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Scribe Notes (10/3): Functions and their Power Series Expansions

A power series is a polynomial with an infinite number of terms. A Taylor series is the
value of a function at some point f(a), that we can write as an infinite series. Each term in a

Taylor series will be related to the function’s derivatives, f ™ (x). A Maclaurin series is a Taylor
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series that is centered at 0. An example of a Maclaurin series is e =3
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Maclaurin Series General Form: f(x) = f(0) + f'(0) - x + % X+ % X

Examples of Common Maclaurin Series

Functions Maclaurin Series Expanded Form Notes
Geometric Series: ® 1+ x +x° +x +.. | This series
1 X converges when x
1=x n=0 is small.
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How do we know that In(1 + x) = ¥ (= 1) ——? We know that the derivative of
n=
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In(1 + x) is equal to 1_1Fx =T = 1—x+x —.. So, to find In(1 + x), we need to
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integrate 141_—x, which givesus In(1 + x) = x — XT + x? — XT +.... Now that we know
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In(1l+x)=x-— XT + XT —..,wecanseethat In(1 + 1) =1 — 17 + 1? —... converges.

In fact, this series converges on the interval (-1,1].



We also know that ¥ x" = 1+x So, if we look at f(x) = 1 - = 1 —, we see that
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Y((=x)) =1—-—x +x —x +..= L which is the derivative of arctan(x). If we
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integrate this series, we find arctan(x) = x — <+ — — — +... When x=1,
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Finding a Radius of Convergence
oo
Ratio Test Theorem: Let P(x) = ) cnxn be a power series. Then, P(x) converges at x if
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Example: Does e converge?
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We know that the Maclaurin series expansion for e is =——. Using the Ratio test:
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Since 0 < 1,e" converges for any x.

Maclaurin Series for sin(x)
In order to look at the Maclaurin series for sinx, we need to take derivatives. We know

that for ecx, (ecx)' =c-e” and (ecx)" = ¢’ When we look at the derivatives of sin(x) when
x=0, we see a pattern:

sin(0) = sin(0) = 0

(d/dt)sin(0) = cos(0) =1



(d/dt)’sin(0) =— sin(0) = 0

(d/dt)’sin(0) =— cos(0) =— 1
=0—— continues on 0,1,0,-1,0...

So sin(x) = x — (x))/(3) + (x°)/5! —.... and
cos(x) = 1 — (xz)/(Z!) + (x4)/(4!) —.... Adding cos(x) and isin(x) together will give us
cos(x) + isin(x) = 1 + ix + (i%)°/2) + (i%)°/(3) +..= . So we get the following
important equation:

* e’ = cos(t) + sin(t))

Interesting Equations

In the 1600s, someone noticed that
(m/4) = arctan(1) = 4arctan(1/5) — arctan(1/239). Before that, Archimedes would use
polygons to get the approximate solution of 1. As with Taylor polynomials, the more polygons
Archimedes used to approximate , the closer he got to its exact value.

Another equation that a mathematician claimed came to him in a dream is the following:

(1/m) = (2v2)/9801 - ; [(4n1)(1103 + 26390m)]/[(n!)" - (396)""].
n=0



