- 15. If f is a one-to-one function such that f(2) = 9, what
- **16.** If $f(x) = x^5 + x^3 + x$, find $f^{-1}(3)$ and $f(f^{-1}(2))$.
- 17. If $g(x) = 3 + x + e^x$, find $g^{-1}(4)$.
- <u></u> The graph of f is given.
- (a) Why is f one-to-one?
- (b) What are the domain and range of f^{-1} ?
- (c) What is the value of $f^{-1}(2)$?
- (d) Estimate the value of $f^{-1}(0)$

- **19.** The formula $C = \frac{5}{9}(F 32)$, where $F \ge -459.67$, expresses interpret it. What is the domain of the inverse function? the Celsius temperature C as a function of the Fahrenheit temperature F. Find a formula for the inverse function and
- 20. In the theory of relativity, the mass of a particle with speed

$$m = f(v) = \frac{m_0}{\sqrt{1 - v^2/c}}$$

of light in a vacuum. Find the inverse function of f and explain its meaning.

21-26 Find a formula for the inverse of the function.

21.
$$f(x) = 1 + \sqrt{2 + 3x}$$

23.
$$f(x) = e^{2x-1}$$

25.
$$y = \ln(x + 3)$$

 $\stackrel{\frown}{\mathbf{H}}$ 27-28 Find an explicit formula for f^{-1} and use it to graph f^{-1} . see whether the graphs of f and f^{-1} are reflections about the f, and the line y = x on the same screen. To check your work.

7.
$$f(x) = x^4 + 1$$
, $x \ge 0$

28.
$$f(x) = 2 - e^x$$

- ጃ

- **28.** $f(x) = 2 e^x$
- **29–30** Use the given graph of f to sketch the graph of f^{-1} .

- **22.** $f(x) = \frac{4x-1}{2x+3}$ **24.** $y = x^2 - x$, $x \ge \frac{1}{2}$ $1 + 2e^{x}$
- where m_0 is the rest mass of the particle and c is the speed

$$f(x) = 1 + \sqrt{2 + 3x}$$

$$y = \ln(x + 3)$$

- **27.** $f(x) = x^4 + 1$, $x \ge 0$

- **31.** Let $f(x) = \sqrt{1 x^2}$, $0 \le x \le 1$.
- (a) Find f^{-1} . How is it related to f?
- (b) Identify the graph of f and explain your answer to part (a)
- Let $g(x) = \sqrt[3]{1 x^3}$.
- (a) Find g^{-1} . How is it related to g?
- (b) Graph g. How do you explain your answer to part (a)?

 \blacksquare

- (a) How is the logarithmic function $y = \log_a x$ defined?
- (b) What is the domain of this function?
- (c) What is the range of this function?
- (d) Sketch the general shape of the graph of the function $y = \log_a x \text{ if } a > 1.$
- 34 (a) What is the natural logarithm?
- (b) What is the common logarithm?
- (c) Sketch the graphs of the natural logarithm function and the natural exponential function with a common set of
- 35-38 Find the exact value of each expression.
- **35.** (a) log₅ 125

36. (a) $\ln(1/e)$

- (b) $\log_3(\frac{1}{27})$
- (b) $\log_{10} \sqrt{10}$
- **37.** (a) $\log_2 6 \log_2 15 + \log_2 20$ (b) $\log_3 100 \log_3 18 \log_3 50$
- **38.** (a) $e^{-2 \ln 5}$
- (b) ln(ln e)
- 39-41 Express the given quantity as a single logarithm
- 39. $\ln 5 + 5 \ln 3$
- **40.** $\ln(a+b) + \ln(a-b) 2 \ln c$
- **41.** $\ln(1+x^2) + \frac{1}{2}\ln x \ln \sin x$
- 42. Use Formula 10 to evaluate each logarithm correct to six decimal places.
- (a) $\log_{12} 10$
- 3 screen. How are these graphs related? 43-44 Use Formula 10 to graph the given functions on a common

43.
$$y = \log_{1.5} x$$
, $y = \ln x$, $y = \log_{10} x$, $y = \log_{50} x$

44.
$$y = \ln x$$
, $y = \log_{10} x$, $y = e^x$, $y = 10^x$

- 5 Suppose that the graph of $y = \log_2 x$ is drawn on a coordinate grid where the unit of measurement is an inch. How many height of the curve reaches 3 ft? miles to the right of the origin do we have to move before the
- 46. Compare the functions $f(x) = x^{0.1}$ and $g(x) = \ln x$ by graph-

FIGURE 1

48. (a) $y = \ln(-x)$

(b) $y = \ln$

- **49–52** Solve each equation for x.
- **49.** (a) $e^{7-4x} = 6$
- **50.** (a) $\ln(x^2 1) =$

(b) e^{2x} –

(b) ln x +

(b) ln(3x)

- **51.** (a) $2^{x-5} = 3$
- **52.** (a) $\ln(\ln x) = 1$ (b) $e^{ax} =$
- **53–54** Solve each inequality for x.
- **53.** (a) $e^x < 10$
- **54.** (a) $2 < \ln x < 9$

(b) e^{2-3x}

(b) ln x >

- **55–56** Find (a) the domain of f and (b) f
- **55.** $f(x) = \sqrt{3 e^{2x}}$

56. f(x) =

- CAS 57. Graph the function $f(x) = \sqrt{x^3 + x^2} +$ to find an explicit expression for $f^{-1}(x)$. why it is one-to-one. Then use a comput are irrelevant in this context.) produce three possible expressions. Exp
- CAS **58.** (a) If $g(x) = x^6 + x^4$, $x \ge 0$, use a comp to find an expression for $g^{-1}(x)$.
- (b) Use the expression in part (a) to grap and $y = g^{-1}(x)$ on the same screen.

1.7 Parametric Curves

