in V$$
 and $cv \in V$ for $v, w \in V$ and $c \in F$

satisfying the following rules:

- \bullet Vector addition is commutative and associative, with an additive identity vector 0 and additive inverses -v of each v.
 - Scalar multiplication distributes with vector addition:

$$c(v + w) = cv + cw$$
 and $(c + d)v = cv + dv$

• Scalar multiplication satisfies:

$$1 \cdot v = v$$
 and $c(dv) = (c\dot{d})v$ for all $c, d \in F$

Examples. (a) The set of ordered *n*-tuples $(c_1, ..., c_n)$ of elements of a field F with coordinate addition and scalar multiplication:

$$(c_1, ..., c_n) + (d_1, ..., d_n) = (c_1 + d_1, ..., c_n + d_n)$$

 $c(d_1, ..., d_n) = (cd_1, ..., cd_n)$

is the vector space F^n .

(b) The polynomials with coefficients in F:

$$F[x] = \{ f(x) = c_d x^d + \dots + c_0 \}$$

are a vector space with scalar field F.

Definition 12.2. Vectors $v_1, ..., v_n \in V$ in a vector space:

• are linearly independent if:

$$c_1v_1 + \cdots + c_nv_n = 0 \iff 0 = c_1 = c_2 = \cdots = c_n \in F$$

• span V if $(\forall v \in V)(\exists c_1,...,c_n \in F) c_1v_1 + \cdots + c_nv_n = v$.

i.e. every vector in V is a linear combination of $v_1, ..., v_n$.

 \bullet are a basis if they are both linearly independent and span V.

Observation. If $v_1, ..., v_n$ are a basis and $v \in V$, then if:

$$c_1v_1 + \cdots + c_nv_n = v = d_1v_1 + \cdots + d_nv_n$$

it follows that $(c_1 - d_1)v_1 + \cdots + (c_n - d_n)v_n = 0$ so $c_i = d_i$ for all i. Thus $v_1, ..., v_n \in V$ is a basis if and only if each $v \in V$ is a **unique** linear combination of $v_1, ..., v_n$.

Theorem/Definition 12.3. Any two bases of a vector space have the same number of elements. This number is the **dimension** of V.

Proof. If $w_1, ..., w_m$ and $v_1, ..., v_n$ are bases of V and m < n, then:

$$c_{1,1}w_1 + \dots + c_{1,m}w_m = v_1$$

 \vdots
 $c_{m,1}w_1 + \dots + c_{m,m}w_m = v_m$

This is a system of m independent equations (because the vectors $v_1, ..., v_m$ are linearly independent), so it can be inverted, to solve:

$$d_{1,1}v_1 + \dots + d_{1,m}v_m = w_1$$

$$\vdots$$

$$d_{m,1}v_1 + \dots + d_{m,m}v_m = w_m$$

and then, as a result, v_{m+1} is a linear combination of $w_1, ..., w_m$ (because $w_1, ..., w_m$ span), hence v_{m+1} is a linear combination of $v_1, ..., v_m$, which is a contradiction. So $m \ge n$ and also $n \ge m$ by the same argument.

Example. The vectors $e_1 = (1, 0, ..., 0), e_2 = (0, 1, ..., 0)$, etc are the standard basis for the vector space F^n .

Main Example. Declare that r is to be a root of a prime polynomial $p(x) = x^d + ... + c_1 x + c_0 \in \mathbb{Q}[x]$. Then:

$$\mathbb{Q}[r] = \{ f(r) \mid f(x) \in \mathbb{Q}[x] \}$$

is the vector space of polynomials evaluated at r.

By definition, $r^d + c_{d-1}r^{d-1} + \cdots + c_0 = 0$ which gives: $r^d = -c_{d-1}r^{d-1} - \cdots - c_0$

and so every occurance of r^d in each f(r) can be replaced with lower powers of r until finally f(r) is a linear combination of $1, r, r^2, ..., r^{d-1}$. Thus these vectors span $\mathbb{Q}[r]$. If

$$a_0 \cdot 1 + a_1 \cdot r + \dots + a_{d-1} r^{d-1} = 0$$

for some $a_0, ..., a_{d-1} \in \mathbb{Q}$, then r is also a root of the polynomial:

$$f(x) = a_{d-1}x^{d-1} + \dots + a_0$$

and then $gcd(f(x), p(x)) \neq 1$, which can only happen if f(x) = 0, since otherwise p(x) is prime and f(x) is a polynomial of smaller degree sharing a common factor. Thus the $1, r, ..., r^d$ are linearly independent. So they are a basis of $\mathbb{Q}[r]$.

Examples. (a) $\mathbb{Q}[i]$ is the vector space of Gaussian rational numbers. Each f(i) is a linear combination of 1 and i since:

$$i^2 = -1$$
, $i^3 = -i$, $i^4 = 1$, etc.

(b) The vector space $\mathbb{Q}[\sqrt[3]{2}]$ has basis $1, \sqrt[3]{2}, \sqrt[3]{4}$. Each $f(\sqrt[3]{2})$ is a linear combination of these vectors since:

$$(\sqrt[3]{2})^3 = 2$$
, $(\sqrt[3]{2})^4 = 2\sqrt[3]{2}$, $(\sqrt[3]{2})^5 = 2\sqrt[3]{4}$, etc.

Let r be a root of a prime polynomial $p(x) \in \mathbb{Q}[x]$ of degree d. Then:

Proposition 12.3. $\mathbb{Q}[r]$ is a field. These are the number fields.

Proof. Multiply elements of $\mathbb{Q}[r]$ as polynomials:

$$f(r) \cdot g(r) = (f \cdot g)(r)$$

Since $\mathbb{Q}[x]$ is a commutative ring, the same product (and sum) makes $\mathbb{Q}[r]$ also a commutative ring, so it satisfies all the properties of a field except for the existence of multiplicative inverses of nonzero elements. Let $v = a_{d-1}r^{d-1} + \cdots + a_0$ and set $f(x) = a_{d-1}x^{d-1} + \cdots + a_0$. Because $\gcd(f(x), p(x)) = 1$, it follows that a(x)f(x) + b(x)p(x) = 1 can be solved with Euclid's algorithm, and:

$$a(r)f(r) + b(r)p(r) = 1$$

But p(r) = 0 by assumption, so a(r)f(r) = 1. Thus a(r) = 1/v.

Multiplication Tables. We can create multiplication tables for the products of basis vectors in $\mathbb{Q}[r]$. This is all the information we need to compute all products of elements of $\mathbb{Q}[r]$ by the distributive law.

Examples. (a) $p(x) = x^2 + 1$ and i is the imaginary declared root.

$$\begin{array}{c|c|c|c} \cdot & 1 & i \\ \hline 1 & 1 & i \\ \hline i & i & -1 \\ \hline \end{array}$$

$$(a + bi)(c + di) = ac + bci + adi + bd(-1) = (ac - bd) + (bc + ad)i$$

(b) $p(x) = x^2 - x - 1$ and r is the declared root.

$$\begin{array}{c|cccc} \cdot & 1 & r \\ \hline 1 & 1 & r \\ \hline r & r & r+1 \\ \hline \end{array}$$

$$(a+br)(c+dr) = ac + bcr + adr + bd(r+1)$$
$$= (ac+bd) + (bc+ad+bd)r$$

(c) $p(x) = x^3 - x^2 - 1$ and r is the declared root.

	1	r	r^2
1	1	r	r^2
r	r	r^2	$r^2 + 1$
r^2	r^2	$r^2 + 1$	$r^2 + r + 1$

Linear algebra comes into play when we regard multiplication by v:

$$A(w) = v \cdot w$$

as a linear map from $\mathbb{Q}[r]$ to itself. This means it has a matrix, and the **inverse matrix** will give multiplication by the inverse vector, since:

$$\frac{1}{v} \cdot (v \cdot w) = w$$
 and $A^{-1}(A(w)) = w$

Recall that the columns of A are:

$$v \cdot 1, v \cdot r, v \cdot r^2, \dots$$

so in particular, the first column of A^{-1} will be the inverse vector 1/v. Let's work this out in the examples:

(a) $p(x) = x^2 + 1$ and v = a + bi. (This should look familiar!)

$$A = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}, A^{-1} = \frac{1}{a^2 + b^2} \begin{bmatrix} a & b \\ -b & a \end{bmatrix}$$
$$\frac{1}{v} = \frac{a}{a^2 + b^2} - \frac{b}{a^2 + b^2}i$$

(b) $p(x) = x^2 - x - 1$ and v = a + br.

$$A = \begin{bmatrix} a & b \\ b & a+b \end{bmatrix}, \ A^{-1} = \frac{1}{a^2 + ab - b^2} \begin{bmatrix} a+b & -b \\ -b & a \end{bmatrix}$$
$$\frac{1}{v} = \frac{a+b}{a^2 + ab - b^2} - \frac{b}{a^2 + ab - b^2} r$$

As an example, apply the formula to

$$v = -1 + 2r$$
 to get $\frac{1}{v} = -\frac{1}{5} + \frac{2}{5}r = \frac{v}{5}$

In other words, $v^2 = 5$ and $v = \pm \sqrt{5}$. This checks with the quadratic formula applied to p(x), which gives:

$$r = \frac{1 \pm \sqrt{5}}{2}$$

(c)
$$p(x) = x^3 - x^2 - 1$$
 and $v = a + br + cr^2$.

$$A = \left[\begin{array}{ccc} a & c & b+c \\ b & a & c \\ c & b+c & a+b+c \end{array} \right]$$

(d) If
$$p(x) = x^d + c_{d-1}x^{d-1} + ... + c_0$$
 and $v = r$, then:

$$A = \begin{bmatrix} 0 & 0 & \cdots & 0 & -c_0 \\ 1 & 0 & \cdots & 0 & -c_1 \\ 0 & 1 & \cdots & 0 & -c_2 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & -c_{d-1} \end{bmatrix}$$

The Characteristic Polynomial of a matrix A is the determinant:

$$f(x) = \det(xI - A); I = \text{ identity matrix}$$

The roots of f(x) are the eigenvalues of A.

This is significant since the determinant of a square matrix B is zero if and only if the columns of B are linearly dependent, if and only if there is a non-zero vector $w \in V$ such that:

$$B(w) = 0$$

But if $B = \lambda I - A$ and $\det(B) = 0$, then B(w) = 0 gives $A(w) = \lambda w$. Thus the roots of the characteristic polynomial of A are the values of λ for which there is an (eigen)vector $w \in V$ with $A(w) = \lambda w$, and the "stretch factor" λ is the **eigenvalue** of the eigenvector w. A consequence of the fundamental theorem of algebra is the fact that every square matrix of complex numbers has a complex eigenvalue.

Examples. (a) $p(x) = x^2 + c_1 x + c_0$ and v = r.

$$\left[\begin{array}{cc} x & 0 \\ 0 & x \end{array}\right] - \left[\begin{array}{cc} 0 & -c_1 \\ 1 & -c_1 \end{array}\right] = \left[\begin{array}{cc} x & c_0 \\ -1 & x + c_1 \end{array}\right]$$

and the characteristic polynomial is:

$$f(x) = x(x + c_1) + c_0 = x^2 + c_1 x + c_0$$

which means that r is an eigenvalue for multiplication by r.

(b) $p(x) = x^2 + 1$ and v = a + bi.

$$\left[\begin{array}{cc} x & 0 \\ 0 & x \end{array}\right] - \left[\begin{array}{cc} a & -b \\ b & a \end{array}\right] = \left[\begin{array}{cc} x - a & b \\ -b & x - a \end{array}\right]$$

and the characteristic polynomial is: $f(x) = (x - a)^2 + b^2$ and once again a + bi is an eigenvalue for multiplication by a + bi.

For each $v \in \mathbb{Q}[r]$, there is a prime polynomial with v as a root.

Definition 12.4. The **minimal polynomial** of $v \in \mathbb{Q}[r]$ is gotten by:

(i) Considering the powers of v as vectors in V and solving

$$a_0 + a_1 v + a_2 v^2 + \dots + v^e = 0$$

for the smallest value of e (with non-zero coefficients).

(ii) Replacing the linear combination with the polynomial:

$$g(x) = x^e + a_{e-1}x^{e-1} + \dots + a_0$$

Example. Consider $r = \sqrt{2} + \sqrt{3}$. Then:

$$(x - (\sqrt{2} + \sqrt{3}))(x + (\sqrt{2} + \sqrt{3})) = x^2 - (\sqrt{2} + \sqrt{3})^2 = x^2 - (5 + 2\sqrt{6})$$

$$p(x) = (x^2 - (5 + 2\sqrt{6}))(x^2 - (5 - 2\sqrt{6})) = x^4 - 10x^2 + 1$$

Then within the (four dimensional) number field $\mathbb{Q}[r]$, we take:

$$v = -5 + r^2 = 2\sqrt{6}$$

which satisfies $-24 + v^2 = 0$, and therefore $g(x) = x^2 - 24$. With some work, the characteristic polynomial of v can also be computed. It is

$$f(x) = (x^2 - 24)^2$$

Proposition 11.5. The characteristic polynomial for multiplication by $v \in \mathbb{Q}[r]$ is always a power of the minimal polynomial.

Proof. If the minimal polynomial g(x) has the same degree as the characteristic polynomial f(x), then they are the same polynomial, since g(x) is prime and they share the factor x - v. Otherwise, let:

$$\mathbb{Q}[v] \subset \mathbb{Q}[r]$$

be the sub-field with root v and p(x) = g(x). If:

$$1, v, ..., v^{e-1}$$
 are a basis for $\mathbb{Q}[v]$

we may find additional vectors $w_1, ..., w_{d/e}$ so that:

$$\{w_i, w_i v, ..., w_i v^{e-1} \mid 1 \le i \le d/e\}$$
 is a basis for $\mathbb{Q}[r]$

and with this basis, the matrix for multiplication by v consists of d/e blocks of the matrix for multiplication by v, giving the result.

Warning. The "eigenvectors" for multiplication by v in $\mathbb{Q}[r]$ are not actually vectors in $\mathbb{Q}[r]$ because their coefficients use the root r. For example, the eigenvectors for multiplication by $a + bi \in \mathbb{Q}[i]$ are:

$$(1,i)$$
 (eigenvalue $a+bi$) and $(1,-i)$ (eigenvalue $a-bi$)

Exercises. 11.1. Prove from the definition of a vector space that:

- (a) The zero vector is uniquely determined.
- (b) Scalar multiplication by 0 gives the zero vector.
- (c) Scalar multiplication by -1 gives the additive inverse vector.
- 11.2. (a) Find the eigenvalues for the matrix:

$$\begin{bmatrix} \cos(\theta) & \sin(\theta) \\ \sin(\theta) & -\cos(\theta) \end{bmatrix}$$

and conclude that this is the matrix for a reflection of the plane.

- (b) Find eigenvectors for this reflection and draw them.
- **11.3.** Let $p(x) = x^2 2$. Then:
 - (a) Find the multiplication table for $\mathbb{Q}[r]$.
 - (b) Find the matrix for multiplication by v = a + br
 - (c) Find 1/v.
- **11.4.** Do the same for the prime polynomial $p(x) = x^2 + x + 1$. Also:
 - (d) Plug v = 1 + 2r into (c) and comment on the result.
- **11.5.** Find the matrix for multiplication by 1/r in $\mathbb{Q}[r]$ for:

$$p(x) = x^3 + c_2 x^2 + c_1 x + c_0$$

without inverting the matrix for multiplication by r.

11.6. Find a prime polynomial of degree 4 with root:

$$r = \sqrt{2} + \sqrt{5}$$

and then inside $\mathbb{Q}[r]$ find the minimal polynomial for the vector:

$$v = -27 + r^2$$