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[ Decision making (e.g., coin flip).
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[ Decision making (e.g., coin flip).

[ Generation of numerical test data.
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What are random numbers good for?

[ Decision making (e.g., coin flip).
[J Generation of numerical test data.

( Generation of unique cryptographic keys.
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What are random numbers good for?

[ Decision making (e.g., coin flip).
[ Generation of numerical test data.
[ Generation of unique cryptographic keys.

[ Search and optimization via random walks.
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What are random numbers good for?

Decision making (e.g., coin flip).

Generation of numerical test data.

Generation of unique cryptographic keys.

Search and optimization via random walks.

Selection: quicksort (C. A. R. Hoare, ACM Algorithm 64:
Quicksort, Comm. ACM. 4(7), 321, July 1961) was the first
widely-used divide-and-conquer algorithm to reduce an O(N?)
problem to (on average) O(NIg(N)). Cf. Fast Fourier Transform
(Gauss (1866) (Latin), Runge (1906), Danielson and Lanczos
(crystallography) (1942), Cooley and Tukey (1965)).

OO0 do
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Historical note: al-Khwarizmi

Abu 'Abd Allah Muhammad ibn Musa al-Khwarizmi (ca. 780-850) is the
father of algorithm and of algebra, from his book Hisab Al-Jabr wal
Mugabalah (Book of Calculations, Restoration and Reduction). He is
celebrated in a 1200-year anniversary Soviet Union stamp:

5 . -
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d Simulation.
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What are random numbers good for? ...

[ Simulation.

(O Sampling: unbiased selection of random data in statistical
computations (opinion polls, experimental measurements, voting,

Monte Carlo integration, ...). The latter is done like this (x is
random in (a, b)):

/é;bf(x)dx (

=

> +O(1/VN)
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Monte Carlo integration

Here is an example of a simple, smooth, and exactly integrable function,
and the relative error of its Monte Carlo integration:
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(d Computer numbers are rational, with limited precision and range.
Irrational and transcendental numbers are not represented.
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When is a sequence of numbers random?

(1 Computer numbers are rational, with limited precision and range.
Irrational and transcendental numbers are not represented.

[ Truly random integers would have occasional repetitions, but most
pseudo-random number generators produce a long sequence, called
the period, of distinct integers: these cannot be random.
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When is a sequence of numbers random?

O Computer numbers are rational, with limited precision and range.
Irrational and transcendental numbers are not represented.

 Truly random integers would have occasional repetitions, but most
pseudo-random number generators produce a long sequence, called
the period, of distinct integers: these cannot be random.

[ It isn't enough to conform to an expected distribution: the order that
values appear in must be haphazard.
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When is a sequence of numbers random?

O Computer numbers are rational, with limited precision and range.
Irrational and transcendental numbers are not represented.

 Truly random integers would have occasional repetitions, but most
pseudo-random number generators produce a long sequence, called
the period, of distinct integers: these cannot be random.

[ It isn't enough to conform to an expected distribution: the order that
values appear in must be haphazard.

( Mathematical characterization of randomness is possible, but difficult.

[ The best that we can usually do is compute statistical measures of
closeness to particular expected distributions.
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O Uniform (most common).
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QO Uniform (most common).
1 Exponential.
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Distributions of pseudo-random numbers

[ Uniform (most common).
(d Exponential.
[ Normal (bell-shaped curve).
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Distributions of pseudo-random numbers

Uniform (most common).

Exponential.

Normal (bell-shaped curve).

Logarithmic: if ran() is uniformly-distributed in (a, b), define
randl(x) = exp(xran()). Then arandl(In(b/a)) is logarithmically
distributed in (a, b). [Important use: sampling in floating-point
number intervals.]

Ooodod
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Distributions of pseudo-random numbers . ..

Sample logarithmic distribution:

% hoc
a=1
b

44426

Nelson H. F. Beebe (University of Utah)

1000000
for (k = 1; k <= 10; ++k) printf
664.
199327.
562773.
91652.
34.

472.

12.

2.
.83813202
28.

28612484
86997895
43156449
89169494
18748767
74816777
34092778
03900107

79498121

"%16.8f\n", a*randl(ln(b/a))
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Uniform distribution

Here are three ways to visualize a pseudo-random number distribution,
using the Dyadkin-Hamilton generator function rn01(), which produces
results uniformly distributed on (0, 1]:

Uniform Distribution

rn01()

) 2500

5000
output n

7500 10000

rn01()

1.0
0.8
0.6
0.4
0.2
0.0

Uniform Distribution

0 2500 5000

sorted n

7500

10000

count

Uniform Distribution Histogram
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100 fi
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0.2 0.4 06 08
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|
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Exponential distribution

Here are visualizations of computations with the Dyadkin-Hamilton
generator rnexp (), which produces results exponentially distributed on

[0, 00):

Exponential Distribution

rnexp()

0 2500

5000
output n

7500 10000

rnexp()

Exponential Distribution

2500 5000

sorted n

7500

10000

count

1000
800
600
400
200

Exponential Distribution Histogram

Even though the theoretical range is [0, ), the results are practically
always modest: the probability of a result as big as 50 is smaller than
2 x 10722, At one result per microsecond, it could take 164 million years
of computing to encounter such a value!
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Normal distribution

Here are visualizations of computations with the Dyadkin-Hamilton
generator rnnorm(), which produces results normally distributed on
(—o0, +00):

Normal Distribution Normal Distribution Normal Distribution Histogram

4 400

2 350

2 300

g g 1 = 250
5 5 0 3 200
g = A S 150
2 100

-3 50

-4 0

0 2500 5000 7500 10000 0 2500 5000 7500 10000 -

output n sorted n

Results are never very large: a result as big as 7 occurs with probability
smaller than 5 x 10723, At one result per microsecond, it could take
757 million years of computing to encounter such a value.
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Logarithmic distribution

Here are visualizations of computations with the hoc generator

randl (1n(1000000) ), which produces results normally distributed on
(1,1000000):

Logarithmic Distribution

Logarithmic Distribution Logarithmic Distribution Histogram
1000000

800000
600000
400000
200000

randI()
randl()
count

0 2500 5000 7500 10000
output n

0
0 2500 5000 7500 10000
sorted n

The graphs are similar to those for the exponential distribution, but here,
the result range is controlled by the argument of randl ().
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Goodness of fit: the x? measure

Given a set of n independent observations with measured values My and
expected values Eg, then Y7 _; [(Ex — My)| is a measure of goodness of
fit. Sois Y7_; (Ex — My)?. Statisticians use instead a measure introduced
in 1900 by one of the founders of modern statistics, the English
mathematician Karl Pearson (1857-1936):

n 2
2 (Ex — My)
X° measure = Z -
k=1 Ex
Equivalently, if we have s categories expected to occur

with probability pk, and if we take n samples, counting
the number Yj in category k, then

s —Y, 2
x? measure = ) (npx = Yi)®
k=1 NPk

(1880)

Nelson H. F. Beebe (University of Utah)
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Goodness of fit: the x? measure . ..

The theoretical x? distribution depends on the number of degrees of

freedom, and table entries look like this (highlighted entries are referred to
later):

D.o.f. pP = 1% P = 5% P = 25% P = 50% pP = 75% P = 95% P = 99%
v=1 0.00016 0.00393 0.1015 0.4549 1.323 3.841 6.635
v=>5 0.5543 1.1455  2.675 4.351 6.626 11.07 15.09

v=10 2558 3940 6.737 9.342 12.55 18.31 23.21
v =250 20.71 3476  42.94 49.33 56.33 67.50 76.15

For example, this table says:

For v = 10, the probability that the x? measure
is no larger than 23.21 is 99%.

In other words, x> measures larger than 23.21
should occur only about 1% of the time.
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Goodness of fit: coin-toss experiments

Coin toss has one degree of freedom, v = 1, because if it is not heads,
then it must be tails.

% hoc
for (k = 1; k <= 10; ++k) print randint(0,1), ""
0111000010

This gave four 1s and six Os:

(10 x 0.5 — 4)2 + (10 x 0.5 — 6)2

2 =
X° measure 10 %< 05

2/5
0.40
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Goodness of fit: coin-toss experiments . ..

From the table, for ¥ =1, we expect a x> measure no larger than
0.4549 half of the time, so our result is reasonable.
On the other hand, if we got nine 1s and one 0, then we have

(10 x 0.5 —9)2+ (10 x 0.5 — 1)2
10 x 0.5

X% measure =

= 32/5
6.4

This is close to the tabulated value 6.635 at p = 99%. That is,

we should only expect nine-of-a-kind about once in every

100 experiments.

If we had all 1s or all Os, the x> measure is 10 (probability p = 0.998)
[twice in 1000 experiments].

If we had equal numbers of 1s and Os, then the x? measure is 0, indicating
an exact fit.
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Goodness of fit: coin-toss experiments . ..

Let's try 100 similar experiments, counting the number of 1s in each
experiment:

% hoc
for (n = 1; n <= 100; ++n) {
sum = 0O
for (k = 1; k <= 10; ++k) \
sum += randint(0,1)
print sum, ""

+
44735552566636674545514
366953454445 4554635534
472653656762535557873T7
84277335473624514550526F6
565548775545
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Goodness of fit: coin-toss experiments . ..

The measured frequencies of the sums are:

100 experiments

k 0 1 2 3 4 5 6 7 8 9 10

113 1 1
Yy 015 2 9 16 2 3

Notice that nine-of-a-kind occurred once each for Os and 1s, as predicted.

10
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Goodness of fit: coin-toss experiments . ..

A simple one-character change on the outer loop limit produces the next
experiment:

1000 experiments

k 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
1 2 5 4 3 2 1 1
Y, 1233876491 3 1 18 07 6 1 10
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Goodness of fit: coin-toss experiments

Another one-character change gives us this:

10000 experiments
k 30313233343536373839404142434445464748495051525354555657 585960616263 646566676869 70

1224456778776544221
1238962928866905 2571905
003177270598450483694568903870
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Goodness of fit: coin-toss experiments . ..

A final one-character change gives us this result for one million coin tosses:

100000 experiments

k 30313233343536373839404142434445464748495051525354 555657 585960616263 64 656667686970
112334567887 76543321
124806219865312816679025964211
1347141083518808212270046214957540432
Yy 14247082826392709703781740292464471737155
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Are the digits of 71 random?

Here are x? results for the digits of 7 from recent computational records

(x*(v = 9,p = 0.99) ~ 21.67 ):

T 1/
Digits Base 7(2 p(x?) Digits Base XZ p(x?)
6B 10 9.00 0.56 6B 10 5.44 0.21
50B 10 5.60 0.22 50B 10 7.04 0.37
200B 10 8.09 0.47 200B 10 4.18 0.10
1T 10 14.97 0.91
1T 16 7.94 0.46

Whether the fractional digits of 7z, and most other transcendentals, are
normal (/= equally likely to occur) is an outstanding unsolved problem in
mathematics.

Nelson H. F. Beebe (University of Utah)
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The Central-Limit Theorem

The famous ' Central-Limit Theorem (de Moivre (1718), Laplace
(1810), and Cauchy (1853)), says:

A suitably normalized sum of independent random variables

is likely to be normally distributed, as the number of vari-

ables grows beyond all bounds. It is not necessary that the

variables all have the same distribution function or even that
they be wholly independent.

— 1. S. Sokolnikoff and R. M. Redheffer

Mathematics of Physics and Modern Engineering, 2nd ed.
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The Central-Limit Theorem . ..

In mathematical terms, this is

P(ny+r1ﬁ<X1+X2+---+XnSny+rzﬁ)

exp (—t2/(20?))dt

0\/271

where the X are independent, |dent|ca||y distributed, and bounded
random variables, y is their mean value, o is their standard deviation,
and 02 is their variance.
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The Central-Limit Theorem . ..

The integrand of this probability function looks like this:

The Normal Distribution

2.0

15|

1.0 ¢

Normal(x)

0.5 ¢

0=0.2
0=05
0=1.0
0=2.0
0=5.0

0.0
-10.0

5.0

10.0
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The Central-Limit Theorem . ..

The normal curve falls off very rapidly. We can compute its area in
[—x, +x] with a simple midpoint quadrature rule like this:

func £(x) {
global sigma;
return (1/(sigma*sqrt(2*PI)))* exp(-x*x/(2*sigma**2))

+

func q(a,b) {
n = 10240
h=(b-a)/n
area = 0

for (k = 0; k < n; ++k) \
area += hxf(a + (k + 0.5)*h);
return area
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The Central-Limit Theorem . ..

sigma = 3

for (k = 1; k < 8; ++k) \

printf "%d %.9f\n", k, q(-k*sigma,k*sigma)
.682689493

.954499737

.997300204

.999936658

.999999427

.999999998

.000000000

~N O O W N
_ O O O O O O

In computer management, 99.999% (five 9’s) availability is

five minutes downtime per year.

In manufacturing, Motorola's 6¢ reliability with 1.5¢ drift is about
three defects per million (from g(—(6 — 1.5) x 0, +(6 — 1.5) x ) /2).
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The Central-Limit Theorem

It is remarkable that the Central-Limit Theorem applies also to nonuniform
distributions. Here is a demonstration with sums from exponential and
normal distributions:

Sums from Exponential Distribution Sums from Normal Distribution

700 " " 700

600 | ] 600 |

500 1 500
% 400 | ‘% 400 |
8 300 t ] S8 300 t

200 f ] 200 |

100 1 100 1

0 0 !
5 10 15 20 5 10 15 20
Sum of 10 samples Sum of 10 samples

Superimposed on the histograms are rough fits by eye of normal
distribution curves 650 exp(—(x — 12.6)?/4.7) and
550 exp(—(x — 13.1)2/2.3).
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The Central-Limit Theorem

Not everything looks like a normal distribution. Here is a similar
experiment, using differences of successive pseudo-random numbers,
bucketizing them into 40 bins from the range [—1.0, +1.0]:

10000 experiments (counts scaled by 1/100)

1234567 8 91011121314151617 18192021 222324 25262728293031 323334 353637383940

11112222333344444444333322221111
1368136813691368136886318631863186318631
Yi 3518383716202917474777745572816282737362

This one is known from theory: it is a triangular distribution. A similar
result is obtained if one takes pair sums instead of differences.

Nelson H. F. Beebe (University of Utah)
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Digression: Poisson distribution

The Poisson distribution arises in time series when the probability of an
event occurring in an arbitrary interval is proportional to the length of the
interval, and independent of other events:
/\n
P(X =n) = e A
In 1898, Ladislaus von Bortkiewicz collected Prussian army data on the
number of soldiers killed by horse kicks in 10 cavalry units over 20 years:

122 deaths, or an average of 122/200 = 0.61 deaths per unit per year.

)L = 061 Cavalry deaths by horse kick (1875--1894)
Deaths Kicks Kicks 120
(actual)  (Poisson) 5 8 [Exiie = @
0 109 108.7 s o
1 65 66.3 E 40
2 22 20.2 20
3 3 4.1 L0 1 2 3 a4 s
4 1 0.6 Deaths
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The Central-Limit Theorem

Measurements of physical phenomena often form normal distributions:

1250

Chest girth of Scottish soldiers (1817)

1000
750
500
250

Count of soldiers

0
32 34 36 38 40 42 44 46
Inches

48

Count of soldiers

1500

1000

500

Height of French soldiers (1851--1860)
2000

56 58 60 62 64 66 68 70
Inches

Count of coins

Weights of 10,000 gold sovereigns (1848)

4000

3000

2000

1000

0
-03 -02 -01 00 01 02 03

Grains from average
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The Central-Limit Theorem

Error in erf(x)

1.0

Units in the last place

-1.0

X

5-4-3-2-1012 3 405

Error in erf(x), x on [-5,5]

Error in gamma(x)

Units in the last place

012 3 456 7 8 910
X

w
‘© 800
o
[ =
S 600 0=0.22
o
=4
2 400
S
€ 200
3
o
© o0
-1.0 -0.5 0.0 0.5 1.0
Units in the last place
Error in gamma(x), x on [0..10]
£ 2500
8
< 2000 0=23.68
(=}
8 1500
=
S 1000
S 500
o
o 0

=il

;10 -5 0 5 10 15
Units in the last place
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The Central-Limit Theorem

Units in the last place

Error in log(x)

012 3 456 7 8 910

X

Error in log(x), x on (0..10]

Units in the last place

Error in sin(x)

Nelson H. F. Beebe (University of Utah)

«» 700
S 600
§ 500 =022
S 400
2 300
S 200
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3 100
© o0

-1.0 -0.5 0.0 0.5 1.0

Units in the last place
Error in sin(x), x on [0..2m)

v
r_g 400
2 0=0.19
S 300
o
=
2 200
S
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o
O 0
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The Normal Curve and Carl-Friedrich GauB (1777-1855)
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The Normal Curve and the Quincunx

quincunx, n.

2. An arrangement or disposition of five objects so placed that four
occupy the corners, and the fifth the centre, of a square or other rectangle;
a set of five things arranged in this manner.

b. spec. as a basis of arrangement in planting trees, either in a single set
of five or in combinations of this; a group of five trees so planted.

Oxford English Dictionary
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The Normal Curve and the Quincunx . ..

IS i
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
Bl 1

For simulations and other material on the quincunx (Galton's bean
machine), see:

@ http://www.ms.uky.edu/ "mai/java/stat/GaltonMachine.html
@ http://www.rand.org/statistics/applets/clt.html
@ http://www.stattucino.com/berrie/dsl/Galton.html

@ http://teacherlink.org/content/math/interactive/
flash/quincunx/quincunx.html

@ http://www.bun.kyoto-u.ac.jp/ suchii/quinc.html
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Remarks on random numbers

Any one who considers arithmetical methods of producing
random numbers is, of course, in a state of sin.

— John von Neumann (1951)

[The Art of Computer Programming, Vol. 2,

Seminumerical Algorithms, 3rd ed., p. 1]

He talks at random; sure, the man is mad.
— Queen Margaret

[William Shakespeare's 1 King Henry VI,

Act V, Scene 3 (1591)]

A random number generator chosen

at random isn’t very random.

— Donald E. Knuth (1997)

[The Art of Computer Programming, Vol. 2,
Seminumerical Algorithms, 3rd ed., p. 384]
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O Linear-congruential generators (most common):

fn+1 = (ar, + ¢) mod m, for integers a, ¢, and m, where 0 < m,

0<a<m0<c< m, with starting value 0 < rp < m.
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How do we generate pseudo-random numbers?

[ Linear-congruential generators (most common):
rn+1 = (ar, + ¢) mod m, for integers a, ¢, and m, where 0 < m,
0<a<m0< c< m, with starting value 0 < rp < m.

[ Fibonacci sequence (bad!):
fnt1 = (rn+ rn—1) mod m.
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How do we generate pseudo-random numbers?

[ Linear-congruential generators (most common):
rn+1 = (ar, + ¢) mod m, for integers a, ¢, and m, where 0 < m,
0<a<m0< c< m, with starting value 0 < rp < m.

[ Fibonacci sequence (bad!):
ro+1 = (fn+ ra—1) mod m.
O Additive (better): rpy1 = (rp—a + ro—p) mod m.
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How do we generate pseudo-random numbers?

[ Linear-congruential generators (most common):
rn+1 = (ar, + ¢) mod m, for integers a, ¢, and m, where 0 < m,
0<a<m0< c< m, with starting value 0 < rp < m.

[ Fibonacci sequence (bad!):

fnt1 = (rn+ rn—1) mod m.
O Additive (better): rpr1 = (rp—a + r,,,[;) mod m.
[ Multiplicative (bad):

rnt1 = (fn—a X r,—g) mod m.
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How do we generate pseudo-random numbers?

[ Linear-congruential generators (most common):
rn+1 = (ar, + ¢) mod m, for integers a, ¢, and m, where 0 < m,
0<a<m0< c< m, with starting value 0 < rp < m.
[ Fibonacci sequence (bad!):
fnt1 = (rn+ rn—1) mod m.
O Additive (better): rpy1 = (ra—a + rp—p) mod m.
[ Multiplicative (bad):
rnt1 = (fn—a X r,—g) mod m.
( Shift register:
Fork = Lio (aifatri (mod 2))  (a; =0,1).
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How do we generate pseudo-random numbers?

Given an integer r € [A,B), x=(r—A)/(B—A+1)ison [0,1).
However, interval reduction by A+ (r — A) mod s to get a distribution in
(A, C), where s = (C — A+ 1), is possible only for certain values of s.
Consider reduction of [0,4095] to [0, m], with m € [1,9]: we get equal
distribution of remainders only for m = 29 — 1:

m counts of remainders k mod (m+1), k € [0, m]
OK 1 | 2048 2048
2 | 1366 1365 1365
OK 3| 1024 1024 1024 1024
4 820 819 819 819 819
5 683 683 683 683 682 682
6 586 585 585 585 585 585 585
oK 7 512 512 512 512 512 512 512 512
8 456 455 455 455 455 455 455 455 455
9 410 410 410 410 410 410 409 409 409 409
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How do we generate pseudo-random numbers? ...

Samples from other distributions can usually be obtained by some suitable
transformation. Here is the simplest generator for the normal distribution,
assuming that randu() returns uniformly-distributed values on (0, 1]:

func randpmnd() \

{ ## Polar method for random deviates
## Algorithm P, p. 122, from Donald E. Knuth,
## The Art of Computer Programming, vol. 2, 3/e, 1998
while (1) \

{

vl = 2xrandu() - 1 # vl on [-1,+1]

v2 = 2%randu() - 1 # v2 on [-1,+1]

s = vixvl + v2%xv2 # s on [0,2]

if (s < 1) break # exit loop if s inside unit circle
}
return (vl * sqrt(-2*1n(s)/s))

}
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Period of a sequence

All pseudo-random number generators eventually reproduce the starting
sequence; the period is the number of values generated before this
happens.

Widely-used historical generators have periods of a few tens of thousands

to a few billion, but good generators are now known with very large
periods:
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Period of a sequence

All pseudo-random number generators eventually reproduce the starting
sequence; the period is the number of values generated before this
happens.

Widely-used historical generators have periods of a few tens of thousands

to a few billion, but good generators are now known with very large
periods:

> 10%°  Matlab's rand () (=~ 21492: Columbus generator),
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Period of a sequence

All pseudo-random number generators eventually reproduce the starting
sequence; the period is the number of values generated before this
happens.

Widely-used historical generators have periods of a few tens of thousands

to a few billion, but good generators are now known with very large
periods:

> 10*9  Matlab’s rand () (= 2492: Columbus generator),
> 10289 Marsaglia's Monster-KISS (2000),
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Period of a sequence

All pseudo-random number generators eventually reproduce the starting
sequence; the period is the number of values generated before this
happens.

Widely-used historical generators have periods of a few tens of thousands
to a few billion, but good generators are now known with very large
periods:

> 10*9  Matlab’s rand () (= 2492: Columbus generator),

> 10289 Marsaglia's Monster-KISS (2000),

> 100001 Matsumoto and Nishimura's Mersenne Twister (1998) (used
in hoc), and
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Period of a sequence

All pseudo-random number generators eventually reproduce the starting
sequence; the period is the number of values generated before this
happens.

Widely-used historical generators have periods of a few tens of thousands
to a few billion, but good generators are now known with very large
periods:

> 10*9  Matlab’s rand () (= 2492: Columbus generator),

> 10289 Marsaglia's Monster-KISS (2000),

> 10°0°1  Matsumoto and Nishimura's Mersenne Twister (1998) (used
in hoc), and

> 1014190 Deng and Xu (2003).
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Reproducible sequences

In computational applications with pseudo-random numbers, it is essential
to be able to reproduce a previous calculation. Thus, generators are
required that can be set to a given initial seed :

% hoc

for (k = 0; k < 3; ++k) \

{
setrand (12345)
for (n = 0; n < 10; ++n) print int(rand()*100000),""
println ""

}

88185 5927 13313 23165 64063 90785 24066 37277 55587 62319
88185 5927 13313 23165 64063 90785 24066 37277 55587 62319
88185 5927 13313 23165 64063 90785 24066 37277 55587 62319
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Reproducible sequences ...

If the seed is not reset, different sequences are obtained for each test run.
Here is the same code as before, with the setrand () call disabled:

for (k = 0; k < 3; ++k) \

{
## setrand(12345)
for (n = 0; n < 10; ++n) print int(rand()*100000),""
println ""

+

36751 37971 98416 59977 49189 85225 43973 93578 61366 54404
70725 83952 53720 77094 2835 5058 39102 73613 5408 190
83957 30833 75531 85236 26699 79005 65317 90466 43540 14295

In practice, software must have its own source-code implementation
of the generators: vendor-provided ones do not suffice.
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The correlation problem

Random numbers fall mainly in the planes
— George Marsaglia (1968)

Linear-congruential generators are known to have correlation of successive

numbers: if these are used as coordinates in a graph, one gets patterns,

instead of uniform grey:

Good

The number of points plotted is the same

Nelson H. F. Beebe (University of Utah)
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The correlation problem . ..

The good generator is Matlab's rand (). Here is the bad generator:

% hoc

func badran() {
global A, C, M, r;
r = int(A*r + C) % M;
return r }

M=2"16-1; A=2"7-1; C=2"5-1
r=0;r0=r; s=-1; period =0
while (s != r0) {period++; s = badran(); print s, "" }

31 3968 12462 9889 10788 26660 ... 22258 8835 7998 0

# Show the sequence period
println period
175

# Show that the sequence repeats
for (k = 1; k <= 5; ++k) print badran(),""
31 3968 12462 9889 10788
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The correlation problem

Marsaglia's (2003) family of xor-shift generators:

y "=y <K a;y =y >>b;y =y<c;
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Generating random integers

When the endpoints of a floating-point uniform pseudo-random number
generator are uncertain, generate random integers in [low,high] like this:

func irand(low, high) \

{
# Ensure integer endpoints
low = int(low)
high = int(high)

# Sanity check on argument order
if (low >= high) return (low)

# Find a value in the required range
n =1low - 1
while ((n < low) || (high < n)) \
n = low + int(rand() * (high + 1 - low))

return (n)

<= 20; ++k) print irand(-9,9), ""
9-3048-3-947-78-3-48-4

o~

for (k = 1; k <= 20; ++k) print irand(0, 1076), ""
986598 580968 627992 379949 700143 734615 361237
322631 116247 369376 509615 734421 321400 876989
940425 139472 255449 394759 113286 95688
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Generating random integers in order

% hoc
func bigrand() { return int(2°31 * rand()) }

# select(m,n): select m pseudo-random integers from (0,n) in order
proc select(m,n) \
{
mleft = m
remaining = n
for (i = 0; i < nj; ++i) \
{
if (int(bigrand() % remaining) < mleft) \
{

print i, ""
mleft--
+

remaining--

println ""

See Chapter 12 of Jon Bentley, Programming Pearls, 2nd ed.,
Addison-Wesley (2000), ISBN 0-201-65788-0. [ACM TOMS 6(3),
359-364, September 1980].
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Generating random integers in order ...

Here is how the select () function works:

select(3,10)
567

select(3,10)
078

select(3,10)
256

select(3,10)
157

select(10,100000)
7355 20672 23457 29273 33145 37562 72316 84442 88329 97929

select(10,100000)
401 8336 41917 43487 44793 56923 61443 90474 92112 92799
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Testing pseudo-random number generators

Most tests are based on computing a x2 measure of computed and
theoretical values.

If one gets values p < 1% or p > 99% for several tests, the
generator is suspect.

Marsaglia Diehard Battery test suite (1985): 15 tests.
Marsaglia/Tsang tuftest suite (2002): 3 tests.

All produce p values that can be checked for reasonableness.

These tests all expect uniformly-distributed pseudo-random numbers.
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Testing nonuniform pseudo-random number generators

How do you test a generator that produces pseudo-random numbers in
some other distribution? You have to figure out a way to use those values
to produce an expected uniform distribution that can be fed into the
standard test programs.

For example, take the negative log of exponentially-distributed values,
since — log(exp(—random)) = random.

For normal distributions, consider successive pairs (x,y) as a
2-dimensional vector, and express in polar form (r,0): 6 is then uniformly
distributed in [0,277), and 6/(27) is in [0, 1).
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The Marsaglia/Tsang tuftest tests

Just three tests instead of the fifteen of the Diehard suite:

[ b’'day test (generalization of Birthday Paradox).
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The Marsaglia/Tsang tuftest tests

Just three tests instead of the fifteen of the Diehard suite:

[ b'day test (generalization of Birthday Paradox).
(1 Euclid’s (ca. 330-225BC) gcd test.
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The Marsaglia/Tsang tuftest tests

Just three tests instead of the fifteen of the Diehard suite:

[ b'day test (generalization of Birthday Paradox).
1 Euclid's (ca. 330-225BC) ged test.

[ Gorilla test (generalization of monkey's typing random streams of
characters).
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Digression: The Birthday Paradox

The birthday paradox arises from the question How many people do you
need in a room before the probability is at least half that two of
them share a birthday?

The answer is just 23, not 365/2 = 182.5.

The probability that none of n people are born on the same day is

P(1) = 1

P(n) = P(n—1)x(365—(n—1))/365
The n-th person has a choice of 365 — (n — 1) days to not share a
birthday with any of the previous ones. Thus, (365 — (n—1))/365 is the

probability that the n-th person is not born on the same day as any of the
previous ones, assuming that they are born on different days.
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Digression: The Birthday Paradox ...

Here are the probabilities that n people share a birthday (i.e., 1 — P(n)):

% hoc128
PREC = 3
p=1
for (n = 1;n <= 365;++n) \
{p *= (365-(n-1))/365; println n,1-p}

0274
0820
0164

10
2 0.0
3 0.0
4 0.

22 0.476
23 0.507

24 0.538

100 0.999999693

P(365) =2 1.45 x 107157 [cf. 108 particles in universe].
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Digression: Euclid's algorithm (ca. 300BC)

This is the oldest surviving nontrivial algorithm in mathematics.

func ged(x,y) \
{ ## greatest common denominator of integer x, y
r = abs(x) % abs(y)

if (r == 0) return abs(y) else return gcd(y, r)
}

func lem(x,y) \

{ ## least common multiple of integer x,y
x = int(x)
y = int(y)
if ((x ==0) || (y == 0)) return (0)
return ((x * y)/gcd(x,y))
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Digression: Euclid’s algorithm . ..

Complete rigorous analysis of Euclid’s algorithm was not achieved until

1970-1990!
The average number of steps is

Aged(x,y)) ~ ((12In2)/7%)Iny
1.9405 IOglO y

Q

and the maximum number is
M (ged(x,y)) = |logg ((3—¢)y)]

where ¢ = (1 + /5)/2 ~ 1.6180 is the golden ratio.
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