
Highlights of Computer
Arithmetic

Nelson H. F. Beebe
University of Utah

Department of Mathematics, 110 LCB
155 S 1400 E RM 233

Salt Lake City, UT 84112-0090
USA

Email: beebe@math.utah.edu, beebe@acm.org,
beebe@computer.org

WWW URL: http://www.math.utah.edu/~beebe
Telephone: +1 801 581 5254

FAX: +1 801 581 4148

04 November 2019
Version 1.00

beebe@math.utah.edu
beebe@acm.org
beebe@computer.org
http://www.math.utah.edu/~beebe

Copyright c© 2019, Free Software Foundation, Inc.

Contents

1 Introduction 1

2 Exact mathematics versus computer arithmetic 1

3 Integer arithmetic 6

4 Fixed-point arithmetic 10

5 Floating-point arithmetic 11

6 Floating-point design and exception handling 13

7 IEEE 754 binary range and precision 16

8 IEEE 754 decimal range and precision 16

9 IEEE 754 rounding modes 17

10 Fused multiply add 18

11 Mixed-precision arithmetic 19

12 Base conversion problem 20

13 IEEE 754 exception flags 22

14 Rounding control 24

15 Significance loss 24

16 Precision control 28

17 Writing precision-independent code 29

18 Important algorithms in arithmetic 31
18.1 Newton–Raphson iteration 32
18.2 Arithmetic–geometric mean (AGM) 32
18.3 Continued fractions . 33
18.4 High-precision constants 33
18.5 Accurate series summations 34

i

ii List of Tables

18.6 Polynomial fits . 38
18.7 Detecting special values . 39

19 Applications of signed zero 41

20 Floating-point loop increments 42

21 Half- and quarter-precision floating-point 43

22 Controlling evaluation order 44

23 Memory byte order 47

24 Data alignment 49

25 Stack storage 50

26 Memory access costs 52

27 Forcing data from registers to memory 62

28 Further fun 63

List of Tables

1 Ranges of integer sizes in two’s complement arithmetic. 10
2 IEEE 754 binary range and precision. 17
3 IEEE 754 decimal range and precision. 18
4 Goldberg and Matula digit counts for base conversion. 21
5 Benchmark machine descriptions 55
6 The cost of volatile . 56

1

Caution
A complete treatment of computer arithmetic requires a large text-

book, and the subject is much more difficult than most courses and
books on computer programming suggest to the student.

1 Introduction

This document is a supplement to a separate book chapter by this author,
Computer Arithmetic: Perils, Pitfalls, and Practices, that expands upon
many of the points mentioned here. However, we go beyond that chap-
ter’s material by treating several applications of floating-point arithmetic.

2 Exact mathematics versus computer arithmetic

Computer arithmetic is only an approximation to the mathematical arith-
metic that pupils learn in school, and it is important to recognize the major
differences:

• Mathematical numbers have infinite precision and range, but com-
puter numbers have limited precision and limited range. For exam-
ple, the C type double that is common on modern computers can
represent numbers with about 15 decimal digits of precision, and a
nonzero range from about 10−308 to 10+308.

• For real and complex numbers, the commutative law holds in both
mathematics and computer arithmetic (except for multiplication on
some historical Cray supercomputer models):

a+ b ≡ b+ a,

a− b ≡ −(b− a),
a× b ≡ b× a,

as long as intermediate and final results are representable.

• While computer arithmetic is exact when all computed results are
representable, the associative law of addition does not hold if there

2 2 Exact mathematics versus computer arithmetic

is intermediate overflow, underflow, or significance loss:

a+ (b+ c) 6= (a+ b) + c

6= (a+ c) + b.

Here is a simple counterexample: compute R = A + B + C in IEEE
754 64-bit binary arithmetic when A is 1e300, B is -A exactly, and C

is 1e280. The result is either 0, or 1e280: they are not even remotely
close!
If we cannot prove correctness of a simple three-term sum, then prov-
ing an entire numerical program correct may be a hopeless task.

• Floating-point and integer negation has the expected behavior:

a ≡ −(−a).

However, negation does not hold in two’s complement integer arith-
metic for the most negative integer: −(INT MIN) → INT MIN. Its true
value is INT MAX+ 1, but that is not representable.
That means that the common idiom in C for an absolute value func-
tion

#define ABS(x) (((x) < 0) ? -(x) : (x))

fails to return the absolute value when x == INT MIN.

• Scaling floating-point numbers by a power of the base is always an
exact operation, as long as the result does not underflow or overflow.
However, if that power cannot be represented exactly as a constant
in source code, then it must be generated by a library function. In
C, library functions with these prototypes provide such scalings:

#include <math.h>

float ldexpf (float, int);

float scalbf (float, float);

float scalbnf (float, int);

double ldexp (double, int);

double scalb (double, double);

3

double scalbn (double, int);

long double ldexpl (long double, int);

long double scalbl (long double, long double);

long double scalbnl (long double, int);

It is not advisable to use the general power function for such scal-
ings, because the uneven implementation quality of the C function
pow(x,y) and the Fortran operator x**y might result in unwanted
changes in significand digits.

• Poor implementations of input conversion in many programming lan-
guages make it impossible to supply the most negative integers as
input, even though that is trivially handled by minor changes in
the software. Thus, to represent the most negative 32-bit integer
in source code, you might have to replace

const int32_t INT32_MIN = -2147483648;

by

const int32_t INT32_MIN = (-2147483647 - 1);

or by a type-coerced hexadecimal equivalent using one of these:

const int32_t INT32_MIN = (int32_t)(0x80000000U);

const int32_t INT32_MIN = (int32_t)(~0x7fffffffU);

• In mathematics, nonzero / zero is generally viewed as ∞ (Infinity).
For integer arithmetic, there is no representation of Infinity, and CPU
designs may raise an interrupt, or just return the numerator, or an
unpredictable value. For floating-point arithmetic, some historical
designs, and IEEE 754, have a representation of Infinity; others may
just abort the job.

• In mathematics, zero / zero is generally viewed as undefined, and
disallowed. For integer arithmetic, computer behavior is likely to be
the same as for a nonzero numerator. For floating-point arithmetic,
some historical designs, and IEEE 754, have a representation of In-
definite (CDC and Cray) or NaN (IEEE 754 Not-a-Number).

4 2 Exact mathematics versus computer arithmetic

• Definitions of the behavior of integer modulo and remainder oper-
ations are language dependent, and for some languages, platform
dependent, when any operand is negative.

• Base conversion causes interminable difficulties. A human inputs
0.1 to computer program, then has the program print the result,
gets 0.0999998, and wants to know: why?

• Numerical programs often process large amounts of data, and do
enormous numbers of arithmetic operations. Failure to understand
the computer memory hierarchy can have huge performance effects if
the data are not handled properly.
Modern computer systems have multiple levels of memory, from reg-
isters in the CPU, to one or more levels of cache memory, to local
DRAM (dynamic random access memory) on the current CPU, to
global DRAM on other CPUs, to memory on other computers accessed
over the network, or to local or remote storage devices.
Typical CPU clock speeds are 100 MHz (one cycle = 10 nsec) to 5000
MHz (one cycle = 0.2 nsec).
From fastest to slowest, the computer memory hierarchy looks like
this:

Registers : 8 to 128 registers, of sizes 4 to 16 bytes each, often with
different register sets for integer and floating-point arithmetic.
Access time: 1 clock cycle.

L1-cache : Typical size: 32KB, maybe separate instruction and data
caches, one per CPU, shared by all its cores.
Access time: 3 to 5 clock cycles.

L2-cache : Typical size: 256KB, one per CPU, shared by all its cores.
Access time: 5 to 20 clock cycles.

L3-cache : Typical size: 20480KB, shared by all CPUs and cores.
Access time: 20 to 50 clock cycles.

DRAM : Typical sizes: 0.25MB to 32TB, shared by all CPUs and
cores, but perhaps partitioned by CPU, with different access
times for local and global parts.
Access time: 500 clock cycles.

Filesystem : Typical sizes: 1GB to 1PB.
Access time: 10,000 to 100,000 clock cycles for one block (512B
to 1MB).

5

Network : Access time from 5,000 cycles to minutes, depending
on network load, latency, and hop count, for one block (1B to
1500B).

• Array storage order is language dependent, and may even be compiler
dependent in some languages. Consider a two-dimensional matrix,
M, of R rows by C columns:

Ada : Storage order unspecified.
awk : Indexing by integers or character strings, with no declared

bounds. Elements are referred to as M[i,j] or as M[i SUBSEP j],
but are allocated only when assigned to. Each element is found
by hash search (cost: Order(1)), and memory locations of logi-
cally sequential elements are unpredictable, and uncontrollable.
An unassigned element silently evaluates to an empty string,
which is treated as zero in a numeric context. For example, set
Phone["Mary"] = "+1 800 555-6789" to allow later retrieval of her
telephone number.

Fortran : Column order, indexed from 1 by default. Contiguous al-
location, with M(i,j) followed by M(i + 1,j), and M(R,j) followed
by M(1,j + 1).

C, C++, C#, Go, Rust : Row order, always indexed from 0. Contigu-
ous allocation with M[i][j] followed by M[i][j + 1], and M[i][C

- 1] followed by M[i + 1, 0].
Java : Always indexed from 0. Row allocation: vector of R pointers

to contiguous row vector blocks, each of length C. M[i][j] is fol-
lowed by M[i][j + 1], but the successor of M[i][C - 1], while
logically M[i + 1][0], may be far away in memory, perhaps even
on a nonresident memory page that requires loading from exter-
nal storage.

Julia : Column order, indexed from 1. Contiguous allocation, with
M[i,j] followed by M[i + 1,j], and M[R,j] followed by M[1,j +

1].

The existence of a huge body of free numerical software written in
Fortran, the modern preference of many programmers for C and
C++ over Fortran, the availability of Fortran-to-C translators, and
language-independent argument passing conventions on most mod-
ern system, mean that it is now possible to translate Fortran code to

6 3 Integer arithmetic

C, and to call Fortran functions and subroutines from C. However,
that Fortran code was likely written by an expert concerned with
performance who carefully chose loop order to minimize cache colli-
sions. If Fortran M(i,j) is treated as M[i][j] in C, then the storage
order in C conflicts with the Fortran ordering. Fortran-to-C transla-
tor software does nothing to fix such problems.
I once made a Fortran program run three times faster by changing a
single digit in an array dimension: M(256,C) to M(257,C). That change
radically reduced the number of cache reloads as the matrix was
accessed by columns.
For matrix multiplication, it may be much faster to transpose one
of the matrices in place, compute their product in optimal storage
order, and then transpose the chosen one back again. Transposition
has cost Order(n2), while matrix multiplication, and several other
important matrix operations, has cost Order(n3). We investigate that
in Section 26 on page 52.

Conclusion: Reasoning about the correctness, and efficiency, of numer-
ical software can be extremely difficult, especially when compilers in some
languages may reorder numerical expressions as if they were mathematical
ones, when in fact they are not!

3 Integer arithmetic

• Choice of base (now ‘always’ 2) in compiled languages (Maple is an
exception: it uses base 10).

• base digit representation:

binary : [01];
octal : [01234567];
decimal : [0123456789];
hexadecimal : [0123456789abcdef] (lettercase is ignored);
base 36 : [0123456789abcdefghijklmnopqrstuvwxyz] (lettercase is ig-

nored);
base 64 :

[ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz

0123456789+/] (lettercase is significant).

7

• Signed and unsigned integer arithmetic support is language depen-
dent:

Ada : signed in 8-, 16-, 32-, and 64-bit sizes;
awk : stored as signed 64-bit floating-point values;
C/C++ : signed and unsigned in 8-, 16-, 32-, (with C99) 64-, and

rarely, 128-bit sizes;
C#/Go : signed and unsigned in 8-, 16-, 32-, and 64-bit sizes;
Fortran : signed in 8-, 16-, 32-, and 64-bit sizes;
Java : signed in 8-, 16-, 32-, and 64-bit sizes;
Julia : signed and unsigned in 8-, 16-, 32-, 64-, and 128-bit sizes,

plus arbitrary-precision signed integers;
Rust : signed and unsigned in 8-, 16-, 32-, 64-, and 128-bit sizes.

• Programming support for nondecimal integers is language depen-
dent, and rules may differ for source code and input/output. For
integer constants in source code, we find:

Ada : any base from 2 to 16 (e.g., 2#101#, 8#377#, 10#255#,
16#cafe feed#);

awk : base 10;
C/C++/Go/Java : bases 8, 10, and 16;
C# : bases 10 and 16;
Fortran/Julia/Rust : bases 2, 8, 10, and 16.

• Choice of representation: sign-magnitude (with +/-0), one’s comple-
ment (with +/-0), two’s complement (with only one zero, but one more
negative, so abs(x) is negative if x is INT MIN).
To negate in sign-magnitude: flip sign bit.
To negate in one’s complement: flip all bits.
To negate in two’s complement: flip all bits, then add one.
All modern CPUs use two’s complement arithmetic for hardware in-
tegers.

• Implications for fast even/odd test:

if (x & 1)

print "x is odd";

8 3 Integer arithmetic

That is correct only for sign-magnitude and two’s complement arith-
metic. It holds in one’s complement arithmetic only for positive
nonzero values.

• Integer arithmetic is the building block for multiple precision arith-
metic. The latter is common in Lisp, and computer algebra systems,
such as Axiom, Maple, Mathematica, and Maxima.

% maple

|\^/| Maple 2019 (X86 64 LINUX)

._|\| |/|_. Copyright (c) Maplesoft, ...

\ MAPLE / All rights reserved. Maple is a trademark of

<____ ____> Waterloo Maple Inc.

| Type ? for help.

> evalf(Pi, 5);

3.1416

> evalf(Pi, 10);

3.141592654

> evalf(Pi, 25);

3.141592653589793238462643

> evalf(Pi, 50);

3.1415926535897932384626433832795028841971693993751

> Digits := 75:

> evalf(sin(22));

-0.008851309290403875921690256815772332463289203951332\

56644233083529808955201463

> evalf(Pi,500);

3.1415926535897932384626433832795028841971693993751058\

20974944592307816406286208998628034825342117067982\

14808651328230664709384460955058223172535940812848\

11174502841027019385211055596446229489549303819644\

28810975665933446128475648233786783165271201909145\

64856692346034861045432664821339360726024914127372\

45870066063155881748815209209628292540917153643678\

92590360011330530548820466521384146951941511609433\

05727036575959195309218611738193261179310511854807\

44623799627495673518857527248912279381830119491

• Integer arithmetic was implemented in floating-point arithmetic on

9

some historical systems (CDC, Cray), with concomitant irregularities
(e.g., 48-bit integer hidden in 60-bit floating-point values).

• Behavior on zero divide, overflow, left/right and signed/unsigned
shifts by more than word-size bits, are generally left up to the
implementation, or defined to have undefined, or implementation-
dependent, behavior (e.g., C, C++, Fortran, Go, . . .)

In C#, integer overflow is not caught unless the checked qualifier is
prefixed to the expression.

In Java, integer exceptions are never raised, except for zero divide.

• Many CPU designs can set one or more exception flags, or other-
wise signal an error, on integer overflow, but some do not (e.g., DEC
Alpha). MIPS CPUs set the integer overflow flag on signed add/
subtract, but not on multiply; unsigned operations never set the
flag. That variability means that ISO language standards design-
ers are unlikely to provide standard functions for access to integer
exception flags, sigh. . . .

• Ranges for n-bit integers:

sign-magnitude : [−(2n−1 − 1),+2n−1 − 1], with both −0 and +0;
one’s complement : same as sign-magnitude;
two’s complement : [−(2n−1),+2n−1 − 1];

When both −0 and +0 exist, they compare equal, but have different
bit patterns.

Table 1 shows the ranges of common computer integer sizes, and you
need to consider those limits when you write software to do integer
arithmetic on things like these:

– time in nanoseconds or seconds,
– populations (fauna, flora, stars, taxpayers, . . .),
– vehicle license plate numbers,
– computer memory addresses,
– Internet IPv4 32-bit and IPv6 128-bit addresses,
– financial accounts and national debts in various currencies, and

so on.

10 4 Fixed-point arithmetic

Table 1: Ranges of integer sizes in two’s complement arithmetic.

Bits Signed Range Unsigned Range
8 [−128,+127] [0,+255]
16 [−32768,+32767] [0,+65535]
18 [−131072,+131072] [0,+262143]
32 [−2147483648,+2147483647] [0,+4294967295]
36 [−34359738368,+34359738368] [0,+68719476735]
48 [−140737488355328,+140737488355328] [0,+281474976710655]
64 [−9223372036854775808,+9223372036854775808] [0,+18446744073709551615]
72 [−2361183241434822606848,+2361183241434822606848] [0,+4722366482869645213695]

4 Fixed-point arithmetic

• Generally sign-magnitude with fractional point location chosen in a
particular language or machine architecture.

• Rare in hardware and modern programming languages (exceptions:
Ada, Cobol, PL/1, METAFONT, and TEX).

• TEX dimensions are stored in an n-bit integer that has a 1-bit sign, a
(n−17)-bit integer, and a 16-bit fraction. The bit adjacent to the sign
is used for overflow detection on multiply, but overflow is not caught
in addition.

• TEX’s maximum dimension is named \maxdimen, and with a 32-bit
integer, its value is 16383.99998pt, or about 18.89 feet, or 5.75 me-
ters. You cannot typeset an e-book as a single galley without dealing
with that limit.

• For TEX dimensions with a 32-bit integer, we find this output, with
comments added to indicate unusual behavior:

% tex

This is TeX, Version 3.14159265 (TeX Live 2019) \

(preloaded format=tex)

**\relax

11

*\dimen0 = \maxdimen

*\showthe \dimen0

> 16383.99998pt.

*\dimen1 = \dimen0

*\dimen1 = 2\dimen0 % DETECTED overflow

! Dimension too large.

*\showthe \dimen1

> 16383.99998pt. % assignment suppressed on overflow

*\dimen1 = \dimen0

*\advance \dimen1 by \dimen0

*\showthe \dimen1

> 32767.99997pt. % UNCAUGHT overflow into detection bit

*\advance \dimen1 by \dimen0

*\showthe \dimen1 % UNCAUGHT overflow, wraps to negative

> -16384.00005pt.

*\dimen1 = \dimen0

*\multiply \dimen1 by 2 % DETECTED overflow

! Arithmetic overflow.

*\showthe \dimen1

> 16383.99998pt. % assignment suppressed on overflow

• Manual rescaling, and detection and prevention of overflow, in fixed-
point arithmetic are huge problems for programmers, and for that
reason, floating-point arithmetic was soon introduced to computers,
and is now universal in CPUs used for desktop and server computing.

• Exponent-free fixed-point representation remains common for spec-
ifying floating-point numbers in input, output, and software.

5 Floating-point arithmetic

• Common format: sign, exponent, and significand with sizes of each
set by hardware design, or by international standard (e.g., IEEE 754-

12 5 Floating-point arithmetic

2019). The relative storage layout of those fields has varied across
CPU designs, but the given order is now universal.

• Design choices for exponent:

– exponent sign + magnitude?
– one’s complement?
– two’s complement?
– biased magnitude?

• Design choices for significand:

– integer?
– fraction in [0, 1)?
– fixed in [0, B) (base-B)?
– normalized (no leading zero base-B digits), or unnormalized?
– hidden bit (if always normalized)?

• Reserved operand representation (DEC PDP-11 and VAX:−0.0 causes
fatal interrupt on load or arithmetic instructions).

• Reserved exponent fields to represent Indefinite (CDC, Cray), NaN
(IEEE 754), Infinity (IEEE 754, CDC, Cray)

• Floating-point arithmetic is exact, unless rounding is required; it is
not fuzzy! Thus, most scripting languages offer only a single nu-
meric type (generally implemented as IEEE 754 64-bit binary, i.e.,
C’s double), and use it for both integer and floating-point computa-
tions.

• Careless coding can suffer from premature underflow and overflow,
and significance loss, that produces completely incorrect results over
much of the floating-point range. For example, the Pythagorean the-
orem taught in elementary school says that in a right triangle with
adjacent sides x and y, the square of the opposite side (h, the hy-
potenuse) is equal to the sum of the squares on the adjacent sides.
Thus, mathematically, h =

√
x2 + y2. A naive computer implementa-

tion as sqrt(x*x + y*y) is found in countless programs, yet is wrong!
Correct code in C uses a library function, hypot(x,y), that does
the calculation carefully, without intermediate underflow or overflow,
and without introducing unnecessary rounding errors.

13

For the related expression, d =
√
x2 − y2, factor the argument and

rewrite it as d =
√

(x− y)(x+ y). When x and y are close in value,
one of those factors is exact, and the other is correct within rounding
error, so there are at most three rounding errors in the result. Only
when one of the factors overflows is the result completely incorrect.

Similarly, naive coding to compute the roots of ax2 + bx+ c = 0 using
the schoolbook formula x = (−b ±

√
b2 − 4ac)/(2a) suffers from pre-

mature overflow/underflow, and also from significance loss; it may
then return results with no correct digits whatever.

6 Floating-point design and exception handling

• historical systems:

– terminate job on overflow;
– terminate job on zero divide;
– flush-to-zero on underflow;
– some allow trap reporting for underflow (e.g., DEC PDP-10 and

IBM System/360);
– rounding is often done by truncation (extra trailing digits are

simply discarded), but some systems attempted to round to near-
est, but with only limited correctness;

– in higher-precision formats, there may be unused (i.e., wasted)
bits in the significand;

– higher-precision formats may have the same exponent range as
the smallest one.

• IEEE 754 floating-point arithmetic:

– Design goal: Provide uniform and predictable behavior across
all implementations, with these features:

∗ Computation with any of four rounding modes;
∗ Five basic operations (+, -, *, /, and sqrt()) always produce

correctly rounded results;
∗ Nonstop operation for high-performance computation;

14 6 Floating-point design and exception handling

∗ Must support 32-bit and 64-bit formats, with optional 80-bit
and 128-bit format extensions;
∗ Exceptions set sticky flags (e.g., clear all flags, then compute,

then test flags; do something different if any flags were set);
∗ Implementations may choose to supply additional elemen-

tary functions, provided that they have the same rounding
behavior as the five basic ones.

– Begun as IEEE working group P754 in 1976–1977.
– First draft in 1980, on which the Intel 8087 coprocessor was

based, implemented, and marketed that year.
– First official standard in 1985.
– IEEE-754 revised in 2008 and 2019.
– Default on all new CPU designs since about 1990, but imple-

mentation quality varies.
– Flush-to-subnormal on underflow (default, also called gradual

underflow).
– Flush-to-zero on underflow (fast, nonstandard, only choice on

original Alpha CPU).
– Subnormals (formerly called denormals) may be exact, but oth-

erwise, silently suffer precision loss.
– Nonzero / zero produces Infinity of correct sign.
– Zero / zero, Infinity − Infinity, Infinity / Infinity, and√

negative nonzero real produce a quiet NaN (Not a Number).
– NaN may be quiet (QNaN) or signaling (SNaN); quiet NaNs prop-

agate, and signaling NaNs raise a trappable exception.
– A NaN always has a sign bit, but no meaning is attached to it,

and its value has no effect on any operation that involves a NaN.
– NaNs compare unequal to everything, and their existence means

that tests for negative, zero, and positive values do not cover all
cases. In particular, the Fortran three-way branch conditional
IF (x) n1,n2,n3 behaves unpredictably if x is a NaN, and the C
code

if (x < 0.0)

(void)printf("x is negative nonzero\n");

else if (x == 0.0)

15

(void)printf("x is zero\n");

else

(void)printf("x is positive nonzero\n");

incorrectly reports a NaN as a positive nonzero. It must be
rewritten as

if (x < 0.0)

(void)printf("x is negative nonzero\n");

else if (x == 0.0)

(void)printf("x is zero\n");

else if (x > 0.0)

(void)printf("x is positive nonzero\n");

else

(void)printf("x is a NaN\n");

– Alas, Intel x86 and x86-64 CPUs, and the C# and Java pro-
gramming languages and their virtual machines, have only quiet
NaNs, and those two languages omit critical properties of other
parts of IEEE 754 arithmetic.

– No numeric operation ever delivers a signaling NaN; any such
value must have been intentionally created by the programmer
(e.g., for memory initialization).

– In the binary formats, Infinity and NaN have the same exponent
(the maximum possible), but Infinity has a zero significand, and
NaN has a nonzero significand. One architecture-defined signif-
icand bit distinguishes between quiet and signaling NaN; the re-
maining bits can usefully carry a payload, such as the variable’s
memory address, or a distinctive pattern, such as 0xdeadfeed, to
indicate a likely uninitialized value.

– NaN OP any produces NaN, but which NaN results is implemen-
tation dependent: that matters when NaNs carry a payload.

– Numeric functions that receive NaN arguments should always
return a NaN, preferably, the first argument found to be a NaN,
so that any payload is preserved. They should also perform a
small computation that generates a NaN, so that floating-point
exception flags are set correctly.

– Alas, fmax(x,y) and fmin(x,y) in C99 ignore NaN arguments,
unless both are NaNs. C99 pow(0.0,x) is required to return 1.0,
even when x is a NaN.

16 8 IEEE 754 decimal range and precision

– try{ } / catch { } / throw () blocks available in C++, C#, Java,
and Lisp to deal with exceptions are too onerous to use for rou-
tine numerical work.

– Subnormals arise on underflow: with the most negative expo-
nent, the normalization requirement is relaxed, and leading zero
bits are permitted. That decreases precision, but preserves im-
portant mathematical properties, such as these:

x 6= y =⇒ x− y 6= 0

(x− y) + y ≈ x within rounding error of the larger of x, y

(1/x) 6= 0 =⇒ (1/(1/x)) ≈ x when x is normalized.

– Inexact subnormals can reduce the precision of all subsequent
operations that depend on them.

– Some systems supply a library function call to switch under-
flow behavior at runtime between flush-to-zero and flush-to-
subnormal, but that facility has never been standardized,

7 IEEE 754 binary range and precision

The design parameters of the extended IEEE 754 binary formats are pre-
sented in Table 2.

All but the 80-bit format have a hidden leading significand bit that is
not stored, but is supplied in hardware for arithmetic operations.

The 256-bit format is an extension of the author’s MathCW library to
encourage future compiler support of that type.

8 IEEE 754 decimal range and precision

The design parameters of the extended IEEE 754 decimal formats are
shown in Table 3.

A hidden leading significand digit is only possible when the base is
two; it does not exist in any nonbinary system. When the decimal storage
format doubles in size, the precision is always increased from n to 2n + 2
digits, and the exponent size is increased by at least one bit. That is an

17

Table 2: IEEE 754 binary range and precision.

single double extended quadruple octuple
Format length 32 64 80 128 256
Stored significand bits 23 52 64 112 236
Precision (t) 24 53 64 113 237
Biased-exponent bits 8 11 15 15 19
Minimum exponent −126 −1022 −16 382 −16 382 −262 142
Maximum exponent 127 1023 16 383 16 383 262 143
Exponent bias 127 1023 16 383 16 383 262 143
Machine epsilon 2−23 2−52 2−63 2−112 2−236

(2−t+1) ≈ 1.19e−07 ≈ 2.22e−16 ≈ 1.08e−19 ≈ 1.93e−34 ≈ 9.06e−72
Largest normal (1− 2−24)2128 (1− 2−53)21024 (1− 2−64)216 384 (1− 2−113)216 384 (1− 2−237)2262 144

≈ 3.40e+38 ≈ 1.80e+308 ≈ 1.19e+4932 ≈ 1.19e+4932 ≈ 1.611e+78 913
Smallest normal 2−126 2−1022 2−16 382 2−16 382 2−262 142

≈ 1.18e−38 ≈ 2.23e−308 ≈ 3.36e−4932 ≈ 3.36e−4932 ≈ 2.482e−78913
Smallest subnormal 2−149 2−1074 2−16 445 2−16 494 2−262 378

≈ 1.40e−45 ≈ 4.94e−324 ≈ 3.64e−4951 ≈ 6.48e−4966 ≈ 2.25e−78 984

intentional design choice to guarantee that double-length products can be
computed exactly, and without underflow or overflow, in all but the largest
format.

The 256-bit format is an extension of the author’s MathCW library to
encourage future compiler support of that type.

9 IEEE 754 rounding modes

• In binary arithmetic, there are four rounding modes, accessible with
these macro names in C99:

FE DOWNWARD : toward −Infinity;
FE UPWARD : toward +Infinity;

FE TOWARDZERO : magnitude toward zero;
FE TONEAREST : to nearest representable result, with ties to even (i.e., last sig-

nificand bit is zero)

Use has since been found for another rounding mode that produces

18 10 Fused multiply add

Table 3: IEEE 754 decimal range and precision.

single double quadruple octuple
Format length 32 64 128 256
Stored coefficient digits 7 16 34 70
Precision (p) 7 16 34 70
Biased-exponent bits 8 10 14 22
EC bits 6 8 12 20
Minimum exponent −95 −383 −6143 −1 572 863
Maximum exponent 96 384 6144 1 572 864
Exponent bias 101 398 6176 1 572 932
Machine epsilon (10−p+1) 10−6 10−15 10−33 10−69

Largest normal (1− 10−7)1097 (1− 10−16)10385 (1− 10−34)106145 (1− 10−70)101 572 865

Smallest normal 10−95 10−383 10−6143 10−1 572 863

Smallest subnormal 10−101 10−398 10−6176 10−1 572 932

the nearest, with ties to odd, but no hardware implementations exist,
so it must be simulated in software.

• In decimal arithmetic, there can be additional rounding modes:

FE HALF UP : round ties upward (magnitude away from zero);

FE HALF DOWN : round ties downward (magnitude toward zero);

FE HALF AWAY : round ties away from zero;

others : IBM processors with decimal floating-point hardware also have
round to prepare for shorter precision, which has specialized ap-
plication, and is not described further here.

10 Fused multiply add

IEEE 754-2008, and C99, require a fused multiply-add operation: the
C function fma(x,y,z) computes x * y exactly as a double-length value,
then adds z, producing x * y + z with at most one rounding error. CPU
designs that implement the FMA generally supply variants for -x * y +

z, x * y - z, and -x * y - z, to avoid the need for additional argument
negations.

19

Software implementations are complicated, but hardware can do so
without performance penalty, as IBM demonstrated with their POWER
architecture, introduced in 1990, and shortly thereafter, with their main-
frame z-Series CPUs.

The FMA operation has been found to be important for many numerical
algorithms, and can be a building block for code that computes a result
as the sum of an exact high part, and an accurate, but approximate, low
part. Here is a short code block for recovering the rounding error in mul-
tiplication.

double err, x, y;

volatile double proc;

prod = x * y;

err = fma(x, y, -prod);

The exact result in binary arithmetic is prod + err.
Similar error recovery is also possible for the four other basic opera-

tions, but we do not show it here.
IBM POWER and z-Series processors have provided FMA in hardware

for about three decades, but the availability of FMA on ARM, Intel, MIPS,
and SPARC processors is extremely limited, and correct FMA is absent on
DEC Alpha and HP PA-RISC CPUs.

11 Mixed-precision arithmetic

Programming languages differ in their interpretation of numeric expres-
sions involving operands of differing precision or type, and programmers
need to exercise particular care, and thoroughly understand the rules of
their chosen language.

For example, what is the value of 1/7? In many languages, its value
is 0, because integer division is implied, and such division truncates to-
ward zero. However, in most scripting languages that offer only a single
numeric type implemented as a 64-bit floating-point value, its value is
approximately 0.142 857 142 857 142 857

As another example, how should the mixed-precision assignment x

= 1.0F / 7.0Q be evaluated? Many languages require promotion of the
shorter operands to the longest type in the expression, the arithmetic car-
ried out, and the result then converted to the precision of the target assign-

20 12 Base conversion problem

ment. What should then happen for subexpressions, such as x = (1.0F /

7.0) + 1.0Q? Also, can the computation of constant expressions be done
at compile time (possibly to much higher precision, as the gcc compiler
does), or must it be done at run time? And which rounding mode is used?
Language practice varies.

12 Base conversion problem

Data conversion between human decimal values, and computer binary
values, is a frequent source of confusion for humans.

Because 10 = 5 × 2, every finite binary floating-point value can be
represented exactly as a decimal value. Thus, 2−3 = 0.125, and 2−16 =
0.0000152587890625, both exact.

The reverse is not true: the expression 1/10 is exactly representable as
0.1 in decimal arithmetic, but its value in binary arithmetic has a nonter-
minating fractional part: +0x1.999999...p-4. Its stored value must always
be rounded, and that value converted back to decimal differs by a small
amount from 0.1.

The question of how many bits, b, does it take to represent a d-digit
decimal value, and the reverse, seems simple. The largest unsigned dec-
imal value is then 10d − 1, and its logarithm to the base two, rounded up
to the nearest integer, should be the value of b. That is, we have

log2(10
d − 1) < log2(10

d)

< d log2(10),

d log2(10) ≤ dd log2(10)e,
b (bits needed) ≤ dd log2(10)e.

In C code, that can be written as a convenient function like this:

#include <math.h>

int

needed_dec_to_bin_digits(int d_dec)

{

return ((int)(ceil((double)d_dec * log2(10.0))));

}

The reverse operation seems equally simple:

21

Table 4: Goldberg and Matula digit counts for base conversion.

Digit counts for base conversion
storage size 32 64 80 128 256

binary in 24 53 64 113 237
decimal out 9 17 21 36 73

decimal in 7 16 n/a 34 70
binary out 25 55 n/a 114 234

int

needed_bin_to_dec_digits(int b_bits)

{

return ((int)(ceil((double)b_bits * log10(2.0))));

}

Unfortunately, as I. Bennett Goldberg and David Matula showed in 1967–
1969, those formulas are sometimes wrong. The correct versions are

#include <math.h>

int

correct_dec_to_bin_digits(int d_dec)

{ /* Goldberg formula */

return ((int)ceil((double)d_dec * log2(10.0) + 1.0));

}

int

correct_bin_to_dec_digits(int b_bits)

{ /* Matula formula */

return ((int)ceil((double)b_bits * log2(10.0) + 1.0));

}

Table 4 shows the results of applying the Goldberg and Matula formu-
las to IEEE 754 formats.

For example, values in the 32-bit binary format should be output with
9 decimal digits, yet the default in Fortran, C, and many other languages
is just 6, which is far from adequate for exact recovery of a value from a
prior computation.

22 13 IEEE 754 exception flags

In 1977, for his TEX typesetting system, Donald Knuth wrote code to
convert fixed-point binary values to as many decimal digits as are needed
to recover the binary value exactly in the reverse conversion. He was
confident that his short program was correct, and it could checked in a few
minutes of computer time by converting all possible 2(n−2)−1 inputs (for the
common case of n = 32, that is 1 073 741 823 values), and then converting
the decimal results back to binary for comparison with the original input
values. However, he was bothered that he could not prove its correctness
at the time, and several years went by before he found the proof. His
classic paper on that proof has a wonderful title: A simple program whose
proof isn’t. It was published in a 1990 commemorative book volume that
contains an independent proof by David Gries.

The base-conversion problem is one reason why we could reasonably
argue that software would be improved for humans if it switched from
binary to decimal floating-point arithmetic, and the author’s MathCW li-
brary makes that possible on many systems.

The problem of producing correctly rounded results for base conversion
of floating-point numbers is surprisingly difficult, with solutions found
only in the 1990s. In hard cases, the conversion algorithms require com-
putation with thousands of digits, even for the modest precision of the
IEEE 754 formats. Consequently, few programming languages today can
guarantee always-correct conversions, and that is another reason why a
switch to computing in decimal floating-point arithmetic would be bene-
ficial.

13 IEEE 754 exception flags

C99 defines standard names for five exception flags required in IEEE 754
arithmetic:

FE DIVBYZERO FE INEXACT FE INVALID FE OVERFLOW FE UNDERFLOW

Each must be a distinct integer with only a single nonzero bit.
C99 also defines the symbol FE ALL EXCEPT as the bitwise-OR of all of

the above exception flags, plus any additional ones defined by the imple-
mentation.

The precise rules for when those flags are set are complicated, but
common cases are obvious.

23

The FE INEXACT flag is set whenever a computed result must be rounded
to a slightly different representable value, according to the current round-
ing mode. It is likely to be set in almost any complicated numerical ex-
pression, but for code that implements exact integer addition and multi-
plication via floating-point arithmetic, that flag’s value should always be
zero.

The FE INVALID flag is set when the result is not determinable, and
would normally then produce a quiet NaN. Examples are operands or op-
erations like these:

• SNaN,

• Infinity − Infinity,

• Infinity / Infinity,

• Zero / Zero,

• Infinity * Zero,

• invalid compare,

• invalid square root,

• invalid integer convert.

Some systems provide additional exception flags, and some designs
permit certain exceptions to be masked, so their flags cannot be set, but
there are no standard interfaces for those features in the C language.

In C99, you can test and set the current flags via functions with these
prototypes:

#include <fenv.h>

int feclearexcept (int excepts);

int feraiseexcept (int excepts);

int fetestexcept (int excepts);

int fegetexceptflag (fexcept_t *flagp, int excepts);

int fesetexceptflag (const fexcept_t *flagp, int excepts);

int fegetenv (fenv_t *envp);

int feholdexcept (fenv_t *envp);

int fesetenv (const fenv_t *envp);

int feupdateenv (const fenv_t *envp);

24 15 Significance loss

Consult their manual pages, or the ISO C Standards, for details.

14 Rounding control

C99 provides these functions and macros for IEEE 754 rounding control:

#include <fenv.h>

int fegetround (void); /* return rounding_direction */

int fesetround (int rounding_direction);

/* rounding_direction is one of these: */

FE_DOWNWARD round toward -Inf

FE_TONEAREST round to nearest, ties to even (default)

FE_TOWARDZERO round toward 0

FE_UPWARD round toward +Inf

Rounding errors are normally of minor importance in most numerical
code, because they usually do not accumulate much, especially when the
default mode of FE TONEAREST is in effect. It is, however, possible to con-
trive cases where they do grow substantially, as shown in the companion
chapter, Computer Arithmetic: Perils, Pitfalls, and Practices.

Rounding control is needed for implementing interval arithmetic, which
represents numbers as pairs [lower-bound, upper-bound]. Interval arith-
metic, when carefully used, can provide rigorous bounds for computed
results, provided that the algorithm and code are correct, and the bounds
are not so wide as to make the computed value useless. Interval arithmetic
is supported in the Sun/Oracle C, C++, and Fortran compilers, which
are freely available for Solaris and GNU/Linux operating systems. It is
also available in the Matlab toolbox intlab, and in the Python modules
pyinterval and mpmath for standard and multiple-precision interval arith-
metic.

15 Significance loss

By far the most common cause of numerical difficulties in computations
is significance loss from subtraction of two nearly equal numbers of the

25

same sign. Leading digits disappear, and the result has lower precision
that contaminates all future computation that depends on that value.

Here is an example from the author’s book, with calculations done via
upward and downward recurrences for ordinary Bessel functions of the
first kind, Jn(x). They look like decaying cosine (n even) and sine (n odd)
waves, except that the zeros are not equally spaced.

Starting from correctly rounded seven-digit 32-bit decimal floating-
point values of J0(1) and J1(1), we get these values for the n-th Bessel
function, Jn(1):

--

n computed Jn(1)

--

0 7.651977e-01 # expect 0 7.651977e-01

1 4.400506e-01 # expect 1 4.400506e-01

2 1.149035e-01 # expect 2 1.149035e-01

3 1.956340e-02 # expect 3 1.956335e-02

4 2.476900e-03 # expect 4 2.476639e-03

5 2.518000e-04 # expect 5 2.497577e-04

6 4.110000e-05 # expect 6 2.093834e-05

7 2.414000e-04 # expect 7 1.502326e-06

8 3.338500e-03 # expect 8 9.422344e-08

9 5.317460e-02 # expect 9 5.249250e-09

...

15 7.259898e+06 # expect 15 2.297532e-17

16 2.175373e+08 # expect 16 7.186397e-19

17 6.953934e+09 # expect 17 2.115376e-20

18 2.362163e+11 # expect 18 5.880345e-22

19 8.496833e+12 # expect 19 1.548478e-23

20 3.226435e+14 # expect 20 3.873503e-25

--

Notice that already at n = 5, there is only one correct leading digit, and
after that, the numbers rapidly become nonsensical.

A stable computation is done by downward recurrence, where we as-
sume that Jn(1) = 0 for all n beyond some reasonable value:

--

n computed Jn(1)

--

20 3.873503e-25 # expect 20 3.873503e-25

26 15 Significance loss

19 1.548478e-23 # expect 19 1.548478e-23

18 5.880342e-22 # expect 18 5.880345e-22

17 2.115375e-20 # expect 17 2.115376e-20

16 7.186395e-19 # expect 16 7.186397e-19

15 2.297531e-17 # expect 15 2.297532e-17

...

9 5.249246e-09 # expect 9 5.249250e-09

8 9.422337e-08 # expect 8 9.422344e-08

7 1.502325e-06 # expect 7 1.502326e-06

6 2.093833e-05 # expect 6 2.093834e-05

5 2.497577e-04 # expect 5 2.497577e-04

4 2.476639e-03 # expect 4 2.476639e-03

3 1.956335e-02 # expect 3 1.956335e-02

2 1.149035e-01 # expect 2 1.149035e-01

1 4.400506e-01 # expect 1 4.400506e-01

0 7.651977e-01 # expect 0 7.651977e-01

--

All values are now correct to at most 4 units in the last place, and the last
six values are exactly correct.

Because series expansions are commonly used for function computa-
tion, one must be careful to avoid those in which terms of both signs occur.
For example, consider computation of the tangent and cotangent for small
arguments. We can find their power series (with complicated formulas for
the general coefficients) like this:

% maple

|\^/| Maple 2019 (X86 64 LINUX)

._|\| |/|_. Copyright (c) Maplesoft, ...

\ MAPLE / All rights reserved. Maple is a trademark of

<____ ____> Waterloo Maple Inc.

| Type ? for help.

> convert(series(cot(x), x = 0, 10), polynom);

3 5 7 9

x 2 x x 2 x

1/x - x/3 - ---- - ---- - ---- - -----

45 945 4725 93555

> convert(series(tan(x), x = 0, 10), polynom);

3 5 17 7 62 9

x + 1/3 x + 2/15 x + --- x + ---- x

315 2835

27

Notice that terms of the series for tan(x) always have the same sign, so
there is never significance loss in their summation, which would normally
be done by summing upward from the second term, then adding that sum
to the exact first term to minimize accumulation of rounding errors.

However, the leading two terms in the series for cot(x) always alternate
in sign, so there is massive loss of leading digits when x ≈

√
3 ≈ 1.732, as

can be seen from these Maple computations done in its default precision
of 10 decimal digits:

> evalf(sqrt(3));

1.732050808

> x := 1.732:

> evalf(1/x);

0.5773672055

> evalf(x/3);

0.5773333333

> evalf(1/x - x/3);

0.0000338722

> x := 1.73205:

> evalf(1/x);

0.5773505384

> evalf(x/3);

0.5773500000

> evalf(1/x - x/3);

-6

0.5384 10

The five basic operations (+, -, *, /, and sqrt()) in complex arithmetic
are all subject to premature underflow and overflow, and to significance
loss (the latter even more so if the products of two reals are not computed
to twice working precision).

The elementary functions in complex arithmetic can be computed from
exponential, log, hyperbolic, and trigonometric functions of real argu-
ments. If the trigonometric ones lack exact argument reduction to a mul-

28 16 Precision control

tiple of π or π/2, plus a small remainder, then all of the complex func-
tions that are computed from trigonometric functions are catastrophically
wrong for arguments of rather modest size. The complex exponential and
log functions are in that class, and many other functions in turn depend
on those two.

Complex arithmetic is used much less often than real arithmetic, and
implementations of the former are often seriously deficient. The best ad-
vice seems to be to either reformulate complex-number expressions into
exact mathematical equivalents in real arithmetic, or to use the highest
available complex floating-point precision.

16 Precision control

The Intel 8087 floating-point coprocessor, and subsequent implementa-
tions of the x86 architecture and its descendants by Intel, AMD, Cyrix,
and others, allows control of the precision used in numeric operations.

On those systems, values are normally stored in programs as 32-bit
float, 64-bit double, and 80-bit long double. However, when such values
are loaded into the floating-point registers, they are all expanded exactly to
the 80-bit format, and arithmetic is carried out in registers in that format,
until finally a value is stored to memory, at which point, it is converted
according to the current rounding mode to the type of the target location.

The 11 extra significand bits, and 4 extra exponent bits, of the 80-bit
format, compared to the 64-bit format, are often beneficial in reducing
rounding errors and significance loss, and avoiding premature underflow
and overflow.

However, the higher intermediate precision increases the number of
roundings, and that is sometimes harmful.

These functions may be available in some implementations:

#include <fenv.h>

int fegetprec (void);

int fesetprec (int);

The arguments and return values are one of these:

FE DBLPREC FE FLTPREC FE LDBLPREC

29

A negative function return means failure.
For example, setting the precision to FE FLTPREC forces register opera-

tions to produce only 32-bit format results.

17 Writing precision-independent code

In C, and many other languages, numeric types, library function names,
input and output format descriptors, and suffixes on constants all refer
to a particular floating-point format.

However, in numeric software, it is often a good idea to design algo-
rithms to be precision independent, so how do we achieve that if our code
is riddled with markup indicating the precision?

The C preprocessor provides a way to hide precision details, by wrap-
ping all floating-point constants in macros, hiding library function names
behind generic names, and selecting different definitions by conditional
tests. Here is a short example that makes it easy to select between any of
three precisions, with one of them a default unless overridden at compile
time. Define a header file, fp.h, with these contents:

#if !defined(FP_H)

#define FP_H

#if !defined(FP_T_FLOAT) && !defined(FP_T_DOUBLE) \

&& !defined(FP_T_LONG_DOUBLE)

#define FP_T_DOUBLE

#endif

#if defined(FP_T_FLOAT)

typedef float fp_t;

#define FMT_G "%.9g"

#define FP(x) x ## F

#define COS(x) cosf(x)

#define SQRT(x) sqrtf(x)

#define TAN(x) tanf(x)

#elif defined(FP_T_DOUBLE)

30 17 Writing precision-independent code

typedef double fp_t;

#define FMT_G "%.17g"

#define FP(x) x

#define COS(x) cos(x)

#define SQRT(x) sqrt(x)

#define TAN(x) tan(x)

#elif defined(FP_T_LONG_DOUBLE)

typedef long double fp_t;

#define FMT_G "%.36Lg" /* %.21Lg if 80-bit */

#define FP(x) x ## L

#define COS(x) cosl(x)

#define SQRT(x) sqrtl(x)

#define TAN(x) tanl(x)

#else

#error "No FP_T_xxx macro defined"

#endif

static const fp_t PI =

FP(3.14159265358979323846264338327950288);

static const fp_t PI_HALF =

FP(1.57079632679489661923132169163975144);

#endif /* !defined(FP_H) */

The outer conditional makes the file safe against multiple inclusions: it
would otherwise be an error to repeat the typedef and symbolic constant
definitions.

Now we can write a short precision-independent program, saved in a
file fptest.c:

#include <math.h>

#include <stdio.h>

#include <stdlib.h>

#include "fp.h"

31

int

main(void)

{

fp_t x, y;

x = FP(0.75) * PI;

y = COS(x);

(void)printf("cos((3/4)pi) = " FMT_G "\n", y);

return (EXIT_SUCCESS);

}

Here are four test runs to show how it works:

% cc fptest.c -lm && ./a.out

cos((3/4)pi) = -0.70710678118654746

% cc -DFP_T_FLOAT fptest.c -lm && ./a.out

cos((3/4)pi) = -0.707106769

% cc -DFP_T_DOUBLE fptest.c -lm && ./a.out

cos((3/4)pi) = -0.70710678118654746

% cc -DFP_T_LONG_DOUBLE fptest.c -lm && ./a.out

cos((3/4)pi) = -0.707106781186547524400844362104848992

The author’s MathCW library uses techniques like that to support ten
different floating-point formats for both binary and decimal arithmetic,
with common code for all of them, and only rare excursions into base-
specific, or precision-specific, code.

Care must, of course, be taken to ensure that any constants wrapped
by FP() are either exactly representable in all bases and precisions, as our
sample of 0.75 is, or else specified with sufficient digits to be correct for
all of them.

18 Important algorithms in arithmetic

In this section, we treat some important general algorithms that find wide
application to floating-point computation.

32 18 Important algorithms in arithmetic

18.1 Newton–Raphson iteration

One of the most important procedures for root finding is the Newton–
Raphson iteration, first published in 1690. To find the root x of the equa-
tion f(x) = 0, start with a good initial guess, x = x0, and then compute
successive improvements via

xn+1 = xn − f(xn)/f ′(xn), n = 0, 1, 2, 3,

where f ′(x) is the first derivative of f(x) with respect to x.
With sufficiently close initial values, convergence is quadratic, doubling

the number of correct digits in each iteration.
An important feature is that the entire computational error arises in

the single expression of the right-hand side: each new result is an im-
provement on the previous one, so errors from earlier iterations do not
propagate to the final result.

Some CPU floating-point designs lack divide and square root instruc-
tions. Instead, they provide instructions to compute an approximation to
the result, usually by short polynomial fits that can be computed quickly
in a single hardware instruction. Compilers are then expected to interleave
code for successive Newton–Raphson iterations with following code. Be-
cause the precision of the initial approximations is known, the quadratic
convergence means that the required number of iterations is a small con-
stant, typically two to five.

18.2 Arithmetic–geometric mean (AGM)

AGM iteration is treated in the author’s The Mathematical-Function Com-
putation Handbook. With care in its implementation, the convergence is
also quadratic, but unlike Newton–Raphson iterations, errors accumulate
over all of the AGM iterations.

The AGM iteration is not widely known, nor is it treated in most text-
books, yet it can be used in the computation of several important func-
tions, and some mathematical constants.

In some cases, variants of the AGM are known that have higher-order
convergence. There is a nonic-order formula for π that increases the num-
ber of correct digits by a factor of nine in each iteration! With 2 correct

18.3 Continued fractions 33

initial digits, we get results to 18, 162, 1 458, 13 122, 118 098 . . . digits.
Such formulas have been used to compute over a trillion (1012) digits of π!

18.3 Continued fractions

Continued fractions take the form

f(x) =
a

b+
c

d+
e

f +
g

h+ · · ·

.

Here, a is a constant, and one of the two terms in each subsequent de-
nominator depends on x.

They are known for many standard elementary and special functions,
and some have the important property that their radius of convergence
(the range of usable x values) is often much larger than for series expan-
sions.

The repeated divisions, and the computational observation that the
evaluation is often subject to premature underflow or overflow, have long
discouraged their use by programmers, and few textbooks on numerical
computation even mention them.

However, two good algorithms for their evaluation have been recently
found that are stable, easy to program, and require only one division. They
are discussed further in The Mathematical-Function Computation Hand-
book.

Even if continued fractions are not the final choice in the implemen-
tation of important elementary and special functions, they provide com-
pletely independent routes to function computation that are valuable for
assessing accuracy and code correctness.

18.4 High-precision constants

For accurate computation, it is sometimes desirable to represent con-
stants as sums of an exact high part, and an accurate, but approximate,
low part. Computer algebra systems can help to generate such values.

Here is an example suitable for the IEEE 754 64-bit binary and decimal
formats:

34 18 Important algorithms in arithmetic

#define FP(x) x

typedef double fp_t;

static const fp_t PI_HI = FP(7074237752028440.0) /

FP(2251799813685248.0);

static const fp_t PI_LO = FP(1.2246467991473532e-16);

#define FP(x) x ## DD

typedef decimal_double fp_t;

static const fp_t PI_HI = FP(3141592653589793.0) /

FP(1.e+15);

static const fp_t PI_LO = FP(2.384626433832795e-16);

The FP() wrappers are convenient for writing code that is generalized to
multiple precisions and bases. The high part is defined as a rational num-
ber with an exact integer numerator, and a denominator that is a power
of the base. Modern compilers evaluate that value at compile time, pro-
ducing an exact result.

To compute πx to an almost certainly correctly rounded value, we can
then write code like this:

#include <math.h>

double pi_x, x;

pi_x = fma(x, PI_HI, x * PI_LO);

18.5 Accurate series summations

Computer programs often implement series summations, and they com-
monly do so by accumulating a sum starting from the first term. Thus,
to compute y =

∑n
k=0 ckx

k, a beginning programmer might code it naively
like this:

double

brute(int n, double c[n + 1], double x)

{ /* return sum_{k = 0}^n c[k] * x-to-the-k */

double sum;

int k;

sum = 0.0;

18.5 Accurate series summations 35

for (k = 0; k <= n; ++k)

sum += c[k] * pow(x, (double)k);

return (sum);

}

Such code has two serious problems: it suffers from excessive round-
ing error, and it has an expensive power operation in every iteration.

The second problem is easily removed by computing powers of x in the
summation loop, and avoiding the first of them:

double c[N + 1], x, x_to_k, y;

sum = c[0];

x_to_k = x;

for (k = 1; k <= N; ++k)

{

sum += c[k] * x_to_k;

x_to_k *= x;

}

Reducing rounding errors requires a bit of thought. The trick is to
observe that such sums generally involve terms of decreasing magnitude.
Thus, most of the rounding error happens in the adjustment to the first
term, so it is best to leave that term to last:

double c[N + 1], x, x_to_k, y;

sum = 0.0;

x_to_k = x;

for (k = 1; k <= N; ++k)

{

sum += c[k] * x_to_k;

x_to_k *= x;

}

sum += c[0];

36 18 Important algorithms in arithmetic

If the leading coefficient is not exactly representable, rewrite it as a
two-part sum as in the preceding section, and replace the last assignment
by

sum += c0_lo;

sum += c0_hi;

In the case n =∞, the sum can be terminated as soon as the new term
is sufficiently small, with loop code like this:

term = c[k] * x_to_k;

old_sum = sum;

sum += term;

if (old_sum == sum)

break; /* done: sum is numerically converged */

Notice that there is no magic machine-dependent constant embedded
in the code against which we judge smallness. Notice also that in a sum
that could in principle terminate at the first term, we intentionally add
the second term. That is important, because it allows the sum to depend
on the current rounding mode.

An alternative approach is to evaluate a sum via the Horner represen-
tation of a polynomial, pn(x), of order n, which has these leading cases:

p0(x) = c0,

p1(x) = c0 + c1x,

p2(x) = c0 + c1x+ c2x
2,

= c0 + (c1 + c2x)x,

p3(x) = c0 + c1x+ c2x
2 + c3x

3,

= c0 + (c1 + (c2 + c3x)x)x,

p4(x) = c0 + (c1 + (c2 + (c3 + c4x)x)x)x,

p5(x) = c0 + (c1 + (c2 + (c3 + (c4 + c5x)x)x)x)x,

p6(x) = c0 + (c1 + (c2 + (c3 + (c4 + (c5 + c6x)x)x)x)x)x,

p7(x) =

The general pattern is clear: we start at the deepest nesting level with
the highest-order coefficient, multiply by x, add to the next lower coeffi-
cient, and repeat:

18.5 Accurate series summations 37

double

horner(int n, double c[n + 1], double x)

{

double sum;

if (n < 1) /* sanity check */

n = 0;

sum = c[n];

for (k = n; k > 0; --k)

sum = sum * x + c[k - 1];

return (sum);

}

Notice that the loop operation could be an FMA, so we can reduce rounding
error by replacing the loop body by

sum = fma(sum, x, c[k - 1]);

In the common case where the polynomial order is known in advance,
the entire Horner evaluation can be expanded inline to n consecutive FMA
operations, and if the compiler recognizes that sum and x should be held
in registers, then we have perfect code, with one FMA and one memory
access per iteration.

The Horner method sums terms in reverse order, so the rounding errors
accumulate starting from the highest power. As long as the series terms
decrease in magnitude with increasing order, the major rounding error is
likely in the final sum, where we add c[0] to the previous sum. That means
that the polynomial is effectively evaluated with only one rounding error,
and the FMA should then produce an almost always correctly rounded
result.

If the leading coefficient is not exactly representable, we can instead
store c0 lo in c[0], then compute the polynomial as c0 hi + horner(x, c,

n).
Further improvements are possible by computing an estimate of the

rounding error in each iteration, keeping a separate running sum of those
errors, and adding that second sum to the final one. We leave the details
for textbook treatments; search online sources for the keywords accurate
summation, compensated summation, and twosum.

38 18 Important algorithms in arithmetic

One further improvement that we might make in our code is to store
the coefficients in reverse order, because that optimizes cache access. We
would just have to replace references to c[j] by c[n - j] in our Horner
function, and in the initialization of c[].

We could then borrow an idea from the Sun Solaris math.h header file,
and provide these definitions that allow efficient inline expansion when
the order is a compile-time constant, and are trivially generalized to higher
orders:

/* POLYn(x,c) = sum_{k = 0}^n c[n - k] * x-to-the-k */

#define POLY1(x, c) (fma((c)[1], (x), (c)[0])

#define POLY2(x, c) (POLY1((x), (c)) * (x) + (c)[2])

#define POLY3(x, c) (POLY2((x), (c)) * (x) + (c)[3])

#define POLY4(x, c) (POLY3((x), (c)) * (x) + (c)[4])

#define POLY5(x, c) (POLY4((x), (c)) * (x) + (c)[5])

#define POLY6(x, c) (POLY5((x), (c)) * (x) + (c)[6])

#define POLY7(x, c) (POLY6((x), (c)) * (x) + (c)[7])

#define POLY8(x, c) (POLY7((x), (c)) * (x) + (c)[8])

#define POLY9(x, c) (POLY8((x), (c)) * (x) + (c)[9])

Alternatively, in our original version, we could prime the cache by refer-
encing the first element of the coefficient array with two statements at the
beginning of the main code:

volatile double cache_c0;

cache_c0 = c[0];

18.6 Polynomial fits

One of the important tools for implementing complicated functions is to
replace them with polynomial approximations, possibly with different fits
in each of several argument ranges.

In general, computing such approximations requires higher working
precision, and code for making the fits is available in some computer alge-
bra systems, where there may be a choice of ordinary polynomials, rational
polynomials, Chebyshev expansions, and so on. Of course, it must also
be possible to compute the original function to arbitrary precision.

Many of the elementary and special functions are handled that way in
practice, often using the Horner representation. Suitable encapsulation

18.7 Detecting special values 39

of the polynomial evaluation in macros can hide their degree, allowing the
same code to be used for multiple precisions and bases.

Consult the textbooks listed in the companion chapter for details.

18.7 Detecting special values

Because NaNs compare unequal to everything, including themselves, code
similar to this

if (x != x)

(void)printf("x is a NaN\n");

should work in every programming language, as the designers of IEEE
754 arithmetic intended. Sadly, some compilers contain incorrect opti-
mizations that remove that statement entirely. The recommended safe
procedure is to use a standard library function:

if (isnan(x))

(void)printf("x is a NaN\n");

You cannot use floating-point operations to determine whether two
NaNs have the same sign, type, and payload: instead, use a memory byte
comparison function, like this:

#include <string.h>

double x, y;

if (isnan(x) && isnan(y) &&

(memcmp(&x, &y, sizeof(x)) == 0))

(void)printf("x, y are bit-for-bit identical NaNs\n");

Testing for Infinity should always be possible with code like this:

if (abs(x) >= 1.0 / 0.0)

(void)printf("x is Infinity\n");

but once again, there are misbehaving compilers that reject our sample.
The safe way looks like this:

if (isinf(x))

(void)printf("x is Infinity\n");

40 18 Important algorithms in arithmetic

Signed zeros are another area of mishandling by some compilers, and
because computer arithmetic requires that +0 and −0 compare equal, you
cannot compare a variable with -0.0 to check for a negative zero. Instead,
use the sign-transfer function

if ((x == 0.0) && (copysign(1.0, x) == -1.0))

(void)printf("x is -0.0\n");

or the sign-test function

if ((x == 0.0) && signbit(x))

(void)printf("x is -0.0\n");

Assignments of negative zero constants are botched on some systems,
so to get one, you can use code like this:

double neg_zero;

neg_zero = copysign(0.0, -1.0);

To test for a subnormal, compare against a standard system constant
for the smallest normalized number:

#include <float.h>

#include <math.h>

#include <stdio.h>

double x;

if ((x != 0.0) && (fabs(x) < DBL_MIN))

(void)printf("x is subnormal\n");

A standard function allows a direct test for normal number:

#include <float.h>

#include <math.h>

#include <stdio.h>

double x;

if (isnormal(x))

(void)printf("x is normal "

"(not zero, subnormal, Inf, or NaN\n");

41

To extract the exponent, use code like this:

#include <math.h>

double frac, sig, x, y;

int nf, ns;

frac = frexp(x, &nf); /* x = frac * 2-to-the-nf */

/* frac = 0 or in +/-[1/2, 1) */

y = ldexp(frac, nf); /* now y == x */

ns = (int)logb(x); /* x = significand * 2-to-the-ns */

sig = scalbn(x, -ns); /* sig = 0 or in +/-[1, 2) */

frac = scalbn(x, -ns - 1); /* frac = 0 or in +/-[1/2, 1)*/

To reconstruct the original values, use either of these:

x = ldexp(frac, nf); /* nf = ns - 1; frac = sig/2 */

x = scalbn(sig, ns); /* ns = nf - 1; sig = 2*frac */

To get the sign bit, use

int s;

s = signbit(x); /* s = 1 (negative) or 0 (nonnegative) */

19 Applications of signed zero

The sign of an IEEE 754 zero value can record its provenance as an un-
derflowed computation from the left, or the right, of zero on the real line,
and that may occasionally matter.

In complex arithmetic, many functions have the property of having
branch cuts, where the surface corresponding to z = f(x + yi) has tears.
Correct handling of computations near branch cuts may depend critically
on the availability of signed zeros. See W. Kahan’s famous 1986 docu-
ment Branch Cuts for Complex Elementary Functions or Much Ado About
Nothing’s Sign Bit.

42 20 Floating-point loop increments

20 Floating-point loop increments

One of the common loop constructs in C looks like this:
for (init ; test ; step) { statements }
Most commonly, the parenthesized three clauses contain integer ex-

pressions, like this:

for (k = 0 ; k <= n ; ++k)

In such a case, the iteration count is predictable: here, it is n + 1,
because k takes the values 0, 1, 2, ..., n.

Novice programmers might write a for statement like this:

float x;

int n;

for (n = 0, x = 0.0F ; x <= 1.0F ; x += 0.1F)

{

n++;

...

}

What then is the iteration count, n?
In decimal floating-point arithmetic, the answer is clear: it is 11, be-

cause x takes the exactly representable values 0.0, 0.1, 0.2, ..., 1.0.
However, in binary floating-point arithmetic, 0.1 is not exactly repre-

sentable, and depending on the precision, its value may be slightly less
than, or slight greater than, a tenth.

Test programs with that loop ran 10 iterations in 32-bit arithmetic, but
11 in 64-, 80-, and 128-bit arithmetic.

Had the loop increment been 0.0625 or 0.125, both of which are exactly
representable in all sizes of IEEE 754 binary and decimal arithmetic, the
iteration counts would have been independent of base, precision, and ma-
chine, and thus, the code would be portable.

If you really need to ensure that a loop with floating-point increments
gets within rounding error of its upper limit, or exactly there, switch to in-
teger loop control, and compute the former loop variable in the statement
body, with code like this:

43

float dx, x;

int n;

static const int N = 11;

static const float x_beg = 0.0F;

static const float x_end = 1.0F;

dx = (x_end - x_beg) / (float)(N - 1);

for (n = 0; n < N; ++n)

{

x = x_beg + (float)n * dx;

/* optional, to force exact end point */

if (n == (N - 1))

x = x_end;

...

}

21 Half- and quarter-precision floating-point

In some applications, notably in signal processing, input data may have
precisions of only a few bits, and one can then ask whether there might be
use for shorter floating-point formats of sizes 8 and 16 bits, instead of the
IEEE 754 32-bit format. The smaller sizes could get two to four times as
much data into cache memory, reduce filesystem and network traffic by
similar factors, and computations might be able to run somewhat faster.

For about three decades after the original design of IEEE 754 arith-
metic, no major vendor implemented those small formats. However, that
has recently changed, and some graphics processing units (GPUs), now
provide them, and because the GPUs provide hundreds to thousands of
specialized arithmetic cores capable of parallel computation, there is an
incentive to use them.

Such enthusiasm may, however, be temporary, because the history of
floating-point arithmetic has repeatedly shown that many problems can
be solved to machine precision if several additional digits are available for
intermediate computation, and that situations inevitably turn up where
the default working precision is insufficient for the task.

44 22 Controlling evaluation order

22 Controlling evaluation order

Modern optimizing compilers may do substantial rearrangements of in-
structions to improve performance, such as moving a load of a value far
before its first use, to try to overlap memory and cache delay with exe-
cution of other independent instructions. Such optimizations are mostly
beneficial, but sometimes you need to ensure that steps are done in a par-
ticular order, or that a value used is that from memory, rather than from
a register of higher precision and range.

Two tools are available in C for that purpose: the comma operator, and
the volatile type qualifier.

The comma operator is used in a parenthesized list of assignments, or
expressions, to be processed from left to right, and each list member must
be evaluated completely before the next one is started. Thus, z = (w = x,

x = y, y = 3), finally assigns to z the value 3, and ensures that w and x

get the original values of x and y, respectively.
The volatile modifier in type declaration tells the compiler that each

use of the value of such a variable must get it from memory, not from a
register, and thus, any previous value held in a register must already have
been stored. This is commonly useful for controlling the precision of nu-
meric variables, and avoiding the effects of higher intermediate precision.

Here is a test program, ufl.c, that combines both techniques, and
exhibits surprises when run:

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

int

main(void)

{

int n;

double w, x;

volatile double y, z;

n = 0;

x = 1.0;

45

while ((w = x / 2.0, w) > 0.0)

{

x = w;

++n;

}

(void)printf("nonvolatile smallest value = %a"

" in %d steps\n", x, n);

n = 0;

y = 1.0;

while ((z = y / 2.0, z) > 0.0)

{

y = z;

++n;

}

(void)printf(" volatile smallest value = %a"

" in %d steps\n", y, n);

return (EXIT_SUCCESS);

}

The code is expected to compute, and report, the smallest positive nonzero
value, and the loop count, the negative of the power of two.

On machines with only IEEE 754 binary 32-bit and 64-bit arithmetic,
the test run looks like this:

% cc ufl.c && ./a.out

nonvolatile smallest value = 0x1.0000000000000p-1074 in \

1074 steps

volatile smallest value = 0x1.0000000000000p-1074 in \

1074 steps

The results were unchanged in other tests with six different compilers at
various optimization levels. The reported values are the smallest subnor-
mals.

Next, I ran it on an old machine with a MIPS processor where the de-
fault is flush-to-zero underflow, and replaced the unrecognized C99 %a

format item with the older %g item. The run looks like this:

nonvolatile smallest value = 2.22507e-308 in 1022 steps

46 22 Controlling evaluation order

volatile smallest value = 2.22507e-308 in 1022 steps

The reported values are the smallest normals.
However, on an Intel x86 machine, where all the floating-point registers

have the 80-bit format, the output is:

% cc -g ufl.c && ./a.out

nonvolatile smallest value = 0x1p-1074 in 1074 steps

volatile smallest value = 0x1p-1074 in 1074 steps

% cc -O1 ufl.c && ./a.out

nonvolatile smallest value = 0x0p+0 in 16434 steps

volatile smallest value = 0x1p-1074 in 1074 steps

What happened on the x86 system?

• In the first run, the -g option requests debug-level code generation
with no optimization, and the results agree with the previous runs.

• In the second run, the level-1 optimization results in w being held
in a higher-precision register, and the register value, not the mem-
ory value, is used in the test. At the end of the loop, the register
value for y is finally stored, and because it is too small to represent,
it underflows to zero. The same behavior is observed with higher
optimization levels, and with other compilers.

• In the second loop in both runs, z is computed, stored, and reloaded,
so its value on every iteration is that stored in memory in a 64-bit
format. The loop then terminates at the expected iteration with the
last value assigned to y.

The x86-64 architecture was designed as an upward compatible exten-
sion of the x86 architecture. The latter uses the original 1980 Intel 8087
coprocessor design with eight 80-bit floating-point registers that are not
directly accessible, but instead are a stack that must be carefully man-
aged by the compiler. Binary operations act on the top two stack ele-
ments, pop them off, and push the result back as the new top element.
The x86-64 design keeps those, but also adds 32 directly addressable 64-
bit floating-point registers. Some CPU models also have additional sets of
vector floating-point registers. Compilers on x86-64 systems are free to
use all, or subsets, of those register sets. Which of them is used depends
on compiler optimization levels, and possibly other options.

47

Some compilers on x86-64 provide options to force particular behavior
of floating-point instructions. Here is the same test run with some of those
options:

default optimized compilation

% gcc -O3 uflalt.c && ./a.out

nonvolatile smallest value = 0x0.0000000000001p-1022 in 1074 steps

volatile smallest value = 0x0.0000000000001p-1022 in 1074 steps

force use of x86 registers

% gcc -O3 -mfpmath=387 uflalt.c && ./a.out

nonvolatile smallest value = 0x0p+0 in 16445 steps

volatile smallest value = 0x0.0000000000001p-1022 in 1074 steps

force use of extended SSE instruction set

% gcc -O3 -mfpmath=sse uflalt.c && ./a.out

nonvolatile smallest value = 0x0.0000000000001p-1022 in 1074 steps

volatile smallest value = 0x0.0000000000001p-1022 in 1074 steps

force library calls for floating-point arithmetic

% gcc -O3 -msoft-float uflalt.c && ./a.out

nonvolatile smallest value = 0x0.0000000000001p-1022 in 1074 steps

volatile smallest value = 0x0.0000000000001p-1022 in 1074 steps

allow non-IEEE 754 behavior

% gcc -O3 -ffast-math uflalt.c && ./a.out

nonvolatile smallest value = 0x1p-1022 in 1022 steps

volatile smallest value = 0x1p-1022 in 1022 steps

In the last case, underflow behavior was changed to flush-to-zero.
Depending on compiler options to get desired numerical results is not

a recipe for code portability: it is much better to learn how to program
in such a way as to make the code resilient to variations in floating-point
behavior.

23 Memory byte order

There are two main addressing conventions for multibyte values, and a
given architecture generally supports just one of them, although some
can handle both. An n-byte value can be addressed by its high-order byte
(big-endian addressing), or by its low-order byte (little-endian addressing).

48 23 Memory byte order

As long as software and data do not leave their home architecture, pro-
grammers do not need to care about endianness. However, if numeric
data are written in binary form to a file, or to a network connection, then
it is essential that the writer and subsequent reader agree on the storage
order.

DEC PDP-11 and VAX, and Intel IA-64, x86, and x86-64 architec-
tures are little endian, whereas most others, including IBM POWER and
z-Series, MIPS, Motorola 68K and 88K, SPARC, and also Internet proto-
cols, are big endian. ARM processors can be either endian, but the choice
is generally made by the operating system, and all other code must agree
with the O/S.

GNU/Linux systems provide a collection of library functions for endian
data conversion; they have prototypes like these:

#include <endian.h>

uint16_t htobe16 (uint16_t host_16bits);

uint16_t htole16 (uint16_t host_16bits);

uint16_t be16toh (uint16_t big_endian_16bits);

uint16_t le16toh (uint16_t little_endian_16bits);

with companions for 32-bit and 64-bit values.
Many systems supply similar functions for networking software:

#include <arpa/inet.h>

uint32_t htonl (uint32_t hostlong);

uint16_t htons (uint16_t hostshort);

uint32_t ntohl (uint32_t netlong);

uint16_t ntohs (uint16_t netshort);

There are no language standards for such functions.
Testing for host memory order requires a low-level byte test and type

punning through a union declaration that overlays two or more objects at
the same starting address:

#include <stdio.h>

#include <stdint.h>

#include <stdlib.h>

union {

float x;

49

int8_t b[4];

} u;

u.x = 1.0F;

(void)printf("This system is %s-endian\n",

(u.b[0] == 0) ? "little" : "big");

Here, we exploited the fact that the stored value of 1.0 is 0x3f800000, so
u.b[0] is 0x3f if addressing is from the big end, and 0x00 if from the little
end. This kind of code, if needed, should always be hidden in a single
place in a public property-test function that hides the messy details.

24 Data alignment

There has been great variation across historical computers about how data
are addressed in memory: at least one addressed by bit, many others by
word (with word sizes of 4, 8, 12, 16, 18, 24, 32, 36, 48, 60, and 64 bits),
and on all modern systems, by byte.

However, the low-level design of memory systems poses restrictions, or
performance penalties, on memory addresses. For systems that use byte
addressing, some have allowed access to an n-byte value at any address,
while others require alignment to an address that is a multiple of n bytes,
and still others allow access, but with a time penalty, when the data are
not aligned to such a boundary.

Compilers are aware of those considerations, and for normal variable
declarations, ensure that data are aligned at a suitable boundary. Thus,
for scalars and arrays, data are always optimally aligned for memory ac-
cess. However, many programming languages have data structures where
the programmer chooses the storage order. For example, in C you can
create a structure like this:

struct

{

char c[6];

int8_t i8;

int16_t i16;

int32_t i32;

int64_t i64;

float f32;

50 25 Stack storage

double f64;

long double f80;

__float128 f128;

} d;

Compilers may insert suitable padding between structure members to en-
sure suitable alignment of each member, but they are not required to do
so.

Tests on several systems reported such padding on SPARC and x86-64
CPUs, but the padding was absent on ARM, IA-64, MIPS, PowerPC, and
x86 CPUs.

Incorrect alignment might cause much slower execution on systems
where an unaligned load or store must trap to the operating system. On
other systems, an unaligned access might terminate the process.

The portable solution is therefore to pay attention to alignment issues,
order structure elements from largest to smallest if possible, and manually
supply intervening dummy padding elements wherever needed.

25 Stack storage

Many languages on modern machines support function recursion, which
is most easily done by storing function arguments, and possibly also re-
turn values, on a stack. On most Unix-family operating systems, memory
above the program code and static data is divided into two blocks: a heap
that grows upward, and a stack that grows downward. Dynamic storage
allocation is done from the heap, and stack storage is used for local data,
as well as for passing arguments to functions, and sometimes, receiving
their returned values.

The default stack size is determined by the operating system, and is
typically about 32MB. That is sufficient for most software that contains
only scalar data, but it may be inadequate for numerical programs that
require large matrices.

Some systems permit the stack size to be adjusted in the command
shell with commands like limit and ulimit, but the growth may capped, as
shown in this example:

% limit

cputime unlimited

filesize unlimited

51

datasize 2097152 kbytes

stacksize 32768 kbytes

coredumpsize 512 kbytes

memoryuse 247704 kbytes

vmemoryuse 2097152 kbytes

% limit stacksize 64M

% limit stacksize 256M

% limit stacksize 512M

% limit stacksize 1024M

limit: stacksize: Can’t set limit (Operation not permitted)

Having to adjust the stack size with a shell command before running a
program is not optimal, and the solution is then to switch from stack to
static allocation: in a top-level program, change a declaration

double M[1000][1000];

to

static double M[1000][1000];

However, if your program requires new instances of large arrays in re-
cursive function calls, the static modifier cannot be used in those func-
tions. Instead, you have to resort to dynamic allocation to acquire, use,
and release, large storage blocks. Code might then be written like this:

#include <stdio.h>

#include <stdlib.h>

#define NEED 1000000

double

frecur(double x)

{

double *v;

v = (double *)malloc(NEED * sizeof(double));

52 26 Memory access costs

if (v == (double *)NULL)

{

(void)fprintf(stderr,

"ERROR: out of memory in frecur()\n");

abort();

}

/* ... work with v[] ... */

free(v);

return (/* something */);

}

Dynamic memory management can be expensive, so use it only when
there is no alternative.

If you do use it, make sure that your code has no escapes to the parent
function between the malloc() and free() functions: otherwise, you have
a memory leak that may cause failure later, possibly in a distant part of
your program unrelated to the location of the leak, and maybe long after
the leak happened. Such bugs are common, and often hard to find. They
are especially pernicious in long-running programs, such as text editors,
Web browsers, and server processes that might normally run for months.

Diagnostic software aids for plugging leaks include:

• debuggers with leak-checking options;

• replacements for the default memory allocator, such as by the Elec-
tric Fence library, -lefence;

• static analyzers, such as antic, cppcheck, flawfinder, its4, lint, rats, splint,
and uno; and

• run-time analyzers, such as valgrind.

26 Memory access costs

We discussed the computer memory hierarchy at the beginning of this
document, and now it is time to investigate the costs of access to that
storage.

53

Computations that deal with large collections of numbers stored con-
secutively in matrices are good candidates for such experiments, and ma-
trix multiplication is perhaps the easiest to understand. That operation
requires that the matrices be commensurate: if the first factor has r rows
by c columns, then the second must have c rows, and s columns. The
product then has r rows and s columns. Square matrices are common, in
which case r, c, and s are the same.

Assuming C-style indexing, the product of two matrices, P = A × B,
is defined like this:

Pi,j =
c−1∑
k=0

Ai,kBk,j for i = 0, 1, 2, . . . , r − 1,

for j = 0, 1, 2, . . . , s− 1.

Notice that the i, j element of P is just the dot product of the i-th row of A
and j-th column of B.

Whatever programming language is chosen to implement matrix mul-
tiplication, one or the other of the matrix factors is not accessed in storage
order. If the language represents matrices via hash tables, then no ele-
ments are likely to be adjacent in memory.

In practice, matrix data are often stored in arrays that are bigger than
the currently needed size, so a suitable software design must take that
into account, with code like this:

void

matmul(int nrow_p, int ncol_p, double p[nrow_p][ncol_p],

int nrow_a, int ncol_a, double a[nrow_a][ncol_a],

int nrow_b, int ncol_b, double b[nrow_b][ncol_b],

int r, int c, int s)

{ /* form r-by-s P = A * B for r-by-c A and c-by-s B */

double sum;

int i, j, k;

for (i = 0; i < r; ++i)

{

for (j = 0; j < s; ++j)

{

sum = 0.0;

for (k = 0; k < c; ++k)

sum += a[i][k] * b[k][j];

54 26 Memory access costs

p[i][j] = sum;

}

}

}

Here, we assume that variable-length arrays introduced with the 1999 ISO
C Standard are supported; multidimensional array addressing in older
versions of the C language is unpleasant.

A test program uses variants of that code to compute P = AB, P =
ABT , and P = ATB, where the superscript indicates transposition. The
first of those is the normal case, where in C, accesses to B are not consec-
utive. The second is much better, because both A and B are accessed in
storage order, making effective use of cache memory. The third case is the
worst of the three, because neither matrix is accessed in storage order.

The test program assumes square matrices, so that transposition is
easy, and for the second and third cases, that transposition is done in-
place twice, once before the multiplication, and once after, so that the
matrix factors are restored to their input form. Of course, that means
that they cannot be declared with the const attribute.

The tests are run on several vintage and current systems representing a
range of CPU architectures that are summarized in Table 5. The matrices
can optionally be declared with the volatile attribute, with measurable,
but small, effects as shown in Table 6.

Figures 1 through 3 display histogram bars of times relative to the
worst case, with the shortest bar in each three-case cluster indicating the
fastest computation. Transposition to allow accesses to both matrices in
storage order can be up to 10 times faster. Yet, even within CPU families,
there is noticeable variation across models.

The slowest machine in our benchmarks, the MIPS-R10000, has a
32KB level-1 instruction cache, a 32KB level-1 data cache, and a 1MB
level-2 unified cache. That is sufficient to hold three n×n matrices of type
double for n ≤ 212.

The fastest machine benchmarked, the Xeon-E5-1, has four cores, each
with two threads. Each core has a 32KB level-1 instruction cache, a 32KB
level-1 data cache, and a 256KB level-2 unified cache. In addition, there
is a 10MB level-3 cache shared by all cores. Our three matrices for n ≤ 670
can fit entirely in cache, assuming no other processes are contending for
the cache.

The machine with the largest core count and cache size is the Xeon-E5-

55

Table 5: Benchmark machine descriptions. The operating systems in-
clude Apple Mac OS X, GNU/Linux, Sun Solaris, and SGI IRIX.

System ID Year Description
ARMv7l 2014 Wandboard Quad Freescale i.MX6

Cortex-A9 Quad core ARMv7l (1 4-core
CPU, 1000 MHz, 2GB RAM)

Core-i7 2014 Apple Mac Mini (1 2-core Intel Core i7
CPU, 3000 MHz, 16GB RAM)

Itanium-2 2004 Dell PowerEdge 3250: Intel Itanium-2
(2 CPUs, 1400 MHz, 4GB RAM)

MIPS-R5000 1997 SGI O2 R5000-SC (1 CPU, 300 MHz)
MIPS-R10000 1997 SGI O2 R10000-SC (1 CPU, 150 MHz)
PowerPC 2002 Apple Power Mac G4 (PowerMac3,6)

(2 1420 MHz PowerPC G4 (3.3) CPUs,
2GB RAM)

UltraSPARC-170 2003 Sun Blade 2000 (1 CPU, 1.015 GHz)
UltraSPARC-IIIi-0 2005 Sun Fire V440 (4 CPUs, 1.593 GHz)
UltraSPARC-IIIi-1 2006 Sun Fire V440 (4 CPUs, 1.593 GHz)
UltraSPARC-IIIi-2 2007 Sun Fire V440 (4 CPUs, 1.593 GHz)
UltraSPARC-T2 2009 Sun Enterprise T5240 (2 8-core Ul-

traSPARC T2 Plus CPUs, 1200 MHz,
64GB RAM)

Xeon-E5-0 2008 Apple Mac Pro (1 CPU, 4 core, 2800
MHz, Intel Xeon E5462, 12GB RAM)

Xeon-E5-1 2016 HP Z440 (1 4-core CPU, 3700 MHz
Intel Xeon E5-1630v3, 32GB DDR-4
RAM)

Xeon-E5-2 2016 ThinkMate/Supermicro (2 CPUs, 48
cores, 2700 MHz Intel Xeon E5-2697,
256GB RAM)

Xeon-E7 2011 IBM x3850 (8 CPUs, 64 cores, 2000
MHz, Intel Xeon E7-4820, 1024GB
RAM)

Xeon-X5 201? Dell PowerEdge R410 (2 2800 MHz
Xeon X5560 CPUs, 12 cores, 24 hyper-
threads, 24GB RAM)

56 26 Memory access costs

Table 6: Relative cost of normal matrix-multiply benchmarks, P = AB,
with the volatile qualifier in the matrix declarations. All floating-point
variables have type double, corresponding to the IEEE 754 64-bit binary
format, and the square matrix dimensions are a power of two.

System ID Cost System ID Cost
ARMv7l 0.995 UltraSPARC-IIIi-1 1.071
Core-i7 1.002 UltraSPARC-IIIi-2 0.980
Itanium-2 1.081 UltraSPARC-T2 1.001
MIPS-R5000 1.010 Xeon-E5-1 1.026
MIPS-R10000 1.000 Xeon-E5-2 0.995
PowerPC 0.991 Xeon-E5-3 0.817
UltraSPARC-170 0.998 Xeon-E7 1.122
UltraSPARC-IIIi-0 1.203 Xeon-X5 0.897

2: it has a 30MB level-3 cache, sufficient for n ≤ 1150 in our benchmarks.
Our tests all use matrix sizes that require more memory than the

caches supply.
I also repeated the tests on the Xeon-E5-2, adding the -Ofast com-

piler option that is equivalent to -O3, and allows additional optimizations
that may drop standards conformance. The best case showed a three-fold
speedup.

As a final example of what more can be done to speed up our matrix
multiplication benchmark, I added the line

#pragma omp parallel for private(sum, i, j, k)

immediately before each of the three outer loops in the benchmark pro-
gram, then set the environment variable OMP NUM THREADS to 48 on the 48-
core test system Xeon-E5-2, and reran the tests with the options -fopenmp

and -Ofast. While the clock tick reports changed only moderately, the
benchmark program ran about 16 times faster than without -fopenmp,
thanks to the OpenMP support in the compiler that split the computa-
tion over multiple parallel threads. Further test runs could experiment
with the setting of OMP NUM THREADS to find which values provide the fastest
throughput, which is the usual goal of parallel computation.

57

Figure 1: Relative timing of square matrix multiplication, under compi-
lation with cc without a -On optimization-level option.
Each three-bar cluster shows times for matrix multiplication in C for (1)
standard code: P = AB; (2) cache favorable code: P = ABT ; and (3)
cache conflicts code: P = ATB. The times include the before- and after-
in-place transpositions of one of the matrix factors. Matrix sizes are cho-
sen to make benchmarks run two to fifteen minutes. The sizes are nor-
mally a power of two, but clusters marked with prime increase the size to
the next larger prime. Clusters marked with volatile indicate declaration
of the three matrices with the volatile attribute.

ARMv7l volatile ARMv7l

1.0105 0.2319 1.0000 0.9998 0.2283 1.0000

ARMv7l prime volatile ARMv7l prime

0.8845 0.4201 1.0000 0.8856 0.4199 1.0000

Itanium-2 volatile Itanium-2

0.5498 0.0973 1.0000 0.8830 0.1608 1.0000

Itanium-2 prime volatile Itanium-2 prime

0.7727 0.5415 1.0000 0.9151 0.7023 1.0000

MIPS-R5000 volatile MIPS-R5000

0.5915 0.2351 1.0000 0.5883 0.2353 1.0000

MIPS-R5000 prime volatile MIPS-R5000 prime

0.6545 0.4498 1.0000 0.6457 0.4436 1.0000

58 26 Memory access costs

Figure 2: Relative timing of square matrix multiplication. See Figure 1
for a description of the clusters and labeling.

MIPS-R10000 volatile MIPS-R10000

0.5205 0.0974 1.0000 0.5207 0.0975 1.0000

MIPS-R10000 prime volatile MIPS-R10000 prime

0.6652 0.3178 1.0000 0.6665 0.3184 1.0000

PowerPC volatile PowerPC

0.5456 0.1370 1.0000 0.5468 0.1357 1.0000

PowerPC prime volatile PowerPC prime

0.6692 0.3836 1.0000 0.6392 0.3923 1.0000

UltraSPARC-170 volatile UltraSPARC-170

0.2245 0.1443 1.0000 0.2204 0.1416 1.0000

UltraSPARC-170 prime volatile UltraSPARC-170 prime

0.2394 0.1970 1.0000 0.2391 0.1974 1.0000

59

Figure 3: Relative timing of square matrix multiplication. See Figure 1
for a description of the clusters and labeling.

UltraSPARC-IIIi-0 volatile UltraSPARC-IIIi-0

0.5594 0.1187 1.0000 0.4456 0.1331 1.0000

UltraSPARC-IIIi-0 prime volatile UltraSPARC-IIIi-0 prime

1.0167 0.7899 1.0000 0.8829 0.8394 1.0000

UltraSPARC-IIIi-1 volatile UltraSPARC-IIIi-1

0.2933 0.0979 1.0000 0.4064 0.1161 1.0000

UltraSPARC-IIIi-1 prime volatile UltraSPARC-IIIi-1 prime

0.3432 0.3194 1.0000 0.3378 0.3147 1.0000

UltraSPARC-IIIi-2 volatile UltraSPARC-IIIi-2

0.5472 0.1306 1.0000 0.5460 0.1320 1.0000

UltraSPARC-IIIi-2 prime volatile UltraSPARC-IIIi-2 prime

0.8327 0.8129 1.0000 0.8121 0.8156 1.0000

60 26 Memory access costs

Figure 4: Relative timing of square matrix multiplication. See Figure 1
for a description of the clusters and labeling.

UltraSPARC-T2 volatile UltraSPARC-T2

0.8226 0.8075 1.0000 0.8313 0.8267 1.0000

UltraSPARC-T2 prime volatile UltraSPARC-T2 prime

0.9142 0.8414 1.0000 0.9600 0.8776 1.0000

Core-i7 volatile Core-i7

0.6919 0.1060 1.0000 0.6456 0.0975 1.0000

Core-i7 prime volatile Core-i7 prime

0.5401 0.1229 1.0000 0.4913 0.1105 1.0000

Xeon-E5-0 volatile Xeon-E5-0

0.7869 0.1452 1.0000 0.7933 0.1210 1.0000

Xeon-E5-0 volatile Xeon-E5-0

0.7735 0.2929 1.0000 0.7801 0.2921 1.0000

61

Figure 5: Relative timing of square matrix multiplication. See Figure 1
for a description of the clusters and labeling.

Xeon-E5-1 volatile Xeon-E5-1

0.6817 0.1634 1.0000 0.6694 0.1646 1.0000

Xeon-E5-1 prime volatile Xeon-E5-1 prime

0.5231 0.1064 1.0000 0.5231 0.1064 1.0000

Xeon-E5-2 volatile Xeon-E5-2

0.7891 0.1555 1.0000 0.8231 0.1527 1.0000

Xeon-E5-2 prime volatile Xeon-E5-2 prime

1.0156 0.2599 1.0000 1.0649 0.2526 1.0000

Xeon-E7 volatile Xeon-E7

0.6028 0.2213 1.0000 0.9341 0.3969 1.0000

Xeon-E7 prime volatile Xeon-E7 prime

0.7550 0.1990 1.0000 0.8102 0.2298 1.0000

Xeon-X5 volatile Xeon-X5

0.7827 0.1927 1.0000 0.8291 0.1831 1.0000

Xeon-X5 prime volatile Xeon-X5 prime

0.7135 0.2144 1.0000 0.7675 0.1824 1.0000

62 27 Forcing data from registers to memory

27 Forcing data from registers to memory

For CPU architectures where floating-point registers might have larger ex-
ponent range and precision than corresponding variables of certain prede-
fined types, it is sometimes important to ensure that intermediate values
are forced to storage format. The C and C++ languages provide the type
qualifier volatile that can be used like this:

volatile double seventh;

double approx_one;

seventh = 1.0 / 7.0;

approx_one = 7.0 * seventh;

The compiler must assume that the value of a volatile variable might
change unpredictably in memory, and thus, must be retrieved from there
on each use, rather than being cached in a register for faster access. That
language feature was introduced to deal with systems where two or more
processors or devices have access to certain memory addresses, and use
those locations for communication.

Few other programming languages address that issue, despite the fact
that the most common workstation and server architectures today have
such floating-point registers.

Here is a first stab at implementing something equivalent in Fortran:

real seventh

double approx_one

seventh = 1.0 / 7.0

approx_one = 7.0 * store(seventh)

...

real function store(x)

real x

store = x

end

The problem is that the compiler might receive the function argument in
an argument register, and then just copy that register to the result register,
without any memory references at all.

63

This workaround should do the job, provided that the two functions are
stored and compiled separately, so as to foil compilers with interprocedural
optimization:

real function store(x)

external fetch

real fetch

real y

common /storecb/ y

y = x

store = fetch()

end

real function fetch()

real y

common /storecb/ y

fetch = y

end

Because Fortran passes arguments by address, every function or sub-
routine can potentially modify its arguments, so compilers cannot cache
arguments in registers across calls. Thus, one could instead pass the
variable to a subroutine:

real seventh

double approx_one

seventh = 1.0 / 7.0

call store(seventh)

approx_one = 7.0 * seventh

...

subroutine store(x)

real x

end

Once again, separate compilation is strongly recommended.

28 Further fun

We have surveyed the most important features of (primarily) binary arith-
metic on computers. To learn it well, you now need to practice it a lot. You
can gain experience by doing so in multiple programming languages,

64 28 Further fun

If you have suitable access, you should test your code on multiple CPU
architectures and operating systems. Even if you currently have only a
personal laptop or desktop, you might consider acquiring one of the low
cost (under US$100) systems with an ARM processor that can run any
of several different operating systems in the BSD and GNU/Linux fami-
lies. Alternatively, you might be able to buy online, or from government
or school surplus property offices, a used workstation with a PowerPC
or SPARC processor, for which there are still numerous operating system
choices.

Write code for numerical algorithms that you care about, and then try
your programs in multiple precisions, and with different rounding modes.

Experiment with exception handling, if your programming language
provides it, so that you can write code to handle traps from things like
overflow and SNaN operands.

Try to learn the rudiments of at least one computer algebra system, so
that you can gain access to a huge function library, built-in graph plotting,
and arbitrary-precision arithmetic.

If you program in C, C++, Julia, or Python, you can easily have access
to arbitrary-precision arithmetic via their interfaces to the GNU Multiple
Precision arithmetic library (-lgmp) and its extension for computation with
correct rounding, the Multiple Precision Floating-Point Reliably library
(-lmpfr).

For the Go language, use import "math/big" for access to arbitrary-
precision arithmetic for integers, rational numbers, and floating-point val-
ues.

You could also experiment with implementing numerical algorithms in
interval arithmetic in C, C++, Matlab, and Python.

The deficient noncontiguous array storage order in Java can be mostly
remedied with techniques described in a research paper https://doi.org/
10.1002/cpe.793, or with the packed objects defined in the class hierarchy
com.ibm.jvm.packed.*. In both approaches, source code changes are re-
quired in how matrix elements are accessed.

The SIMH project has portable simulators for scores of historical ma-
chines dating back to the 1950s; you can then run small test programs
(most likely in Fortran or C) to learn how their arithmetic behaved.

On modern operating systems on x86-64 systems, there are free virtual
machine systems, such as bhyve, OVirt, QEMU/KVM, VirtManager, Vir-
tualBox, and VMware Workstation Player. Some of those are also available
on the ARM architecture. They let you install other operating systems on
top of your base O/S, and there are often pre-installed virtual disk images

https://doi.org/10.1002/cpe.793
https://doi.org/10.1002/cpe.793

65

for them that can be downloaded and started immediately.
Consider downloading and installing the pre-built MathCW library and

gcc compilers from http://www.math.utah.edu/pub/mathcw to give you full
access to decimal floating-point arithmetic, and a much expanded math-
ematical function repertoire, in C.

http://www.math.utah.edu/pub/mathcw

	Introduction
	Exact mathematics versus computer arithmetic
	Integer arithmetic
	Fixed-point arithmetic
	Floating-point arithmetic
	Floating-point design and exception handling
	IEEE 754 binary range and precision
	IEEE 754 decimal range and precision
	IEEE 754 rounding modes
	Fused multiply add
	Mixed-precision arithmetic
	Base conversion problem
	IEEE 754 exception flags
	Rounding control
	Significance loss
	Precision control
	Writing precision-independent code
	Important algorithms in arithmetic
	Newton–Raphson iteration
	Arithmetic–geometric mean (AGM)
	Continued fractions
	High-precision constants
	Accurate series summations
	Polynomial fits
	Detecting special values

	Applications of signed zero
	Floating-point loop increments
	Half- and quarter-precision floating-point
	Controlling evaluation order
	Memory byte order
	Data alignment
	Stack storage
	Memory access costs
	Forcing data from registers to memory
	Further fun

