
Math 2200-002/Discrete Mathematics

Induction and Well-Ordering

Induction is a tool for proving logical propositions of the form:

(∀n ≥ m)P (n)

In simple induction, you prove the statement above in two stages:

(i) Prove the base case P (m).

(ii) Prove the inductive step (∀k ≥ m)(P (k)→ P (k + 1)).

The base case gets the induction started, and by the inductive step:

P (m + 1), P (m + 2), .... are all true as well.

Example. Prove that for all n ≥ 1,

1 + 2 + · · ·+ n =

(
n + 1

2

)
=

(n + 1)n

2

Proof. We start with the base case m = 1.

(i) 1 =
(
2
2

)
is the base case.

(ii) If

1 + 2 + · · ·+ k =

(
k + 1

2

)
then

1 + 2 + · · ·+ k + (k + 1) =

(
k + 1

2

)
+ (k + 1) =

=
(k + 1)k

2
+(k+1) =

(k + 1)k + (k + 1)2

2
=

(k + 1)(k + 2)

2
=

(
k + 2

2

)
This is the inductive step.

The starting point m can be any integer.

Example. Prove that for all finite sets S, (|S| = n)→ (|P(S)| = 2n).

Proof. We start with the base case m = 0.

(i) If |S| = 0, then S = ∅, so P(S) = {∅}, so |P(S)| = 1 and 1 = 20.

(ii) For the inductive step, assume that (|S| = k)→ (|P(S)| = 2k).

Let T be a set with k+1 elements, choose t ∈ T and let S = T −{t}.
Then by assumption, |P(S)| = 2k. But each subset A ⊂ S determines
two subsets of T , namely A itself and A ∪ {t}. Taken all together,
these exactly account for each of the subsets of T . Thus:

|P(T )| = 2|P(S)| = 2 · 2k = 2k+1

and the inductive step is established.



There is a variation on this, known as strong induction, in which:

(i) The base case P (m) and

(ii) The strong inductive step

(∀k ≥ m)((P (m) ∧ P (m + 1) ∧ · · · ∧ P (k))→ P (k + 1))

together imply the result:

(∀n ≥ m)P (n)

This version of induction can be more useful than simple induction.

Example. Every natural number n ≥ 2 is a product of prime numbers.

Proof. We use strong induction with base case m = 2.

(i) m = 2 is a prime, so it is a product of primes (namely itself).

(ii) Suppose 2, 3, ...., k are each products of primes, and consider k+1.

Then either:

(a) k + 1 is a prime, in which case it is a product of primes, or

(b) k + 1 is composite, in which case k + 1 = ab and both a and b
are in the range 2, 3, ..., k, so a and b are both products of primes, so
their product is also a product of primes.

Both inductions are equivalent to the different-looking:

Well-Ordered Axiom. Let Z≥m = {n ∈ Z | n ≥ m} and S ⊆ Z≥m.
Then either:

(i) S = ∅ or

(ii) S has a smallest element.

Like the principles of induction, this is useful for proving things.

Example. (The Division Algorithm for Z) Let n ∈ Z and m ∈ N.
Then there is an integer q such that:

n = mq + r and 0 ≤ r < m

Proof. Let S = {n−mq | q ∈ Z} ∩ Z≥0.

Then S 6= ∅ because q < n/m implies n−mq > n−m(n/m) = 0.
Therefore S has a smallest element, which we’ll call r and note that:

n = mq + r for some integer q, by definition

But it must be the case that 0 ≤ r < m because otherwise, r −m ≥ 0
and then r−m = n−mq−m = n−m(q + 1) ∈ S would be a smaller
element of the set S.

We are ready for the big theorem.



Theorem. Fix m ∈ Z. Then the following are equivalent:

(a) The well-ordered axiom.

(b) Simple Induction

(c) Strong Induction

Proof. We will prove (a) → (b) → (c) → (a). First, we need to
rephrase all these things as logical propositions.

(a) Well-ordered axiom. Let S ⊆ Z≥m. Then:

(S = ∅) ∨ (∃s ∈ S)(∀t ∈ S)(t ≥ s)

(b) Simple induction. Let P (n) be a propositional function. Then:

P (m) ∧ (∀k ≥ m)(P (k)→ P (k + 1))→ (∀n ≥ m)P (n)

This is unruly, so we’ll simplify it using the two equivalences:

p→ q ≡ ¬p ∨ q and ¬(p→ q) ≡ p ∧ ¬q
The first equivalence gives:

¬ (P (m) ∧ (∀k ≥ m)(P (k)→ P (k + 1)) ∨ (∀n ≥ m)P (n)

We use DeMorgan’s laws and the second equivalence to get:

¬P (m) ∨ (∃k ≥ m)(P (k) ∧ ¬P (k + 1)) ∨ (∀n ≥ m)P (n)

This is the version of simple induction that we will use.
(Note: This is three separate propositions with “or” operations)

(c) Strong Induction. Let P (n) be a propositional function. Then:

¬P (m) ∨ (∃k ≥ m)(P (m) ∧ · · · ∧ P (k) ∧ ¬P (k + 1)) ∨ (∀n ≥ m)P (n)

using the same equivalences as in simple induction.

Back to the proof.

(a) → (b). Given a propositional function P (n), let

S = {n ≥ m | P (n) is false}
By the well-ordered axiom, one of three things is true of S:

• S = ∅ (in which case P (n) is true for all n ≥ m).
• m ∈ S, in which case P (m) is false or
• S 6= ∅ and its smallest element s is larger than m. In that case:

P (s− 1) is true and P (s) is false

If we let k = s− 1 ≥ m, then this is:

(∃k ≥ m)(P (k) ∧ ¬P (k + 1))

These are exactly the three propositions of simple induction!



(b) → (c). Let P (n) be any proposition, and let:

Q(n) ≡ P (m) ∧ · · · ∧ P (n)

for all n ≥ m. Then simple induction for Q(n) is:

¬Q(m) ∨ (∃k ≥ m)(Q(k) ∧ ¬Q(k + 1)) ∨ (∀n ≥ m)Q(n)

and full induction for P (n) is:

¬P (m) ∨ (∃k ≥ m)(P (m) ∧ · · · ∧ P (k) ∧ ¬P (k + 1)) ∨ (∀n ≥ m)P (n)

Since P (m) ≡ Q(m) and (∀n ≥ m)P (m) ≡ (∀n ≥ m)Q(m), we only
have to compare the third propositions:

Q(k) ∧ ¬Q(k + 1) with P (m) ∧ · · · ∧ P (k) ∧ ¬P (k + 1)

But Q(k) ≡ P (m)∧ · · · ∧P (k) and Q(k+ 1) = Q(k)∧P (k+ 1), so this
follows from:

p ∧ ¬q ≡ p ∧ ¬(p ∧ q)

which can be checked with a truth table. Thus simple induction for
Q(n) gives full induction for P (n), and since P (n) was arbitrary, it
follows that simple induction implies full induction.

(c) → (a) Suppose S ⊆ Z≥n, and let:

P (n) =

 T if n /∈ S

F if n ∈ S

Then strong induction for P (n) gives one of the following:
• (∀n ≥ m)P (n) (in which case S = ∅) or

• ¬P (m) (so m is the smallest element of S) or

• (∃k ≥ m)(P (m) ∧ · · · ∧ P (k) ∧ ¬P (k + 1)) (so k + 1 ∈ S and
m, ..., k /∈ S, i.e. k + 1 is the smallest element of S).

In other words, S = ∅ or S has a smallest element!

Homework. (Each problem is worth two points).

1. Prove by simple induction that 2 + 4 + 6 + · · ·+ 2n = (n + 1)n.

2. Prove by simple induction that 2 + 4 + 8 + · · ·+ 2n = 2n+1 − 2.

3. Find all the postage amounts you can make with 4 and 7 cent
stamps, and prove your answer with induction.

4. Do Problem 36 on Page 344 (§5.2) of the book.

5. A subset A ⊆ R is well-ordered if every S ⊆ A is either empty or
else has a smallest element. Which of the following sets is well-ordered?

(a) Z≥−1 (b) Z≤0 (c) Q≥0 (d) {1− 1
n
| n ∈ N} (e) {m− 1

n
|m,n ∈ N}


