Math 2200-002/Discrete Mathematics

Induction and Well-Ordering
Induction is a tool for proving logical propositions of the form:

(Vn > m)P(n)
In simple induction, you prove the statement above in two stages:
(i) Prove the base case P(m).
(ii) Prove the inductive step (Yk > m)(P(k) — P(k +1)).
The base case gets the induction started, and by the inductive step:
P(m+1),P(m+2),.... are all true as well.
Example. Prove that for all n > 1,
n+ 1> _(n+1)n
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Proof. We start with the base case m = 1.

(i) 1= (2) is the base case.
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This is the inductive step.

The starting point m can be any integer.

Example. Prove that for all finite sets S, (|[S| =n) — (|P(S)] = 2").
Proof. We start with the base case m = 0.
(i) If | S| = 0, then S =0, so P(S) = {0}, so |P(S)| =1 and 1 = 2°.
(i) For the inductive step, assume that (|S| = k) — (|P(S)| = 2%).

Let T be a set with k+1 elements, choose t € T' and let S = T — {t}.
Then by assumption, |P(S)| = 2. But each subset A C S determines
two subsets of 7', namely A itself and A U {t}. Taken all together,
these exactly account for each of the subsets of T". Thus:

P(I)] = 2/P(S)| = 2- 2 = 2+
and the inductive step is established.



There is a variation on this, known as strong induction, in which:

(i) The base case P(m) and

(ii) The strong inductive step

(VE>m)(P(m)ANP(m+1)A---ANP(k)) = P(k+1))
together imply the result:
(Vn > m)P(n)

This version of induction can be more useful than simple induction.
Example. Every natural number n > 2 is a product of prime numbers.

Proof. We use strong induction with base case m = 2.

(i) m = 2 is a prime, so it is a product of primes (namely itself).

(ii) Suppose 2, 3, ...., k are each products of primes, and consider k+1.
Then either:

(a) k+ 1 1is a prime, in which case it is a product of primes, or

(b) k+ 1 is composite, in which case k + 1 = ab and both a and b
are in the range 2,3, ..., k, so a and b are both products of primes, so
their product is also a product of primes.

Both inductions are equivalent to the different-looking:

Well-Ordered Axiom. Let Z=™ ={n € Z | n > m} and S C Z=".
Then either:

(i) S=0or
(ii) S has a smallest element.
Like the principles of induction, this is useful for proving things.

Example. (The Division Algorithm for Z) Let n € Z and m € N.
Then there is an integer ¢ such that:

n=mqg+rand 0 <r <m
Proof. Let S={n—mq | q€ Z} NZ>".

Then S # () because ¢ < n/m implies n — mq > n —m(n/m) = 0.
Therefore S has a smallest element, which we’ll call » and note that:

n = mgq + r for some integer ¢, by definition

But it must be the case that 0 < r < m because otherwise, r —m > 0
and then r —m =n—mqg—m =n—m(q+ 1) € S would be a smaller
element of the set S.

We are ready for the big theorem.



Theorem. Fix m € Z. Then the following are equivalent:
(a) The well-ordered axiom.
(b) Simple Induction
(c) Strong Induction

Proof. We will prove (a) — (b) — (¢) — (a). First, we need to
rephrase all these things as logical propositions.

(a) Well-ordered axiom. Let S C Z=". Then:
(S=0)Vv (Ise S)(Vte S)(t>s)
(b) Simple induction. Let P(n) be a propositional function. Then:
P(m) A (Yk > m)(P(k) — P(k+1)) — (¥Yn > m)P(n)
This is unruly, so we’ll simplify it using the two equivalences:
p—q=-pVgand ~(p = q) =pA—q
The first equivalence gives:
= (P(m) A (Vk > m)(P(k) = P(k+ 1))V (Yn > m)P(n)
We use DeMorgan’s laws and the second equivalence to get:
=P(m)V (3Ik >m)(P(k) AN=P(k+1)) Vv (Vn >m)P(n)

This is the version of simple induction that we will use.
(Note: This is three separate propositions with “or” operations)

(c) Strong Induction. Let P(n) be a propositional function. Then:
—P(m)V (3k >m)(P(m)A---ANP(k) N=P(k+ 1))V (¥Yn >m)P(n)
using the same equivalences as in simple induction.

Back to the proof.

(a) — (b). Given a propositional function P(n), let
S ={n>m| P(n) is false}
By the well-ordered axiom, one of three things is true of .S:

e S = (in which case P(n) is true for all n > m).
e m € S, in which case P(m) is false or
e S # () and its smallest element s is larger than m. In that case:

P(s—1) is true and P(s) is false
If we let kK = s — 1 > m, then this is:
(Fk > m)(P(k) AN—P(k+1))

These are exactly the three propositions of simple induction!



(b) — (c). Let P(n) be any proposition, and let:
Q(n) = P(m)A--- AN P(n)

for all n > m. Then simple induction for Q(n) is:

~Qm) v (3k > m)(Q(K) A=Q(k + 1)) V (vn > m)Q(n)
and full induction for P(n) is:
—“P(m)V (3k > m)(P(m)A---ANP(k) AN=P(k+1))V (¥Yn >m)P(n)

Since P(m) = Q(m) and (Yn > m)P(m) = (Yn > m)Q(m), we only

have to compare the third propositions:

Q(k) N =Q(k + 1) with P(m) A--- AN P(k) A—=P(k+1)
But Q(k) = P(m)A---AP(k)and Q(k+1) = Q(k) A P(k+1), so this
follows from:

pPA=g=pA-(pAg)

which can be checked with a truth table. Thus simple induction for

Q(n) gives full induction for P(n), and since P(n) was arbitrary, it
follows that simple induction implies full induction.

c) — (a) Suppose S C Z=", and let:
(c) — (a) Supp

Tifnd¢S
P(n) =
FifneS

Then strong induction for P(n) gives one of the following:
e (Yn > m)P(n) (in which case S = ) or

e —=P(m) (so m is the smallest element of S) or

e (3k > m)(P(m)A--- ANP(k) N=P(k+1)) (sok+1 € S and
m, ...k &S, ie. k+1is the smallest element of 5).

In other words, S = ) or S has a smallest element!

Homework. (Each problem is worth two points).
1. Prove by simple induction that 2 +4 46+ -+ 2n = (n+ 1)n.
2. Prove by simple induction that 2 +4 + 8 + -+ 27 = 271 2,

3. Find all the postage amounts you can make with 4 and 7 cent
stamps, and prove your answer with induction.

4. Do Problem 36 on Page 344 (§5.2) of the book.

5. A subset A C R is well-ordered if every S C A is either empty or
else has a smallest element. Which of the following sets is well-ordered?

(a) =71 (b) Z=° (c) Q*° (d) {1—; [n €N} (e) {m—7 [m,n € N}



