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[ Decision making (e.g., coin flip).

1 Generation of numerical test data and fuzz testing.

(1 Generation of unique cryptographic keys.

(1 Search and optimization via random walks.

[ Selection: quicksort (C. A. R. Hoare, ACM Algorithm 64:
Quicksort, Comm. ACM. 4(7), 321, July 1961) was the first
widely-used divide-and-conquer algorithm to reduce an O (N?)
problem to (on average) O(Nlg(N)). Cf. Fast Fourier Transform
(Clairaut (1754), Lagrange (1759), Gauss (1805 unpublished, 1866)

[Latin], Runge (1903), Danielson and Lanczos [crystallography]
(1942), Cooley and Tukey (1965)).



Abu 'Abd Allah Muhammad ibn Musa al-Khwarizmi (ca. 780-850) is the
father of algorithm and of algebra, from his book Hisab Al-Jabr wal
Mugabalah (Book of Calculations, Restoration and Reduction). He is
celebrated in a 1200-year anniversary Soviet Union stamp:
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[ Simulation.

(d Sampling: unbiased selection of random data in statistical
computations (opinion polls, experimental measurements, voting,
Monte Carlo integration, ...). The latter is done like this (x is
random in (a, b)):

/abf(x)dxz (

i >+01/\/_)



Here is an example of a simple, smooth, and exactly integrable function,
and the relative error of its Monte Carlo integration:
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(1 Computer numbers are rational, with limited precision and range.
Irrational and transcendental numbers are not represented.

(1 Truly random integers would have occasional repetitions, but most
pseudo-random number generators produce a long sequence, called
the period, of distinct integers: these cannot be random.

[ It isn't enough to conform to an expected distribution: the order that
values appear in must be haphazard.

(1 Mathematical characterization of randomness is possible, but difficult.

(1 The best that we can usually do is compute statistical measures of
closeness to particular expected distributions.



Oooodo

Uniform (most common).
Exponential.
Normal (bell-shaped curve).

Logarithmic: if ran() is uniformly-distributed in (a, b), define
randl(x) = exp(xran()). Then arandl(In(b/a)) is logarithmically
distributed in (a, b). [Important use: sampling in floating-point
number intervals.]



Sample logarithmic distribution:

% hoc
a=1
b = 1000000

for (k = 1; k <= 10; ++k) printf "%16.8f\n", a*randl(ln(b/a))
664.28612484
199327 .86997395
562773.43156449
91652.89169494
34.18748767
472.74816777
12.34092778
2.03900107
44426.83813202
28.79498121



Here are three ways to visualize a pseudo-random number distribution,
using the Dyadkin-Hamilton generator function rn01 (), which produces
results uniformly distributed on (0, 1]:

rn01()

.0
0

Uniform Distribution
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output n
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Disorder and order

The Swiss artist Ursus Wehrli dislikes randomness:
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Here are visualizations of computations with the Dyadkin-Hamilton
generator rnexp (), which produces results exponentially distributed on

[0, 00):

Exponential Distribution

rnexp()

0 2500 5000 7500
output n

10000

rnexp()

Exponential Distribution

0

2500 5000 7500
sorted n

10000

count

1000
800
600
400
200

Exponential Distribution Histogram

Even though the theoretical range is [0, 00), results are practically always
modest: the probability of a result as big as 50 is smaller than 2 x 10722,
At one result per microsecond, it could take 164 million years of

computing to encounter such a value!




Here are visualizations of computations with the Dyadkin-Hamilton
generator rnnorm(), which produces results normally distributed on

(~o0, +9):

Normal Distribution

rnnorm()

LI

-4
0 2500 5000

output n
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Normal Distribution
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sorted n
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Results are almost never very large: a result as big as 7 occurs with
probability smaller than 5 x 10723, At one result per microsecond, it could
take 757 million years of computing to encounter such a value.




Here are visualizations of computations with the hoc generator
randl (1n(1000000) ), which produces results logarithmically distributed

on (1,1000000):

Logarithmic Distribution

1000000
800000 |
600000

randl()

400000
200000 §
0

0 2500 5000 7500 10000
output n

randl()

1000000

Logarithmic Distribution

800000
600000
400000
200000

0
0

2500 5000 7500 10000
sorted n

count

Logarithmic Distribution Histogram

The graphs are similar to those for the exponential distribution, but here,
the result range is controlled by the argument of rand1 ().




Given a set of n independent observations with measured values My and
expected values Eg, then Y7 _; [(Ex — My)| is a measure of goodness of
fit. Sois Y§_1(Ex — My)?2. Statisticians use instead a measure introduced
in 1900 by one of the founders of modern statistics, the English
mathematician Karl Pearson (1857-1936):

n 2
2 (Ex — My)
X° measure = Z -

k=1 Ex
Equivalently, if we have s categories expected to occur
with probability pk, and if we take n samples, counting
the number Y) in category k, then

s —Y, 2
X2 measure = 2 —(npk k)
k=1 npy




“There were essentially only two editors of Biometrika in the first 65 years
and only three in the first 90 years (Karl Pearson [27 March 1857-27 April
1936], Egon Sharpe Pearson [11 August 1895-12 June 1980], and Sir
David Roxbee Cox [5 July 1924-]). ... Biometrika was founded for the
statistical study of biological problems and it was still the leading journal
for biometric anthropology in 1936. Though it established a niche in this
specialized branch of biology, it did not realize the hopes of its founders
and the real importance of K. P.’s Biometrika was in its role in establishing
mathematical statistics as a discipline.”

John Aldrich

Karl Pearson’s Biometrika: 1901-36

Biometrika, 100(1) 3-15, March 2013
http://dx.doi.org/10.1093/biomet/ass077


http://dx.doi.org/10.1093/biomet/ass077

The theoretical x? distribution depends on the number of degrees of
freedom, and table entries look like this (highlighted entries are referred to
later):

D.o.f. p=1% p=5% p=25% p=50% p=75% p=95% p =99%
v=1 0.00016 0.00393 0.1015 0.4549 1.323 3.841 6.635
v=>5 0.5543 1.1455 2.675 4.351 6.626 11.07 15.09

v =10 2558 3940 6.737 9.342 12.55 18.31 23.21
v =150 29.71 3476 4294 49.33 56.33 67.50 76.15

For example, this table says:

For v = 10, the probability that the x> measure
is no larger than 23.21 is 99%.

In other words, x> measures larger than 23.21
should occur only about 1% of the time.



Coin toss has one degree of freedom, v =1, because if it is not heads,
then it must be tails.

% hoc
for (k = 1; k <= 10; ++k) print randint(0,1), ""
0111000010

This gave four 1s and six Os:

(10 x 0.5 — 4)? + (10 x 0.5 — 6)?
10 x 0.5

Xz measure

= 2/5
0.40



From the table, for ¥ =1, we expect a x? measure no larger than
0.4549 half of the time, so our result is reasonable.

On the other hand, if we got nine 1s and one 0, then we have

(10 x 0.5 —9)? + (10 x 0.5 — 1)?
10 x 0.5

X2 measure

32/5
6.4

This is close to the tabulated value 6.635 at p = 99%. That is,

we should only expect nine-of-a-kind about once in every

100 experiments.

If we had all 1s or all Os, the x? measure is 10 (probability p = 0.998)
[twice in 1000 experiments].

If we had equal numbers of 1s and Os, then the x? measure is 0, indicating
an exact fit.



Let's try 100 similar experiments, counting the number of 1s in each
experiment:

% hoc
for (n = 1; n <= 100; ++n) {
sum = 0O
for (k = 1; k <= 10; ++k) \
sum += randint(0,1)
print sum, ""

}
4473555256663667454554
3669534544454554635534
472653656762535557873T7
84277335473624514550526F6
565548775545



The measured frequencies of the sums are:

100 experiments
k 0123 456 7 8 910

Y 015 310

11311
9 6 2

Notice that nine-of-a-kind occurred once each for Os and 1s, as predicted.




A simple one-character change on the outer loop limit produces the next
experiment:

1000 experiments
k 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65

1125 4 4 3 211
Yk 1233876 4913 3118076110

4 9
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Another one-character change gives us this:

10000 experiments

30313233343536373839404142434445464748495051525354555657585960616263 64656667 686970
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A final one-character change gives us this result for one million coin tosses:

100 000 experiments

k 30313233343536373839404142434445464748495051525354555657585960616263 64656667 686970

887
128
122
3738
_______ -.IIIII |“‘ |IIII..-____
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Here are x? results for the digits of 77 from recent computational records

(x2(v =9,p = 0.99) ~ 21.67 ):

T 1/
Digits Base  x2> p(x?) Digits Base x> p(x?)
6B 10 9.00 0.56 6B 10 5.44 0.21
50B 10 5.60 0.22 50B 10 7.04 0.37
200B 10 8.09 0.47 200B 10 4.18 0.10

1T 10 14.97 0.91
1T 16 7.94 0.46

Whether the fractional digits of 7, and most other transcendentals, are
normal (= equally likely to occur) is an outstanding unsolved problem in
mathematics.



3.14159265358979323846264338327950288419716939937510
58209749445923078164062862089986280348253421170679
82148086513282306647093844609550582231725359408128
48111745028410270193852110555964462294895493038196
44288109756659334461284756482337867831652712019091
45648566923460348610454326648213393607260249141273
72458700660631558817488152092096282925409171536436
78925903600113305305488204665213841469519415116094
33057270365759591953092186117381932611793105118548
07446237996274956735188575272489122793818301194912
98336733624406566430860213949463952247371907021798
60943702770539217176293176752384674818467669405132
00056812714526356082778577134275778960917363717872
14684409012249534301465495853710507922796892589235
42019956112129021960864034418159813629774771309960
51870721134999999837297804995105973173281609631859
50244594553469083026425223082533446850352619311881
71010003137838752886587533208381420617177669147303
59825349042875546873115956286388235378759375195778
18577805321712268066130019278766111959092164201989

RIS ISR Paudorardomnimbes T 20 September 2017 25 / 68



In the first 1000 fractional digits of 7t

e 83 digit pairs (81 expected)

e 77-digit sequence without a 4 (probability: (9/10)7" ~ 0.0003)

@ six consecutive 9 digits (probability: 1/1,000,000)

e last five digits are a calendar year (probability: 1/100,000)
Conclusion: for a finite sequence of digits, the answer is no!
See Aaldert Compagner, Definitions of randomness, American Journal of
Physics 59(8) 700-705 (1991).
URL http://m.ajp.aapt.org/resource/1/ajpias/v59/18/p700_s1



From http://www.dr-mikes-maths.com/pisearch.html:

NELSON was not found, but | searched 31415929 digits of 7r, and found
BEEBE 4 times. The first occurrence was at position 846 052. What this
means is that

7= 34+...4+

B E E B E
57278246052 I~ 57378246053 T~ 57278246054 + 57278246055 + p7ovesacose 1 - -

where A=1, B=2, C = 3, and so on.



The famous ' Central-Limit Theorem (de Moivre (1718), Laplace
(1810), and Cauchy (1853)), says:

A suitably normalized sum of independent random variables
is likely to be normally distributed, as the number of vari-
ables grows beyond all bounds. It is not necessary that the
variables all have the same distribution function or even that
they be wholly independent.

— I. S. Sokolnikoff and R. M. Redheffer
Mathematics of Physics and Modern Engineering, 2nd ed.
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In mathematical terms, this is

P(np+rnvn < Xi+ X+ -+ Xo < np+ r2y/n)

1 r2
exp(—t%/(20%))dt
oV2m Jn

~
~

where the X are independent, identically distributed, and bounded
random variables, p is their mean value, ¢ is their standard deviation,
and 02 is their variance.



The integrand of this probability function looks like this:

The Normal Distribution
2.0 : ;
m 0=0.2
c=05
15 ¢
o=1.0
= 0=20
g 10! =50
g
N
05
0.0 ‘
-10.0 -5.0 0.0 5.0 10.0
X




The normal curve falls off very rapidly. We can compute its area in
[—x, +x] with a simple midpoint quadrature rule like this:

func f(x) {
global sigma;
return (1/(sigmax*sqrt(2+PI)))* exp(-x*x/(2*xsigma**2))

}

func q(a,b) {
n = 10240
h=(Md-2a) /n
area = 0

for (k = 0; k < n; ++k) \
area += h * f(a + (k + 0.5) * h);
return area



sigma = 3

for (k = 1; k < 8; ++k) \

printf "%d %.9f\n", k, q(-k*sigma,k*sigma)
.682689493

.954499737

.997300204

.999936658

.999999427

.999999998

.000000000

~N O O WN
= O O O O O O

In computer management, 99.999% (five 9’s) availability is

five minutes downtime per year.

In manufacturing, Motorola’s 6¢ reliability with 1.5¢0 drift is about
three defects per million (from g(—(6 —1.5) %0, +(6 —1.5) % 0)/2).



It is remarkable that the Central-Limit Theorem applies also to nonuniform
distributions. Here is a demonstration with sums from exponential and
normal distributions:

Sums from Exponential Distribution Sums from Normal Distribution

700 : : 700

600 ] 600

500 ] 500
€ 400 | € 400 |
3 300 t ] 3 300 ¢

200 ] 200

100 ] 100

0 . ! 0 .
5 10 15 20 5 10 15 20
Sum of 10 samples Sum of 10 samples

Superimposed on the histograms are rough fits by eye of normal
distribution curves 650 exp(—(x — 12.6)2/4.7) and
550 exp(—(x — 13.1)2/2.3).




Not everything looks like a normal distribution. Here is a similar
experiment, using differences of successive pseudo-random numbers,
bucketizing them into 40 bins from the range [—1.0, +1.0]:

10000 experiments (counts scaled by 1/100)

k 1234567 8 91011121314151617 18 1020212223 24 2526 27 28 20 30 31 32 33 34 35 36 37 38 39 40
11112222333344444444333322221111

1368136813691368136886318631863186318631

Y 3518383716202917474777745572816282737362

This one is known from theory: it is a triangular distribution. A similar
result is obtained if one takes pair sums instead of differences.
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The Poisson distribution arises in time series when the probability of an
event occurring in an arbitrary interval is proportional to the length of the
interval, and independent of other events:
AI‘I
P(X =n)="re A
In 1898, Ladislaus von Bortkiewicz collected Prussian army data on the
number of soldiers killed by horse kicks in 10 cavalry units over 20 years:

122 deaths, or an average of 122/200 = 0.61 deaths per unit per year.

A = 061 Cavalry deaths by horse kick (1875--1894)
Deaths Kicks Kicks 120
(actual)  (Poisson) g 0 lambda = 0.61
0 109 108.7 E o
1 65 66.3 § 0
2 22 20.2 20
3 3 4.1 0-1 o 1 2 3 4 5
4 1 0.6 Deaths




Measurements of physical phenomena often form normal distributions:

0
-0.3
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Grains from average
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1250 2000
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Units in the last place

Error in erf(x)

5-4-3-2-1012 3 465
X

Error in erf(x), x on [-5,5]

Units in the last place

Error in gamma(x)
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Error in log(x)

Error in log(x), x on (0..10]
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quincunx, n.

2. An arrangement or disposition of five objects so placed that four
occupy the corners, and the fifth the centre, of a square or other rectangle;
a set of five things arranged in this manner.

b. spec. as a basis of arrangement in planting trees, either in a single set
of five or in combinations of this; a group of five trees so planted.

Oxford English Dictionary



Y

For simulations and other material on the quincunx (Galton's bean
machine), see:

@ http://www.ms.uky.edu/ "mai/java/stat/GaltonMachine.html
@ http://www.rand.org/statistics/applets/clt.html
@ http://www.stattucino.com/berrie/dsl/Galton.html

@ http://teacherlink.org/content/math/interactive/
flash/quincunx/quincunx.html

@ http://www.bun.kyoto-u.ac.jp/ suchii/quinc.html
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Any one who considers arithmetical methods of producing
random numbers is, of course, in a state of sin.

— John von Neumann (1951)

[The Art of Computer Programming, Vol. 2,

Seminumerical Algorithms, 3rd ed., p. 1]

He talks at random; sure, the man is mad.
— Queen Margaret

[William Shakespeare's 1 King Henry VI,

Act V, Scene 3 (1591)]

A random number generator chosen

at random isn’'t very random.

— Donald E. Knuth (1997)

[The Art of Computer Programming, Vol. 2,
Seminumerical Algorithms, 3rd ed., p. 384]



O Linear-congruential generators (most common):
rant1 = (ar, + ¢) mod m, for integers a, ¢, and m, where 0 < m,
0<a<m 0<c< m, with starting value 0 < rp < m.
1 Fibonacci sequence (bad!):
fot1 = (fn+ ra—1) mod m.
O Additive (better): ryy1 = (rp—a + rp—p) mod m.
O Multiplicative (bad):
rnt1 = (fa—a X rp_g) mod m.
[ Shift register:
Fnik = fo:_()l(a;rn+; (mod 2)) (a; =0,1).



Given an integer r € [A,B), x =(r—A)/(B—A+1)ison [0,1).

However, interval reduction by A+ (r — A) mod s to get a distribution in
(A C), where s = (C — A+ 1), is possible only for certain values of s.
Consider reduction of [0, 4095] to [0, m|, with m € [1,9]: we get equal
distribution of remainders only for m = 29 — 1:

m counts of remainders k mod (m+1), k € [0, m]
OK 1 | 2048 2048
2| 1366 1365 1365
OK 3| 1024 1024 1024 1024
4 820 819 819 819 819
5| 683 683 683 683 682 682
6 586 585 585 585 585 585 585
OK 7 512 512 512 512 512 512 512 512
8 456 455 455 455 455 455 455 455 455
9 410 410 410 410 410 410 409 409 409 409




Samples from other distributions can usually be obtained by some suitable
transformation. Here is the simplest generator for the normal distribution,
assuming that randu() returns uniformly-distributed values on (0, 1]:

func randpmnd() \
{ ## Polar method for random deviates
## Algorithm P, p. 122, from Donald E. Knuth,
## The Art of Computer Programming, vol. 2, 3/e, 1998
while (1) \
{

vl 2 * randu() - 1 # v1 on [-1,+1]

v2 = 2 % randu() - 1 # v2 on [-1,+1]

s =vl *xvl +v2 *x v2 # s on [0,2]

if (s < 1) break # exit loop if s inside unit circle
}
return (vl * sqrt(-2 * 1ln(s) / s))



All pseudo-random number generators eventually reproduce the starting
sequence; the period is the number of values generated before this
happens.

Widely-used historical generators have periods of a few tens of thousands
to a few billion, but good generators are now known with very large
periods:

> 10 POSIX drand48() LCG (2%8) (1982),

> 10"  Marsaglia short and fast xorshift () (219?) (2003),

> 10 Numerical Recipes ran2() (1992),

> 103  NIST Advanced Encryption Standard (AES) (21%8) (2003),
> 10*°  Matlab’s rand () (~ 2'4°2 Columbus generator),

> 10289 Marsaglia's Monster-KISS (2000),

> 109901 Matsumoto and Nishimura's Mersenne Twister (1998),

> 10100 Deng and Xu (2003),

> 1016736 Berdnikov, Trutia, & Compagner MathLink (1996).



In computational applications with pseudo-random numbers, it is essential
to be able to reproduce a previous calculation. Thus, generators are
required that can be set to a given initial seed :

% hoc

for (k = 0; k < 3; ++k) \

{
setrand (12345)
for (n = 0; n < 10; ++n) print int(rand()*100000),""
println ""

}

88185 5927 13313 23165 64063 90785 24066 37277 55587 62319
88185 5927 13313 23165 64063 90785 24066 37277 55587 62319
88185 5927 13313 23165 64063 90785 24066 37277 55587 62319



If the seed is not reset, different sequences are obtained for each test run.
Here is the same code as before, with the setrand () call disabled:

for (k = 0; k < 3; ++k) \

{
## setrand(12345)
for (n = 0; n < 10; ++n) print int(rand()*100000),""
println ""

}

36751 37971 98416 59977 49189 85225 43973 93578 61366 54404
70725 83952 53720 77094 2835 5058 39102 73613 5408 190
83957 30833 75531 85236 26699 79005 65317 90466 43540 14295

In practice, software must have its own source-code implementation
of the generators: vendor-provided ones do not suffice.



Random numbers fall mainly in the planes
— George Marsaglia (1968)

Linear-congruential generators are known to have correlation of successive
numbers: if these are used as coordinates in a graph, one gets patterns,

instead of uniform grey:

Good

The number of points plotted is the same

in each graph.




The good generator is Matlab's rand (). Here is the bad generator:

% hoc
func badran() {
global A, C, M, r;
r = int(A*xr + C) % M;
return r }
M=2"16-1; A=2"7-1; C=2"5-1
0;r0=r ; s =-1; period = 0

o]
]

while (s != r0) {period++; s = badran(); print s, "" }
31 3968 12462 9889 10788 26660 ... 22258 8835 7998 0

# Show the sequence period
println period
175

# Show that the sequence repeats
for (k = 1; k <= 5; ++k) print badran(),""
31 3968 12462 9889 10788



Marsaglia's (2003) family of xor-shift generators:

y =y<<a;y =y>>b;y =y<c;
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When the endpoints of a floating-point uniform pseudo-random number
generator are uncertain, generate random integers in [Low,high]| like this:

func irand(low, high) \

# Ensure integer endpoints
low = int(low)
high = int(high)

# Sanity check on argument order
if (low >= high) return (low)

# Find a value in the required range
n=1low -1
while ((n < low) || (high < n)) \

n = low + int(rand() * (high + 1 - low))

return (n)

for (k = 1; k <= 20; ++k) print irand(-9,9), ""
-9-2-2-779-3048-3-947-78-3-48-4

for (k = 1; k <= 20; ++k) print irand(0, 1076), ""
986598 580968 627992 379949 700143 734615 361237
322631 116247 369376 509615 734421 321400 876989
940425 139472 255449 394759 113286 95688



% hoc
func bigrand() { return int(2°31 * rand()) }

# select(m,n): select m pseudo-random integers from (0,n) in order
proc select(m,n) \
{
mleft = m
remaining = n
for (i = 0; i < mn; ++i) \
{
if (int(bigrand() % remaining) < mleft) \
print i, ""
mleft--
}
remaining--
¥

println ""

See Chapter 12 of Jon Bentley, Programming Pearls, 2nd ed.,
Addison-Wesley (2000), ISBN 0-201-65788-0. [ACM TOMS 6(3),
359-364, September 1980].



Here is how the select () function works:

select(3,10)
567

select(3,10)
078

select(3,10)
256

select(3,10)
1567

select(10,100000)
7355 20672 23457 29273 33145 37562 72316 84442 88329 97929

select(10,100000)
401 8336 41917 43487 44793 56923 61443 90474 92112 92799



The n-element shuffle generator (Bays & Durham, 1976) increases the
period dramatically (Pshusiie & 1/ 710!/ (2Pgen)), and further randomizes
results:

unsigned long int shuffle_gen(void)
{
int k; static int do_init = 1; static unsigned long int s;
static unsigned long int buffer [MAXBUF + 1];
if (do_init)
{
for (k = 0; k <= MAXBUF; ++k)
buffer[k] = RANDQO;
s = RAND(Q); do_init = 0;
}
k (s >> 20) & Oxff; /* NB: assumes MAXBUF == 256 */
s = buffer[k];
buffer[k] = RAND();
return (s);



PERIOD = 2*%x32 - 1 # 4.29e+09
for (n = 100; n <= 1000; n += 100) \
printf ("%4d\t%.2e\n", \
n, sqrt(PI * factorial(n) / (2 * PERIOD)))
100 1.85e+74
200 5.37e+182
300 3.35e+302
400 4.84e+429
500 2.11e+562
600 2.15e+699
700 9.41e+839
800 5.31e+983
900 1.57e+1130
1000 1.21e+1279



Most tests are based on computing a x? measure of computed and
theoretical values.
If one gets values p < 1% or p > 99% for several tests, the
generator is suspect.
Several test packages are publicly available:

(J Marsaglia Diehard Battery test suite (1985): 15 tests.

(J Marsaglia/Tsang tuftest suite (2002): 3 tests.

1 Brown Dieharder suite (2004). 75+ tests.

0 L'Ecuyer/Simard TestUO01 suite (2007).

1 NIST special publication 800-22revla (2010).

All produce p values that can be checked for reasonableness.
Those tests all expect uniformly-distributed pseudo-random numbers.



How do you test a generator that produces pseudo-random numbers in
some other distribution? You have to figure out a way to use those values
to produce an expected uniform distribution that can be fed into the
standard test programs.

For example, take the negative log of exponentially-distributed values,
since — log(exp(—random)) = random.

For normal distributions, consider successive pairs (x, y) as a
2-dimensional vector, and express in polar form (r,0): 6 is then uniformly
distributed in [0, 277), and 6/ (277) is in [0, 1).



Just three tests instead of the fifteen of the Diehard suite:
O b'day test (generalization of Birthday Paradox).
O Euclid’'s (ca. 330-225BC) gcd test.

[ Gorilla test (generalization of monkey's typing random streams of
characters).



The birthday paradox arises from the question How many people do you
need in a room before the probability is at least half that two of
them share a birthday?

The answer is just 23, not 365/2 = 182.5.

The probability that none of n people is born on the same day is

P(1) =1
P(n) = P(n—1)x(365—(n—1))/365

The n-th person has a choice of 365 — (n — 1) days to not share a
birthday with any of the previous ones. Thus, (365 — (n— 1)) /365 is the
probability that the n-th person is not born on the same day as any of the
previous ones, assuming that they are born on different days.



Here are the probabilities that n people share a birthday (i.e., 1 — P(n)):

% hoc128
PREC = 3
p=1
for (n = 1;n <= 365;++n) \
{p *= (365-(n-1))/365; println n,1-p}

24 0.538

100 0.999999693

P(365) ~ 1.45 x 107157 [cf. 1080 particles in universe].
" Nelson H. F. Beebe (University of Utah) ~ Pseudo-random numbers 20 September 2017 61 / 68



This is the oldest surviving nontrivial algorithm in mathematics.

func ged(x,y) \
{ ## greatest common denominator of integer x, y
r = abs(x) % abs(y)
if (r == 0) return abs(y) else return gcd(y, r)
}

func lem(x,y) \

{ ## least common multiple of integer x,y
x = int(x)
y = int(y)
if ( (x==0) || (y ==0) ) return (0)
return ( (x * y) / gecd(x,y) )



Complete rigorous analysis of Euclid’s algorithm was not achieved until
1970-1990!
The average number of steps is

A(ged(x,y)) =~ ((12In2)/7%)Iny
1.9405 IOglo y

Q

and the maximum number is

M (ged(x,y)) = llogy ((3—¢)y)]

where ¢ = (1 ++/5)/2 ~ 1.6180 is the golden ratio.



When reproducibility is not needed (e.g., for random cryptographic keys),
fast hardware generators are of interest:

e Cryptographic accelerator boards (IBM, Sun/Oracle, ...)

@ Quantis PCl card (2004) (http://www.randomnumbers.info/)
863 328 405 985 310 188 300 795 5 886
84 210 411 664 264 438 221 561 756 152
617 652 112 316 551 102 682 2 851 425

@ New Intel hardware: RdRand for 16-, 32-, and 64-bit random values,
at a rate only about 15X slower than integer addition [IEEE
Spectrum September 2011]



Many flavors of Unix provide two pseudo-hardware devices to generate
unreproducible random-byte sequences from a kernel data pool that mixes
various sources of randomness (disk activity, machine load, network load,
temperature, voltage, ... ):

@ /dev/random: best choice for maximal randomness, but blocks
output until sufficient entropy is available (seconds, minutes, hours,

@ /dev/urandom: nonblocking, but with possible degradation of
randomness

The two devices produce random 8-bit bytes, not characters, so their
output is not directly printable without further processing.



Here is a Unix shell session producing random bytes in hexadecimal:

$ alias rng="dd ibs=1 count=16 if=/dev/random 2>/dev/null |
od -t x1 |
cut -4’ °’ -f 2- -s"
$ for £ in ‘seq 1 10° ; do rng ; done
01 d8 c1 62 £f 31 d3 96 d5 31 6¢ 9c ed d6 79 4d
c2 7e 56 38 bc 96 16 08 df Oc 29 bb 2c 25 7e 29
7b 6b c4 fO bO 5a b9 ec 39 45 eb ab 13 8c 7a 8d
47 b3 49 34 57 09 4c 90 e2 bl 9a 9¢c 9b b5 c9 e8
8a 71 9a 7c 3e c6 ce 4e 3b 2c 04 32 04 4f 35 £8
3b e7 42 ce 5f 05 79 2f 12 db 6b e5 fd 52 0Oa 13
bf £5 fe c3 43 8f 15 a4 a6 2f d7 63 58 ab 00 80
fb 5f 37 95 00 d7 7e 5c e8 43 b4 la e4 80 e8 04
47 62 9d fa 60 31 23 dO 4d d7 76 7b b5 44 56 05
29 10 03 bf 2b ba b9 3a 43 57 45 94 e7 14 c2 be



Debian/OpenSSL Fiasco
In 2006, in order to eliminate a Purify warning, a developer at Debian
removed a line of code from the randomness-initializer of OpenSSL as
shipped with Debian. This reduced the amount of true entropy for
initializing SSH keys to approximately 15 bits, or (in some realistic
scenarios) 0 bits.

— CCS 17 conference paper by Katherine Ye and others
https://doi.org/10.1145/3133956.3133974


https://doi.org/10.1145/3133956.3133974

There is a large bibliography about the generation and testing of
pseudo-random numbers here:

http://www.math.utah.edu/pub/tex/bib/prng.bib
http://www.math.utah.edu/pub/tex/bib/prng.html



