of code

Pseudorandom humbers? a line at a

mostly

time

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155S 1400 ERM 233
Salt Lake City, UT 84112-0090
USA

Email: beebe@math.utah.edu, beebe@acm.org,
beebe@computer.org (Internet)
WWW URL: http://www.math.utah.edu/~beebe
Telephone; +1 801 581 5254
FAX: +1) 8011 (581 4148

27 April 2004

What are random numbers good for?

Decision making (e.g., coin flip).

Generation of numerical test data.

Generation of unique cryptographic keys.

Search and optimization via random walks.

Selection: quicksort (C. A. R. Hoare, ACM Algo-
vithm 64: Quicksort, Comm. ACM. 4(7), 321,
July 1961) was the first widely-used divide-and-
conquer algorithm to reduce an @(N?) problem to
(on average) O(N1g(N)). Cf. Fast Fourier Trans-
form (Gauss 1866 (Latin), Runge 1906, Danielson
and Lanczos (crystallography) 1942, Cooley-Tukey
1965).

Historical note: al-Khwarizmi

Abu 'Abd Allah Muhammad ibn Musa al-Khwarizmi (ca.
780-850) is the father of algorithm and of algebra,
from his book Hisab Al-Jabr wal Mugabalah (Book of
Calculations, Restoration and Reduction). He is cele-
brated in a 1200-year anniversary Soviet Union stamp:

QUOUIADD CCCE

.Y
29,8,9,¢
0t

@
'al A

. i
gl

Bea
b D 7

riy
000,080,080,

n ¥
b

What are random numbers good for? [cont.]

[] Simulation.

[1 Sampling: unbiased selection of random data in
statistical computations (opinion polls, experimen-
tal measurements, voting, Monte Carlo integration,

...). The latter is done like this (xj is random in
(a,b)):

b
Ja £(x)dx ~ ((b 4) Z Fx k)) +0(1/VN)

Monte Carlo integration

Here is an example of a simple, smooth, and exactly
integrable function, and the relative error of its Monte
Carlo integration.

f(x) = Usqri(x> + ¢?) [c = 5]

0.200 —— —
0.150 1
0.100]

0.050 ¢

f(x)

0.000 b———
10-8-6-4-20 2 4 6 810
N

Convergence of Monte Carlo integration

log(RelErr)
Yo dhAdbN Lo

Convergence of Monte Carlo integration

log(RelErr)

NS hAON ko

When is a sequence of numbers random?

[]

Computer numbers are rational, with limited pre-
cision and range. Irrational and transcendental
numbers are not represented.

Truly random integers would have occasional rep-
etitions, but most pseudo-random number gener-
ators produce a long sequence, called the period,
of distinct integers: these cannot be random.

It isn’t enough to conform to an expected distri-
bution: the order that values appear in must be
haphazard.

Mathematical characterization of randomness is
possible, but difficult.

The best that we can usually do is compute statis-
tical measures of closeness to particular expected
distributions.

Distributions of pseudo-random numbers

[1 Uniform (most common).

[1 Exponential.

[0 Normal (bell-shaped curve).

[l Logarithmic: if ran() is uniformly-distributed in
(a,b), define randl(x) = exp(xran()). Then
arandl(In(b/a)) is logarithmically distributed in
(a,b). [Used for sampling in floating-point num-
ber intervals.]

Distributions of pseudo-random numbers [cont.]

Sample logarithmic distribution:

% hoc
a =1
b = 1000000

for (k = 1; k <= 10; ++k) \
printf "%16.8f\n", a*randl(ln(b/a))
664.28612484
199327.86997895
562773.43156449
91652.89169494
34.18748767
472 .74816777
12.34092778
2.03900107
44426.83813202
28.79498121

Uniform distribution

Uniform Distribution

=1
o
£
0 2500 5000 7500 10000
output n
Uniform Distribution
1.0
0.8 1 1
< 06 | 1
i
o
E 04 ¢ |
0.2 1
0.0
0 2500 5000 7500 10000
sorted n
Uniform Distribution Histogram
150
200 fllrindtann o i i eo BT B Dl DK
c
>
o
o
50
0

0.0 0.2 0.4 0.6 0.8 1.0

Exponential distribution

Exponential Distribution

rnexp()

0 2500 5000 7500 10000
output n

Exponential Distribution
10

rnexp()

o N B~ OO ©

0 2500 5000 7500 10000
sorted n

Exponential Distribution Histogram
1000

800 i 1
600
400
200

count

Normal distribution

rnnorm()

Normal Distribution

2500 5000 7500 10000
output n

rnnorm()

Normal Distribution

2500 5000 7500 10000
sorted n

count

400
350
300
250
200
150
100

50

Normal Distribution Histogram

-3

2 -1 0 1 2 3 4

11

Logarithmic distribution

Logarithmic Distribution
1000000 s ST A S A
L
800000 e
S 600000
2
© 400000
200000
0
0 2500 5000 7500 10000
output n
Logarithmic Distribution
1000000
800000 r
S 600000 1
2
© 400000 ¢ 1
200000 1
O "
0 2500 5000 7500 10000
sorted n
Logarithmic Distribution Histogram
500
400 1
£ 300 1
3
S 200 1
100 1
0 Wmmﬂmm{mm
50 100 150 200 250
X

12

Goodness of fit: the x2 measure

Given a set of n independent observations with mea-
sured values My and expected values Ey, then > _; [(Ex—
M;j.)| is @ measure of goodness of fit. So is Z};‘:l(Ek —
Mj)?. Statisticians use instead a measure introduced
by Pearson (1900):

n 2
E, — M

X° measure = > (Ex = My)

k=1 E

Equivalently, if we have s categories expected to occur
with probability pj, and if we take n samples, counting
the number Y} in category k, then

S

npy — Yi)?
X° measure = > (py = Yi)
k=1 Pk

The theoretical x2 distribution depends on the number
of degrees of freedom, and table entries look like this
(boxes entries are referred to later):

13

Goodness of fit: the x2 measure [cont.]

D.o.f. p=1% p=5% p=25%p =50%p =75%p =95%p = 99%
v=1 0.000160.00393 0.1015 | 0.4549| 1.323 3.841 |6.635
V=5 0.5543 1.1455 2.675 4.351 6.626 11.07 15.09
v =10 2.558 3.940 6.737 9.342 12.55 18.31 |23.21
v =50 29.71 34.76 4294 49.33 56.33 67.50 76.15

This says that, e.qg., for v = 10, the probability that
the x2 measure is no larger than 23.21 is 99%.

For example, coin toss has v = 1: if it is not heads,
then it must be tails.

for (k = 1; k <= 10; ++k) print randint(0,1), ""
0111000010

This gave four 1s and six Os:

(10 X 0.5 —4)2 + (10 X 0.5 — 6)2
10 x 0.5

X2 measure =
= 2/5
= 0.40

14

Goodness of fit: the x2 measure [cont.]

From the table, we expect a x2 measure no larger than
0.4549 half of the time, so our result is reasonable.

On the other hand, if we got nine 1s and one 0, then
we have

(10X 0.5-9)2 + (10 x 0.5 —1)2
10 x 0.5

X2 measure =
= 32/5
= 6.4
This is close to the tabulated value 6.635 at p = 99%.

That is, we should only expect nine-of-a-kind about
once in every 100 experiments.

If we had all 1s or all Os, the x2 measure is 10 (proba-
bility p = 0.998).

If we had equal numbers of 1s and Os, then the x?
measure is 0, indicating an exact fit.

15

Goodness of fit: the x2 measure [cont.]

Let’s try 100 similar experiments, counting the number
of 1s in each experiment:

for (n = 1; n <= 100; ++n) {sum = 0
for (k = 1; k <= 10; ++k) sum += randint(0,1)

print sum, ""}

4 47 3555256663667 454554
3669534544454554635534
4726536567625355578737
84277335473624514555¢606
565548775545

The measured frequencies of the sums are:

100 experiments

16

Goodness of fit: the x2 measure [cont.]

Notice that nine-of-a-kind occurred once each for Os

and 1s, as predicted.

A simple one-character change on the outer loop limit
produces the next experiment:

1000 experiments

k 35363738394041424344454647484950515253545556575859606162636465
11254667 898755243211
Yi 12338764913229434649931T18076110F0

17

Goodness of fit: the x2 measure [cont.]

Another one-character change gives us this:

10000 experiments

k 30313233343536373839404142434445464748495051525354555

)]

5758596061626364656667686970

1 2 2 4 4 5 6 7 7 8 7 6 5 4
3 9 05 2 57 7
Yi 003177270 9 45 890 0

7
6
8 6
_____ --.llllllll““‘ IIII..--——__

1 2 8
5

w —= b

2
9
8

N ON
o v —

9 6 9
9 8 3

2
4 4

A final one-character change gives us this result for one
million coin tosses:

100000 experiments

k 3031323334353637383940414243 46 05152535455565758596061626364656667686970

11 2

N o uold

4445
33 4
19 8
1838
270

48495
7 8
31
2 1
0 3
______ -llIIII |‘

N — NN

5 4 1
6 7 5
0 4 4
40 4

7
8
2
8
‘ IIII.I-_ _____

N_
A w

NN

o~

0 — —

N DN
0 —

N O ®
o 0 O
w w o
O v N
© oo w
o v
AU o
INEENTNS
N U N
_|_b_|
N~ o —
w b

N W

Y 1 4

8
2
2
7

Randomness of digits of 11

Here are x? results for the digits of 7T from recent com-
putational records (xz(v =9,P =0.99) = 21.67):

Digits Base x° P(x9)
6B 10 9.00 0.56
50B 10 5.60 0.22
200B 10 8.09 0.47
1T 10 14.97 0.91

1T 16 7.94 0.46

1/1T
Digits Base x2 P(x°)
6B 10 5.44 0.21
50B 10 7.04 0.37
200B 10 4.18 0.10

Whether the fractional digits of 1, and most other tran-
scendentals, are normal (= equally likely to occur) is
an outstanding unsolved problem in mathematics.

19

The Central-Limit Theorem

The famous Central-Limit Theorem (de Moivre 1718,
Laplace 1810, and Cauchy 1853), says:

A suitably normalized sum of independent
random variables is likely to be normally dis-
tributed, as the number of variables grows be-
yond all bounds. It is not necessary that the
variables all have the same distribution func-
tion or even that they be wholly independent.

— 1. S. Sokolnikoff and R. M. Redheffer

Mathematics of Physics and Modern
Engineering, 2nd ed.

20

The Central-Limit Theorem [cont.]

In mathematical terms, this is

Pmu+nryn<Xy+Xo+---+Xp<nu+ry/n)

1 r2

~ _ 12 2
~ vz I exp(—t=/(20°))dt

where the Xj are independent, identically distributed,
and bounded random variables, u is their mean value,
o is their standard deviation, and o2 is their variance.

21

The Central-Limit Theorem [cont.]

The integrand of this probability function looks like
this:

The Normal Distribution
2.0 w ﬂ
0=0.2
o0=05
15 ¢
o0=1.0
8 0=20
€ 10 G=5.0
S
/\
05
0.0 —— 7 N =
-10.0 -5.0 0.0 5.0 10.0
X

22

The Central-Limit Theorem [cont.]

The normal curve falls off very rapidly. We can com-
puteits areain [—x, +x] with a simple midpoint quadra-
ture rule like this:

func f(x) {global sigma;
return (1/(sigma*sqrt(2*PI)))*
exp(-x*x/(2*sigma**2))}
func g(a,b){n = 10240; h = (b - a)/n; s = 0;
for (k = 0; k < n; ++k)
s += h*f(a + (k + 0.5)*h);
return s}

23

The Central-Limit Theorem [cont.]

sigma = 3

for (k = 1; k < 8; ++k)

printf "%d %.9f\n", k, g(-k*sigma,k*sigma)
.682689493

.954499737

.997300204

.999936658

.999999427

.999999998

.000000000

N OO v AW N R
R O O O O O O

In computers, 99.999% (five 9’s) availability is 5 min-
utes downtime per year. In manufacturing, Motorola’s
60 reliability with 1.50 drift is about 3.4 defects per
million (from g (4.5 % o) /2).

24

The Central-Limit Theorem [cont.]

It is remarkable that the Central-Limit Theorem applies
also to nonuniform distributions: here is a demonstra-
tion with sums from exponential and normal distribu-
tions. Superimposed on the histograms are rough fits
by eye of normal distribution curves 650exp(—(x —
12.6)2/4.7) and 550 exp(—(x — 13.1)2/2.3).

Sums from Exponential Distribution Sums from Normal Distribution

700 - ‘ 700

600 | i] 600 |)
500 | il \ 1| 500 f :\
S 400 ¢ 1 S 400 ¢
S 300 ¢ 3 300 |

200 200 t

100 ¢ 100 ¢

0 : : 0 ‘
5 10 15 20 5 10 15 20
Sum of 10 samples Sum of 10 samples

25

The Central-Limit Theorem [cont.]

Not everything looks like a normal distribution. Here
is a similar experiment, using differences of succes-
sive pseudo-random numbers, bucketizing them into
40 bins from the range [-1.0, +1.0]:

10000 experiments (counts scaled by 1/100)

k 1234567 8 910111213141516171819202122232425262728293031323334353637383940
11T 112222333344 4 4 4 4 4 4333322221111

1368136813691 3%63813 3186318631863 18¢6 31

Yi 35183837 16202917247 74557 2816282737362

This one is known from theory: it is a triangular dis-
tribution. A similar result is obtained if one takes pair
sums instead of differences.

26

Digression: Poisson distribution

The Poisson distribution arises in time series when the
probability of an event occurring in an arbitrary inter-
val is proportional to the length of the interval, and
independent of other events:

P(X=n)= %e_A
In 1898, Ladislaus von Bortkiewicz collected Prussian
army data on the number of soldiers killed by horse
kicks in 10 cavalry units over 20 years: 122 deaths, or
an average of 122/200 = 0.61 deaths per unit per year.

A = 0.61
. . Cavalry deaths by horse kick (1875--1894)
Deaths Kicks Kicks g PR YRR A
(actual) (Poisson) _ 100 /\ lambda = 0.61
0 109 108.7 |£ %
] 65 66.3 |£ w0
2 22 20.2 | 20| | T
3 3 4 1 0-1 o 1 2 3 4 5
4 _I 06 Deaths

27

The Central-Limit Theorem [cont.]

Measurements of physical phenomena often form nor-

mal distributions:

Count of soldiers

1250

1000
750 ¢
500
250 |

0

Chest girth of Scottish soldiers (1817)

SY

_

Height of French soldiers (1851--1860)
2000

1500 /LN

1000 ¢

500

Count of soldiers

A=

0

32 34 36 38 40 42 44 46 48

Inches

56 58 60 62 64 66 68 70
Inches

Weights of 10,000 gold sovereigns (1848)

4000

3000 ¢

2000 |

1000

Count of coins

O "

7N

/
\

-0.3 -0.2

Grains from average

-0.1 0.0 01 0.2 03

28

The Central-Limit Theorem [cont.]

Error in erf(x)

Error in erf(x), x on [-5,5]

" 1.0 1% ‘
c_cg Tg 800 r n
Q& 05+ c
[— S 600 f 0=0.22
®© SR S O

c
g 008 3 400 |
= " I i 1
@ -0.5 *g’ 200 |
[
2 10 e 8 0 ”"rr :

5-4-3-2-1012 3 465 -1.0 -0.5 0.0 0.5 1.0
X Units in the last place
Error in gamma(x) Error in gamma(x), x on [0..10]
@ £ 2500 f ‘ ‘
A]
c 3]
o c 2000
17 Q
< o 1 L
o £ 500
E ‘s 1000
1% < I
= 3 500
- @) 0 ‘
-15 -10 -5 0 5 10 15

Units in the last place

29

The Central-Limit Theorem [cont.]

Error in log(x)

Error in log(x), x on (0..10]

o L0 ——————————— w 700 w w w
3 S 600 | N a
-y § 500 7 0=022 -
< 3] . 1
p § 400 |
= = 300 | | i 1
= S 200 | I \ «
2 S 100 | /ﬁ A
[
2 10 e S 0 : 1\
0 1 2 3 45 6 7 8 10 -1.0 -0.5 0.0 0.5 1.0
X Units in the last place
Error in sin(x) Error in sin(x), x on [0..21)
) L) ‘ N ‘
S T 400 | Il |
= c 0=0.19
A o L]
c_(@ = 300
c
2 2 200 |]
k= I | :
o ‘g‘ 100 ¢ ’ Y 1
c
-1.0 -0.5 0.0 0.5 1.0

Units in the last place

30

Any one who considers arithmetical methods of producing
random numbers is, of course, in a state of sin.
— John von Neumann (1951)

[from The Art of Computer Programming, Vol. 2,

Seminumerical Algorithms, 3rd ed., p. 1]

He talks at random; sure, the man is mad.

— Margaret, daughter to Reignier,

afterwards married to King Henry

in William Shakespeare’s 1 King Henry VI, Act V,
Scene 3 (1591)

A random number generator chosen

at random isn’t very random.

— Donald E. Knuth

[The Art of Computer Programming, Vol. 2,
Seminumerical Algorithms, 3rd ed., p. 384]

31

How do we generate pseudo-random numbers?

[1 Linear-congruential generators (most common):
he1 = (arnp + ¢) mod m, for integers a, ¢, and
m, where 0 <m, 0 <a<m,0=<c < m, with
starting value 0 < 19 < m.

[1 Fibonacci sequence (bad!):
Yni1 = (rn + 1) mod m.

[l Additive (better): 11 = ("n—a + ¥y—g) mod m.

[0 Multiplicative (bad):
T+l = ("n—a X ¥y—p) mod m.

[Shift register:
Tnik = 2520 (@itn+i (mod 2)) (aj=0,1).

32

How do we generate pseudo-random numbers? [cont.]

Given anintegerr € [A,B), x = (r—A)/(B—-A+1)is
on [0,1).

However, interval reduction by A+ (r —A) mod s to get
a distribution in (A,C), where s = (C - A + 1), is pos-
sible only for certain values of s. Consider reduction
of [0,4095] to [0, m], with m € [1,9]: we get equal
distribution of remainders only for m = 24 — 1:

counts of remainders k mod (m +1), ke [0,m]

2048 2048

1366 1365 1365

1024 1024 1024 1024

820 819 819 819 819

683 683 683 683 682 682

586 585 585 585 585 585 585

512 512 512 512 512 512 512 512

456 455 455 455 455 455 455 455 455

410 410 410 410 410 410 409 409 409 409

OK

OK

OK

@OO\I@U‘I-&UUI\)—'§

33

How do we generate pseudo-random numbers? [cont.]

Samples from other distributions can usually be ob-
tained by some suitable transformation. Here is the
simplest generator for the normal distribution, assum-
ing that randu () returns uniformly-distributed values
on (0,1]:

func randpmnd() \
{

Polar method for random deviates
Algorithm P, p. 122, from Donald E. Knuth,
The Art of Computer Programming, 3/e, 1998

while (1) \

{
vl = 2*randu() - 1
v2 = 2*randu() - 1
s = vl*vl + v2*v2
if (s < 1) break

¥

return (vl * sqgrt(-2*1n(s)/s))

34

Period of a sequence

All pseudo-random number generators eventually re-
produce the starting sequence; the period is the num-
ber of values generated before this happens. Good
generators are now known with periods > 10449 (e.g.,
Matlab’s rand()).

35

Reproducible sequences

In computational applications with pseudo-random num-
bers, it is essential to be able to reproduce a previous
calculation. Thus, generators are required that can be
set to a given initial seed:

% hoc

for (k = 0; k < 3; ++k) \

{
setrand(12345)
for (n = 0; n < 10; ++n) print int(rand()*100000),""
println ""

}

88185 5927 13313 23165 64063 90785 24066 37277 55587 62319
88185 5927 13313 23165 64063 90785 24066 37277 55587 62319
88185 5927 13313 23165 64063 90785 24066 37277 55587 62319

36

Reproducible sequences [cont.]

for (k = 0; k < 3; ++k) \

{
setrand(12345)
for (n = 0; n < 10; ++n) print int(rand()*100000),""
println ""

}

36751 37971 98416 59977 49189 85225 43973 93578 61366 54404
70725 83952 53720 77094 2835 5058 39102 73613 5408 190
83957 30833 75531 85236 26699 79005 65317 90466 43540 14295

In practice, software must have its own source-code im-
plementation of the generators: vendor-provided ones
do not suffice.

37

The correlation problem

Random numbers fall mainly in the planes
— George Marsaglia (1968)

Linear-congruential generators are known to have cor-
relation of successive numbers: if these are used as
coordinates in a graph, one gets patterns, instead of
uniform grey. The number of points plotted in each is
the same in both graphs:

0.9t o © o 000
08f ° 5 ° o

0.7+ (o] [o] O
0.6f o

0.5 o o

04r % o o ° o 1)
0.3f o © o Cc>)
0.2f 000 o © o

0.1F [} o [o} o ©

0 0.2 0.4 0.6 0.8 1

38

The correlation problem [cont.]

The good generator is Matlab’s rand(). Here is the
bad generator:

% hoc
func badran() { global A, C, M, r;

r = 1int(A*r + C) % M; return r }
M=2A15 - 1; A =2A7 -1 ; C=2A5 -1
r=0; r0O=r ; s=-1; period =0

while (s !'= r0) {period++; s = badran(Q);
print s, "" }
31 3968 12462 9889 10788 26660 ...
22258 8835 7998 0

Show the sequence period
println period
175

Show that the sequence repeats
for (k = 1; k <= 5; ++k) print badran(),""
31 3968 12462 9889 10788
39

]

y << C

-shift generators:
y A=

y A=y > b

The correlation problem [cont
1.003

Marsaglia’s (2003) family of xor

y A=y << a

007

40

_ o)
& + Aﬂiw Y # 4 # 4 ..W
E > 2. 2.8
RN
2 NN N NS, s
i+ JEE L S o
| & Do S, . . 9
Ly ¥ F& ¥ +
o £y + €y ¥ £ ¥ o
o o
E 20 20 20 228
NSRS e b
“ & & s & 4
2 R AN -
| |
' =, &, I, D
G A
i N. < . N oo Y8 L ¥ o
— SRR NSNS
o o o o o o o o o o8
o o o o o o o o o o
T T T T T T T T T T
)) & ® &)) 5 ® &
< ™ N — o < ™ N — o
%?ﬁ%ﬁ% T R P D 13
e T Lt e e $§¥¢ 0 p
R TR 8 g
ﬂ,&ﬁx{f i f}%;% e i s
%iiu? e #%#%%ﬁ%%f N
i A e e R 3
$$%+3§}f§ %#%ﬁf%%% i | m.u i m.u
%iiw}wwi %&%fiﬁﬁu §%§+¥ fﬁg fﬁﬂ% 2 Q) e
oo i e o A
S] 0 L
FalA ettt R R et o N '3
fet ﬁ%ﬁ?ﬁfﬁiﬁg ﬁ%ﬁ%& R §t&ﬁnx ? T
ﬁgf%%%&t* #ﬁiﬁg fﬂg&i ot v O L
g o W i - tngsﬁ*fw § N [} N
T2 fﬁuﬁ% $§ it i{uwﬁ i, —
ot §§§i tgfi S ey
¥¥$¢¥uﬁ+ $% L T &f}% *Hn@}*&f [e2] o))
[i 8 ™ i . O by
Iﬂ\xvixr %&ﬁr* #+$§{%§ﬁ%% i‘fuf;g.fmfr P e bw -n—.uv -n—.-v
giﬁ%%%% " *%ﬁéﬂ fﬂ A <
o ;%%%ﬁ%xé%%ﬁgi o o
%ﬁ?ﬁ%&ﬁﬁ%ﬁ%%%t 9 L=
3 3 2 3 83 3 3 2 3 83
T T T T T T T T T T
)) 5 ® @)) 5 ® &
< ™ N — o < ™ N — o

Generating random integers

When the endpoints of a floating-point uniform pseudo-
random number generator are uncertain, generate ran-
dom integers in [1ow,h1gh] like this:

func irand(low, high) \

{

}

for (k = 1;
-9 -2 -2 -7

Ensure integer endpoints
Tow = int(lTow)
high = int(high)

Sanity check on argument order
if (low >= high) return (Tow)

Find a value in the required range
n=low -1
while ((n < low) || (high < n)) \

n = low + int(rand() * Chigh + 1 - Tow))

return (n)

k <= 20; ++k) print irand(-9,9), ""
79-3048-3-947-78-3-48-4

for (k = 1; k <= 20; ++k) print irand(0, 10A6), ""
986598 580968 627992 379949 700143 734615 361237
322631 116247 369376 509615 734421 321400 876989
940425 139472 255449 394759 113286 95688

41

Generating random integers in order

See Chapter 12 of Jon Bentley, Programming Pearls,
2nd ed., Addison-Wesley (2000), ISBN 0-201-65788-0.
[ACM TOMS 6(3), 359-364, September 1980].

% hoc
func bigrand() { return int(2A31 * rand()) }

select(m,n): select m pseudo-random integers
from (0O,n) in order
proc select(m,n) \
{
mleft = m
remaining = n
for (i =0; 1 < n; ++i) \
{
if (int(bigrand() % remaining) < mleft) \
{
print i, ""
mleft--
}
remaining--
}
println ""
}

select(3,10)
567

42

Generating random integers in order [cont.]

select(3,10)
07 8

select(3,10)
256

select(3,10)
157

select(10,100000)
7355 20672 23457 29273 33145 37562 72316 84442 88329 97929

select(10,100000)
401 8336 41917 43487 44793 56923 61443 90474 92112 92799

select(10,100000)
5604 8492 24707 31563 33047 41864 42299 65081 90102 97670

43

Testing pseudo-random number generators

Most tests are based on computing a x2 measure of
computed and theoretical values. If one gets values
p < 1% or p > 99% for several tests, the generator
IS suspect.

Marsaglia Diehard Battery test suite (1985): 15 tests.
Marsaglia/Tsang tuftest suite (2002): 3 tests. All
produce p values that can be checked for reasonable-
ness.

These tests all expect uniformly-distributed pseudo-
random numbers. How do you test a generator that
produces pseudo-random numbers in some other dis-
tribution? You have to figure out a way to use those val-
ues to produce an expected uniform distribution that
can be fed into the standard test programs. For exam-
ple, take the negative log of exponentially-distributed
values, since —log(exp(—random)) = random. For
normal distributions, consider successive pairs (x, y)
as a 2-dimensional vector, and express in polar form
(r,0): 0 is then uniformly distributed in [0, 2717), and
0/(21) isin [0,1).
44

Digression: The Birthday Paradox

The birthday paradox arises from the question “How
many people do you need in a room before the probabil-
ity is at least half that two of them share a birthday?”

The answer is just 23, not 365/2 = 182.5.

The probability that none of n people are born on the
same day is

P(1) =1
P(n) = Pn—-1)x(365—-(n—-1))/365

The n-th person has a choice of 365 — (n — 1) days
to not share a birthday with any of the previous ones.
Thus, (365 — (n —1))/365 is the probability that the
n-th person is not born on the same day as any of the
previous ones, assuming that they are born on differ-
ent days.

45

Digression: The Birthday Paradox [cont.]

Here are the probabilities that n people share a birth-
day (i.e., 1 — P(n)):

% hocl28
PREC = 3
p =1
for (n = 1;n <= 365;++n) \
{p *= (365-(n-1))/365; println n,1-p}

10

2 0.00274
3 0.00820
4 0.0164

22 0.476
23 0.507
24 0.538

100 0.999999693

P(365) ~ 1.45x10~ 157 [cf. 1080 particles in universe].
46

The Marsaglia/Tsang tuftest tests

[1 b’day test (generalization of Birthday Paradox).

[] Euclid’s (ca. 330-225BC) gcd test.

[1 Gorillatest(generalization of monkey’s typing ran-
dom streams of characters).

47

Euclid’s algorithm (ca. 300BC)

This is the oldest surviving nontrivial algorithm in math-
ematics.

func gcd(x,y) \

{ ## greatest common denominator of integer x, y
r = abs(x) % abs(y)
if (r == 0) return abs(y) else return gcd(y, r)

func 1em(x,y) \

{ ## least common multiple of integer x,y
X = 1nt(x)
y = int(y)
if ((x ==0) || (y == 0)) return (0)
return ((x * y)/gcd(x,y))

48

Euclid’s algorithm (cont.)

Complete rigorous analysis of Euclid’s algorithm was
not achieved until 1970-1990!

The average number of steps is

A(gcd(x,y)) = ((121112)/1T2>1ny
~ 1.9405log gy
and the maximum number is
M (ged(x,y)) = llogy (3 —¢p)y)]
~ 4.785log1gy +0.6723
where ¢ = (1 + +/5)/2 = 1.6180 is the golden ratio.

49

