
Tips on Indexing LATEX Documents 1001

Tips on Indexing LATEX Documents
∗

Nelson H. F. Beebe

Contents

1 Introduction 1001

2 LATEX indexing macros 1001

3 Typesetting the index 1002

4 Controlling the sort order and fonts 1003

5 Finding topics to index 1003

6 Special characters in index entries 1004

7 Long index entries 1006

8 Controlling macro expansion 1006

9 Checking the index 1008

1 Introduction

Indexes can significantly enhance the value of tech-
nical documents, and tools like makeindex [4, 5] and
texindex (from the Free Software Foundation) help
to make the job of index preparation easier. Because
a good index will have a large number of entries,
each of which contains a page number that could
change if the document is modified, even by as little
as a single character, you should not even consider
creating an index file by hand!
The LATEX User’s Guide and Reference Manual

[11, pp. 77–79, 189], [12, pp. 74–75, 212] gives only
brief instructions on preparation of indexes; the pur-
pose of these notes is to provide some hints that may
be helpful.
You can find additional guidance about index

preparation in the documentation for makeindex [4,
5, 14, 15], as well as in Bentley and Kernighan’s pa-
per [3]. The troff indexing tools from the latter are
available from netlib via the electronic mail request
send index from TYPESETTING to netlib@ornl.
gov, or via anonymous ftp and the World-Wide
Web at ftp://netlib.bell-labs.com/netlib/
typesetting/indexingtools.gz, which is a UNIX
shar bundle.
More recently, Joachim Schrod’s work on ex-

tensions to makeindex has evolved under his di-

∗ This document was originally written in December
1991 and used locally; it has been updated here to reflect
new developments since then.

rection into the thesis work of Roger Kehr [6] (in
German) and subsequent technical reports [7, 8, 9]
(in English) on x̊ındy (flexible ı̊ndexing system), a
completely new program. Although x̊ındy appears
to have considerable power, especially for the issue
of user-definable sorting rules, I shall not consider
it further here, because the following discussion is
mostly independent of indexing software, and be-
cause I have little experience yet with x̊ındy.

2 LATEX indexing macros

A LATEX document to be indexed has this basic struc-
ture:

\documentclass[]{...}

\usepackage{makeidx}

\usepackage{... ...}

...

\makeindex

\begin{document}

...

gnats%

\index{gnat}

and gnus%

\index{gnu}

...

Gnats%

\index{gnat!feeding habits}

...

In the summer, gnats%

\index{gnat!feeding habits!summer}

...

\index{wildebeest|see{gnu}}

\printindex

\end{document}

For old LATEX 2.09 installations, replace the first two
lines by

\documentstyle[makeidx]{...}

If index entries are put on separate lines for read-
ability, as they are here, then it is essential that
the previous line be ended with a percent follow-
ing the last non-blank character. TEX discards text
from percent to end of line, plus all following white-
space on the next line. Were a space to get between
the phrase and its index entry, it is possible that a
page break might fall there, resulting in an off-by-
one page number in the index.
If you put multiple index entries on consecutive

lines, end all but the last with percents. Otherwise,
you risk getting unwanted space into the output; see
[11, p. 153], [12, p. 169].
The makeidx.sty option that is read when the

LATEX \documentstyle command is processed is a

15 January 1998 Version 1.04 1001



1002 Tips on Indexing LATEX Documents

simple one: it defines a \see macro for index cross-
referencing, and a \printindex macro to input the
index file, which is named \jobname.ind, where
\jobname is the base name of the current LATEX file.

The \makeindex command must be given be-
fore the \begin{document}; without it, no index file
will be written.
While you are developing an index, it is useful

to be able to tell what has been indexed on each
page. If you include the showidx package (or for
LATEX 2.09, the option showidx in the \document
style command), all of the index entries on the
current page will be contained in a marginal note.
When you have finished writing, and verified that
the index is complete, you can simply remove the
use of showidx.
Once the \makeindex command has been is-

sued, an \index{gnat!feeding habits} call pro-
duces in a file with extension .idx an entry of the
form

\indexentry{gnat!feeding habits}{27}

containing the text of the index entry, and the page
number. It is the job of an indexing program, such
as makeindex, to collect the entries, sort them, elim-
inate duplicates, merge page number ranges, and
then output another file, with extension .ind, of
the form

\begin{theindex}

...

\indexspace

...

\item gnat, 2, 11, 17--21

\subitem feeding habits, 27

\subsubitem summer, 28

...

\end{theindex}

The syntax of the argument of the \indexmacro
depends on the indexing program that is used. This
document assumes makeindex, since that is currently
one of the most powerful and flexible indexing pro-
grams available, and it runs on all machines that
TEX runs on.
Complete details of how to run makeindex and

prepare index entries can be found in its UNIX man-
ual page documentation. The examples above illus-
trate two of the major features:

• Up to 3 index levels can be given; they are sep-
arated by exclamation points in the \index ar-
gument.
• Vertical bar separates a topic from a cross-
reference entry. Thus,

\index{fourmis|voir{insectes}}

would expand to the .ind file entry

\item fourmis, \voir{insectes}{19}

and the cross-reference macro would be defined
to ignore its second argument (the page num-
ber):

\newcommand{\voir}[2]{\emph{voir} #1}

The makeidx.sty file defines the \see macro
like this.

The page number generated by index cross-ref-
erences like \index{wildebeest|see{gnu}} is ig-
nored, so you can put such cross-references any-
where. It is a good idea to collect them all in one
place, such as immediately before the \printindex
command, so that you can easily find them. If you
leave them scattered throughout the input file, in-
consistencies are more likely to develop.

3 Typesetting the index

Because index entries that are written to a file by
LATEX must be processed by the indexing program,
LATEX must be run again to actually typeset the in-
dex. If you are also using BibTEX for bibliogra-
phies, and \label, \pageref, and \ref for cross-
referencing, then the command sequence required in
general looks like the one used for this document:

latex idxtips.ltx

bibtex idxtips

makeindex idxtips

latex idxtips.ltx

makeindex idxtips

latex idxtips.ltx

makeindex idxtips

If the bibliography entries themselves cite other en-
tries, then you need to insert another BibTEX step
after the second LATEX step. In general, to obtain a
correct index, makeindex must be run after each
LATEX step, because any change whatever in the
typeset output could change a page number in an
index entry.
Repeated issuing of commands like those above

is tedious and error prone, and is best automated
by putting them in a command script, or on UNIX,
in a Makefile. Here is a suitable set of Makefile
entries for doing this generically:

BIBTEX = bibtex

LATEX = latex

MAKEINDEX = makeindex

.SUFFIXES:

.SUFFIXES: .dvi .ltx .ind .idx .bbl \

.bib

1002 15 January 1998 Version 1.04



Tips on Indexing LATEX Documents 1003

.bib.bbl:

- $(BIBTEX) $*

.idx.ind:

$(MAKEINDEX) $*

.ltx.dvi:

$(LATEX) $<

$(MAKE) $*.bib

$(MAKE) $*.ind

$(LATEX) $<

$(MAKE) $*.ind

$(LATEX) $<

$(MAKE) $*.ind

The reason for recursively invoking make in the com-
mands for the rule .ltx.dvi, instead of running
bibtex or makeindex directly, is that this makes
it possible to later add specific targets that do extra
things, such as the editing of .idx files described
below.
Of course, while you are fixing minor typograph-

ical errors and solving formatting problems, you can
manually run single LATEX steps instead of the long
command list; just remember to run the command
script or make to do the job properly before you pro-
duce a version for printing.

4 Controlling the sort order and fonts

In simpler documents, the index may require only
unaccented entries in roman text. More complex
ones may make substantial use of font changes, or
require accents in index entries [14, 15, 7, 8, 9]. Both
of these complicate the sorting job that is required
to turn the .idx file into a .ind file.
In the example above,

\index{gnat!feeding habits!summer}

the words gnat, feeding habits, and summer do
two jobs: they define the text of the entry, and
they define the sort key. makeindex provides for
the separation of these two functions with the @ (ac-
tual) character: sort key@actual text. This syn-
tax may be used for any, or all, of the up-to-three
levels of indexing. With a somewhat unusual choice
of fonts, the sample entry might be then rewritten
as

\index{gnat@{\bf gnat}!feeding

habits@{\em feeding

habits}!summer@{\sl summer}}

The font syntax here corresponds to plain TEX and
LATEX 2.09: it works equally well in newer LATEX
releases.
Accents and letters other than the Latin ‘a’

through ‘z’ pose somewhat more of a problem, be-

cause they generally require special sort ordering.
For example, the Danish alphabet contains the let-
ters ‘a’ through ‘z’, followed by three additional ones,
‘æ’, ‘ø’, ‘̊a’, represented in TEX by the control se-
quences \ae, \o, and \aa. In order to get these let-
ters sorted properly, they must be represented in the
sort key by characters which collate immediately af-
ter ‘z’. In such cases, makeindex version 3, or x̊ındy,
will support the required sorting order.
The default sorting order in makeindex is

punctuation characters (in ASCII order),
digits,
control characters (1 . . . 31),
space (32),
letters (ignoring case),
characters 127 . . . 255.

Numbers are always sorted in numeric order. For
instance,

9 (nine), 123
10 (ten), see Derek, Bo

Letters are first sorted without regard to case; when
words are identical, the uppercase version precedes
its lowercase counterpart.
A special symbol is defined to be any character

not appearing in the union of digits and the English
alphabetic characters. Patterns starting with spe-
cial symbols precede numbers, which precede pat-
terns starting with letters. As a special case, a string
starting with a digit but mixed with non-digits is
considered to be a pattern starting with a special
character.
A command line option to makeindex controls

the handling of blanks in index entries; they may or
may not be significant for sorting purposes.

5 Finding topics to index

Preparation of a good index is not an easy task. The
person preparing the index must be able to pretend
being a reader of the document who wants to find
things in it, think up many variations on the words
used in the index, and insert them all with suitable
cross-referencing.
While it is usually best to wait until a docu-

ment is almost complete before preparing the index
entries, it is a good idea to make the job easier by
doing some planning before you start writing or typ-
ing. Design some macros that make it easy to get
phrases into the text and into the index, possibly
under different index entries. A simple example is
this macro:

\newcommand{\X}[1]{#1\index{#1}}

If you write \X{gnats}, then gnats will appear in
both the text and the index. This case happens so

15 January 1998 Version 1.04 1003



1004 Tips on Indexing LATEX Documents

frequently that it is worthwhile for the macro name
to be short and easy to type. The LATEX editing
support developed by the author [1] for the Emacs
text editor makes it easy to insert such entries in
an X Window System environment: just press the
right mouse button at the start of the phrase to
be indexed, sweep the mouse across the phrase to
somewhere in the last word, and release the mouse
button.
To find such phrases, it is best to sit down in

an easy chair with a typeset draft of the manuscript,
and as you read it from start to finish, use a colored
marker pen to highlight every phrase that should be
indexed. You can then later go through the manu-
script file on the computer to insert the entries. If
you have the mouse button support described above,
this is quite easy to do.
When font changes are involved, I have found

it helpful in writing to use a pair of macros, one to
place a phrase in the text and the index, and another
just to index it. To allow flexibility, one such pair
should be introduced for each type of entry. For
example, in writing about computer software, I use
these pairs:

% generate and index file name

\newcommand{\FILE}[1]

{%

\texttt{#1}%

\XFILE{#1}%

}

% generate and index program name

\newcommand{\PROGRAM}[1]

{%

\texttt{#1}%

\XPROGRAM{#1}%

}

% index file name

\newcommand{\XFILE}[1]

{%

\index{#1@\protect\FILE{#1}}%

\index{file!#1@\protect\FILE{#1}}%

}

% index program name

\newcommand{\XPROGRAM}[1]

{%

\index{#1@\protect\PROGRAM{#1}}%

\index{program!#1@\protect\PROGRAM{#1}}%

}

These macros appear to be mutually recursive,
since \FILE and \XFILE call each other. However, no
infinite loop develops because the expansions hap-
pen at different times: \FILE generates a reference
to \XFILE, but the latter’s reference to \FILE will

not be seen until the index entry is actually read
from the .ind file.
This trick unfortunately does not work with the

showidx package/style, because it redefines \index
in such a way that produces immediate macro ex-
pansion.
Note particularly that \XFILE and \XPROGRAM

each make multiple index entries, so that files and
programs are indexed under their own names, as
well as under ‘file’ and ‘program’ entries. Neither of
them knows how the index entry is actually type-
set; that is left to \FILE and \PROGRAM. Although
in this case, both macros set their arguments in a
typewriter font, they nevertheless represent different
types of index entries, and in some future version of
the document, different fonts might be used. This
follows the LATEX model of structured markup: en-
tries that are logically different have different names,
even if in some styles, they may have similar appear-
ance in the output.
Because the macros \FILE and \PROGRAM are

used in the index, they will generate unwanted index
entries there unless you disable \index like this in
your manuscript file immediately before the index is
typeset:

\renewcommand{\index}[1]{}

\printindex

Bibliographies are often sadly neglected by in-
dexers; they should not be. Donald Knuth makes
a point of indexing all authors cited in his books.
This is handy when you want to find what the au-
thor has to say about a particular paper that you
found while you were skimming the bibliography.
In this document, I’ve followed Knuth’s practice by
writing things like

\cite{Bentley:EPODD-1-1-3}.%

\index{Bentley, Jon L.}%

\index{Kernighan, Brian W.}

Knuth even puts in humorous index entries to amuse
sharp-eyed readers; look up the index entry forDerek,
Bo in the TEXbook [10].

For a large document, such indexing is tedious
and error-prone, and a much more sophisticated pack-
age for automated author/editor indexing has re-
cently been developed; it is described in [2] and is
used in a complex technical book [13].

6 Special characters in index entries

Both LATEX and makeindex reserve certain charac-
ters for processing actions, and yet you may need
those characters in an index entry. This section de-
scribes how to get them.

1004 15 January 1998 Version 1.04



Tips on Indexing LATEX Documents 1005

LATEX makes minimal requirements on the con-
tents of an \index argument: its text must con-
tain balanced braces, even if they are backslashed.
Otherwise, no other characters, not even the per-
cent character for beginning TEX comments, have
any significance. Of course, when the index file is
subsequently read by LATEX, characters have their
normal meanings, so you have to arrange for special
handling of these ten:

& $ # % _ { } ^ ~ \

You can represent the first seven by prefixing them
with a backslash:

\& \$ \# \% \_ \{ \}

For the remaining three, you need to define suitable
control sequences:

\newcommand{\Caret}{\char‘\^}

\newcommand{\Tilde}{\char‘\~}

\newcommand{\Backslash}

{\texttt{\char‘\\}}

For LATEX indexes, makeindex attaches signifi-
cance to five characters: at sign ‘@’, backslash ‘\’,
exclamation point ‘!’, quotation mark ‘"’, and verti-
cal bar ‘|’. Because makeindex is controlled by style
files, it is possible to change all of these characters,
but for simplicity, let us assume that the standard
style is used.
We have already shown the uses of three of

these characters. The quotation mark is used as
an escape character to cause the following charac-
ter to be treated as an ordinary character; it will be
removed when the .ind file entries are generated.
Thus, to get any of the characters @|"! into the in-
dex as literal characters, you must prefix them with
a quotation mark.
A backslash prevents a following quotation mark

from having any special significance to makeindex,
but unlike the quotation mark, it is preserved in
such a case. This feature is provided because \" is a
TEX accent primitive. A backslash before any other
character has no special significance to makeindex.

Here are some examples:

Index call Index entry

\index{one"@two} \indexentry{one@two}

\index{three"|four} \indexentry{three|four}

\index{five"!six} \indexentry{five!six}

\index{f""ur} \indexentry{f"ur}

\index{f\"ur} \indexentry{f\"ur}

Amore detailed example is taken from the UNIX
manual pages for makeindex. It shows the entries
in the .idx file of all printable ASCII characters
other than letters and digits, assuming the default
TEX index format. For convenience, the page num-

ber references are the corresponding ASCII ordinal
values.

\indexentry{" @" (space)}{32}

\indexentry{"!@"! (exclamation point)}{33}

\indexentry{""@"" (quotation mark)}{34}

\indexentry{"#@"\# (sharp sign)}{35}

\indexentry{"$@"\$ (dollar sign)}{36}

\indexentry{"%@"\% (percent sign)}{37}

\indexentry{"&@"\& (ampersand)}{38}

\indexentry{"<@"$<$ (left angle bracket)}{60}

\indexentry{"=@"= (equals)}{61}

\indexentry{">@"$>$ (right angle bracket)}{62}

\indexentry{"?@"? (query)}{63}

\indexentry{"@@"@ (at sign)}{64}

\indexentry{"[@"[ (left square bracket)}{91}

\indexentry{"\@"\verb=\= (backslash)}{92}

\indexentry{"]@"] (right square bracket)}{93}

\indexentry{"^@"\verb=^= (caret)}{94}

\indexentry{"_@"\verb=_= (underscore)}{95}

\indexentry{"‘@"\verb=~= (grave accent)}{96}

\indexentry{"{@"\"{ (left brace)}{123}

\indexentry{"|@"\verb="|= (vertical bar)}{124}

\indexentry{"}@"\"} (right brace)}{125}

\indexentry{"~@"\verb=~= (tilde)}{126}

In the actual fields following the at signs, charac-
ters that have special significance to TEX must be
represented as control sequences, or as math mode
characters. Note particularly how the entries for the
at sign, left and right braces, and the vertical bar,
are coded. The index file output by makeindex for
this example looks like this:

\begin{theindex}

\item ! (exclamation point), 33

\item " (quotation mark), 34

\item \# (sharp sign), 35

\item \$ (dollar sign), 36

\item \% (percent sign), 37

\item \& (ampersand), 38

\item $<$ (left angle bracket), 60

\item = (equals), 61

\item $>$ (right angle bracket), 62

\item ? (query), 63

\item @ (at sign), 64

\item [ (left square bracket), 91

\item \verb=\= (backslash), 92

\item ] (right square bracket), 93

\item \verb=^= (caret), 94

\item \verb=_= (underscore), 95

\item \verb=~= (grave accent), 96

\item \{ (left brace), 123

\item \verb=|= (vertical bar), 124

\item \} (right brace), 125

\item \verb=~= (tilde), 126

15 January 1998 Version 1.04 1005



1006 Tips on Indexing LATEX Documents

\indexspace

\item (space), 32

\end{theindex}

Because TEX will not write text to a file with
unbalanced braces, even ones prefixed by a back-
slash, you could not create the entries

\indexentry{"{@"\"{ (left brace)}{123}

\indexentry{"}@"\"} (right brace)}{125}

by the input

\index{"{@"\"{ (left brace)}

\index{"}@"\"} (right brace)}

However, you could write some other unique strings,
such as LEFT-BRACE and RIGHT-BRACE, and then
postprocess the .idx file with an editor to change
those strings to braces.
Alternatively, you can put add balancing braces

hidden inside a TEX conditional that will discard
them when the index is typeset:

\index{"{@"\"{ (left brace)\iffalse}\fi

\iffalse}\fi}

This will make the sort key a left brace, and the
actual text of the index entry will contain a literal
left brace. The two conditionals hide matching right
braces that will not appear in the output, but are
necessary for TEX to correctly identify the text of
the index entry.
Unfortunately, this technique is limited. It can-

not be used to make a similar index entry for the
right brace, because we need to get that character
into the sort key of the index entry, but that cannot
be done if braces are balanced. Postprocessing of
the index file is then the only solution.
It is regrettable that TEX’s I/O model carries

the restriction that all output strings must have bal-
anced braces, because it prevents a clean solution to
this problem.

7 Long index entries

If you have long index entries, you can break them
at a space and continue on the next line, since TEX
converts a newline to a single space. Do not indent
the second line, or put multiple adjacent spaces or a
TEX comment in the \index argument, because they
will be preserved, and may affect the index sorting.
Here is an example. The input

\index{one two three}

\index{one

two

three}

\index{one two three}

produces the index entries

\indexentry{one two three}{6}

\indexentry{one two three}{6}

\indexentry{one two three}{6}

Notice that the line breaks did not make the first
two differ, but the additional spaces in the third are
preserved.

8 Controlling macro expansion

As mentioned earlier, the argument of \index is
treated to little more than a brace balance check,
and written out directly to the .idx file. In partic-
ular, any TEX macros present will not be expanded.
This is convenient, because those macros will be ex-
panded when the .ind file is later read, and their
premature expansion would clutter the .idx file and
possibly interfere with sorting.
However, in LATEX 2.09 and 2e, \index is a frag-

ile command. If it is used in arguments to other con-
trol sequences, characters other than letters, digits,
and punctuation characters must be suitably pro-
tected. The major problem is control sequences in
the argument to \index; these must be prefixed by
\protect to delay their expansion.
Also, if the \index entry is generated by a macro,

as in the \X, \XFILE, and \XPROGRAM examples above,
macro expansion will occur unless \protect is used.
Some examples should make this clear. The

input

\index{gnat}

\index{\TeX{}}

\index{\texttt{typewriter}}

produces .idx file entries

\indexentry{gnat}{1}

\indexentry{\TeX{}}{1}

\indexentry{\texttt{typewriter}}{1}

Notice that no macro expansion has occurred. Now
consider these indexing requests:

\X{gnat}

\X{\TeX{}}

\X{\texttt{typewriter}}

These produce macro-expanded entries:

\indexentry{gnat}{2}

\indexentry{T\kern -.1667em\lower .5ex

\hbox {E}\kern -.125emX{}}{2}

\indexentry{{\ptt typewriter}}{2}

The solution is to rewrite the index requests as

\X{gnat}

\X{\protect\TeX{}}

\X{{\protect\tt typewriter}}

which gives the .idx file entries

1006 15 January 1998 Version 1.04



Tips on Indexing LATEX Documents 1007

\indexentry{gnat}{2}

\indexentry{\TeX {}}{2}

\indexentry{\texttt{typewriter}}{2}

with the prefixing \protect macros removed.
One troublesome entry is the LATEX verbatim

text request, \verb+abc+. You can write

\index{\verb+abc+}

and get

\indexentry{\verb+abc+}{3}

However, if you use it in the argument to another
macro, such as \X{\verb+abc+}, you’ll get several
nasty TEX errors:

! Undefined control sequence.

...

! Argument of \@sverb has an extra }.

...

! Illegal parameter number in definition

of \@gtempa.

...

! Argument of \@argdef has an extra }.

...

! Paragraph ended before \@argdef was

complete.

...

! Use of \@newline doesn’t match its

definition.

...

! Forbidden control sequence found while

scanning text of \write.

Fortunately, \protect saves the day. Just write

\X{\protect\verb+abc+}

to get

\indexentry{{\verb +abc+}}{3}

If the argument to \verb is another \verb, a bare
\index works fine

\index{\verb=\verb+\TeX+=}

\index{\protect\verb=\verb+\TeX+=}

and produces

\indexentry{\verb=\verb+\TeX+=}{4}

\indexentry{\protect\verb=\verb+\TeX+=}{4}

However, problems arise with \X, and you have to
resort to protecting everything:

\X{\protect\verb=\protect\verb+\protect\TeX+=}

Now a new problem surfaces. The output contains

\indexentry{{\verb =\verb +\TeX +=}}{4}

Notice the extra spaces. The one that follows the
first \verb do not matter, since spaces after control
sequences are always ignored when TEX reads input.
However, the ones following the second \verb and
\TeX do matter, because they are part of a verbatim

sequence, and will be preserved in the output, even
though they were not originally present.
In such situations, you have to be clever to fool

TEX. Rewrite the entry as

\X{{\protect\tt \protect\bs

verb+\protect\bs TeX{}+}}

and you will then get

\indexentry{\texttt{\bs verb+\bs TeX{}+}}{4}

which will be typeset correctly as \verb+\TeX{}+.
Notice that the empty brace pair did not require

special handling. It is preserved in the output to the
.idx file from the \index macro, and preserved on
input from the .ind file because there it is verbatim
text.
Backslashed braces pose a similar difficulty when

passed to embedded \index macros. In a top-level
\index reference, like

\index{/M \{ moveto \} def}

they produce problem-free entries:

\indexentry{/M \{ moveto \} def}{5}

However,

\X{/M \{ moveto \} def}

produces

\indexentry{/M \@lb moveto \@rb def}{5}

which is acceptable to LATEX, but not to makeindex,
because of the at signs. Once again, protection is
called for:

\X{/M \protect\{ moveto \protect\} def}

produces

\indexentry{{/M \{ moveto \} def}}{5}

However, extra space has been introduced after the
backslashed braces, and this may not be accept-
able. It does not appear to be possible to prevent
TEX from inserting these spaces, so in such cases,
it is necessary to edit the output .idx file before
processing it with makeindex. With a batch text
editor, such as the UNIX sed utility, this job can
be automated. Here is an example from the UNIX
Makefile used for this document. It removes space
after control sequences, as well as \penalty0 and
discretionary hyphens. The penalties and discre-
tionary hyphens would otherwise interfere with sort-
ing, and possibly produce duplicate entries.

idxtips.ind: idxtips.idx Makefile

mv idxtips.idx idxtips.tmp

sed -e ’s=\\{ *=\\{=g’ \

-e ’s=\\} *=\\}=g’ \

-e ’s= *{}={}=g’ \

-e ’s=\\- *==g’ \

-e ’s=\\penalty *0==g’ \

-e ’s=\(\\[A-Za-z][A-Za-z]*\) *{=\1{=g’ \

15 January 1998 Version 1.04 1007



1008 Tips on Indexing LATEX Documents

<idxtips.tmp >idxtips.idx

$(MAKEINDEX) idxtips

9 Checking the index

If you followed the instructions in Section 3 about
the order of job steps, and were careful to avoid
blank space before \index calls, you can be certain
that the page numbers in the .ind file are correct.
However, there are likely to be other errors that

you need to correct. Here are some common ones to
watch for:

• Indexing the singular and plural forms of an
entry:

\item gnat, 2, 11, 17--21

\item gnats, 17

• Inconsistent multi-level entries:

\item gnat, feeding habits, 19

\item gnat, 2, 11, 17--21

\subitem feeding habits, 27

• Inconsistent spacing in index entries:

\item gnat, 2, 11, 17--21

\subitem feeding habits, 23

\subitem feeding habits, 27

\item white space, 19

\item whitespace, 17

Watch for tab characters in TEX documents;
they will usually surprise you. In GNU Emacs,
you can get rid of them by marking the whole
buffer (type C-x h to run the function mark-
whole-buffer) and then typing M-x untabify.

• Inconsistent font usage:

\item gnat, 2, 11, 17--21

\subitem feeding habits, 23

\subitem \emph{feeding habits}, 41

• Inconsistent punctuation and abbreviations in
index entries:

\item Adobe Systems, Inc., 21

\item Adobe Systems Inc., 27

\item Adobe Systems Incorporated, 87

• Inconsistent use of hyphens:

\item Hewlett-Packard, 9

\item Hewlett Packard, 27

• Inconsistent use of capitalization (the computer
industry is responsible for numerous tradenames
and other words with embedded uppercase let-
ters):

\item LaserWriter, 17

\item Laserwriter, 8

• Inconsistent use of TEX ties:

\item Knuth, Donald E., 10

\item Knuth, Donald~E., 19

• Ignoring makeindex syntax errors recorded in
the .ilg index log file. The terminal output
when you run makeindex should begin some-
thing like this:

This is makeindex, portable version

2.11 [11-Sep-1991].

Scanning input file idxtips.idx

....done

(474 entries accepted, 0 rejected).

Sorting entries.......done

(4583 comparisons).

Generating output file idxtips.ind....

done (303 lines written, 0 warnings).

Output written in idxtips.ind.

If the rejection count or warning count is larger
than 0, look at the .ilg file to find out why. It
will give the line numbers of erroneous entries
in the .idx file, and you can trace them from
there back to the place in your document where
they were generated.

• Indexing related entries inconsistently, instead
of using cross-referencing:

\item Emacs, 17

\item Emacs, \see{GNU Emacs}

\item GNU Emacs, 3, 11, 19--23

• Generating the same entry text two different
ways that produce the same typeset result:

\item \textsc{PostScript}, 17

\item \POSTSCRIPT{}, 21

• Getting different entries for the same text be-
cause of discretionary hyphens, or \penalty0
commands for hyphenless line breaks:

\item \textsc{PostScript}, 17

\item \textsc{Post\-Script}, 19

\item \texttt{makeindex.tar}, 8

\item \texttt{makeindex.\penalty0tar}, 3

A batch editor can help you to remove these
from the .idx file; see Section 8 on page 1007.

• Using similar index phrases that result in re-
dundant nearby entries:

\item \TeX{}

\subitem books about, 24

\subitem books on, 27, 31

• Forgetting to use a separate sort key for a name
produced by a control sequence, so that entries
are sorted incorrectly:

\index{\BibTeX}

\index{BibTeX@\BibTeX}

1008 15 January 1998 Version 1.04



Tips on Indexing LATEX Documents 1009

• Sometimes forgetting to use \protect, so that
some entries are macro-expanded, and others
are not:

\item {\ptt Makefile}, 17

\item \texttt{Makefile}, 11

• Spelling errors:

\item typeseting, 12

\item typesetting, 23, 27--39

Spelling errors look particularly grievous in type-
set documents, because the output looks so nice in
comparison. You should make a habit of running
one, or preferably, several, spelling programs on your
LATEX input files. Particularly with technical docu-
ments, there are likely to be many words, including
technical terms, phrases in foreign languages, and
personal names, that are unrecognized by spelling
checkers. If your spelling program allows you to
supply a private dictionary, or list of exceptions, you
can create such a list from the exceptions produced
the first time you run the speller, after repairing all
legimate errors.
To automate this job with the UNIX make pro-

gram, add these lines to the Makefile:

DETEX = detex -n

SPELL = spell

.SUFFIXES:

.SUFFIXES: .ser .dvi .ltx .ind .idx \

.bbl .bib

.ltx.ser:

-$(DETEX) $< | \

$(SPELL) +$*.sok >$*.ser

cat $*.ser

and then type something like

make idxtips.ser

to produce a new list of spelling exceptions in that
file, and also display it on the screen. The excep-
tion list is kept in the file with extension .sok; you
can update it from time to time as new correct ex-
ceptions are found by the speller. Just remember
to keep the exception list sorted alphabetically; the
UNIX spell utility unfortunately requires that. If
you use the Emacs text editor, then the commands
C-x h (mark-whole-buffer) and M-x sort-lines
will do the job.

References

[1] Nelson H. F. Beebe. LATEX editing sup-
port. This document described a powerful
GNU Emacs editor package, freely available

at ftp://ftp.math.utah.edu/pub/tex/bib/
emacs., March 1992.

[2] Nelson H. F. Beebe. authidx: An author/
editor indexing package. TUGboat, 19(1):??,
March 1998.

[3] J. L. Bentley and B. W. Kernighan. Tools for
printing indexes. Electronic Publishing—Orig-
ination, Dissemination, and Design, 1(1):3–18,
April 1988. CODEN EPODEU. ISSN 0894-
3982.

[4] Pehong Chen and Michael A. Harrison. Au-
tomating index preparation. Technical Report
87/347, Computer Science Division, University
of California, Berkeley, CA, USA, March 1987.
This is an expanded version of [5].

[5] Pehong Chen and Michael A. Harrison. Index
preparation and processing. Software—Prac-
tice and Experience, 19(9):897–915, September
1988. The LATEX text of this paper is included
in the makeindex software distribution.

[6] Roger Kehr. x̊ındy: Ein Flexibles Index-
ierungssystem. Studienarbeit, FB Informatik,
TH-Darmstadt, Darmstadt, Germany, Novem-
ber 1995.

[7] Roger Kehr. x̊ındy by topic: A flexible index-
ing system. Technical report, Institut für The-
oretische Informatik, TH-Darmstadt, Darm-
stadt, Germany, March 1997. 14 pp. Included
with the x̊ındy software distribution.

[8] Roger Kehr. x̊ındy manual: A flexible index-
ing system. Technical report, Institut für The-
oretische Informatik, TH-Darmstadt, Darm-
stadt, Germany, March 1997. 25 pp. Included
with the x̊ındy software distribution.

[9] Roger Kehr. x̊ındy tutorial: A flexible index-
ing system. Technical report, Institut für The-
oretische Informatik, TH-Darmstadt, Darm-
stadt, Germany, March 1997. 11 pp. Included
with the x̊ındy software distribution.

[10] Donald E. Knuth. The TEXbook, volume A of
Computers and Typesetting. Addison-Wesley,
Reading, MA, USA, 1986. ISBN 0-201-13447-
0. ix + 483 pp. LCCN Z253.4.T47 K58 1986.

[11] Leslie Lamport. LATEX; A Document Prepa-
ration System—User’s Guide and Reference
Manual. Addison-Wesley, Reading, MA, USA,
1985. ISBN 0-201-15790-X. xiv + 242 pp.
LCCN Z253.4.L38 L35 1986.

[12] Leslie Lamport. LATEX: A Document Prepara-
tion System: User’s Guide and Reference Man-
ual. Addison-Wesley, Reading, MA, USA, sec-
ond edition, 1994. ISBN 0-201-52983-1. xvi +
272 pp. LCCN Z253.4.L38L35 1994.

15 January 1998 Version 1.04 1009



1010 Tips on Indexing LATEX Documents

[13] H. G. Othmer, F. R. Adler, M. A. Lewis, and
J. C. Dallon, editors. Case Studies in Math-
ematical Modeling—Ecology, Physiology, and
Cell Biology. Prentice-Hall, Englewood Cliffs,
NJ 07632, USA, 1997. ISBN 0-13-574039-8. viii
+ 411 pp. LCCN QH541.15.M3C37 1997.

[14] Joachim Schrod. An international version of
makeindex. Cahiers GUTenberg, 10–11:81–90,
September 1991.

[15] Joachim Schrod and Gabor Herr. Makein-
dex version 3.0. Technical report, Technische
Hochschule Darmstadt, Darmstadt, Germany,
1991.

Index

!, 1002, 1005
\", 1005
", 1005
.idx, 1002, 1003, 1005–1008
.ilg, 1008
.ind, 1002–1008
.sok, 1009
@, 1005
\, 1005

\aa, 1003
accent, 1003
TEX command for, 1005

actual character (@), 1003, 1005
\ae, 1003
ampersand, 1005, 1006
at sign, 1005–1007

backslash, 1005, 1006
Beebe, Nelson H. F., 1004
\begin{document}, 1002
Bentley, Jon L., 1001
bibliography, 1002
cross-references in, 1002
index entries for, 1004

bibtex, 1003
braces, see left brace, see right brace

backslashed, 1005, 1007
balanced, 1005, 1006
empty pair in \index entry, 1007
in index, 1006

caret, 1005, 1006
Chen, Pehong, 1001
collating order, see sort order
colored marker, 1004
comments
in TEX, 1001, 1005
not in \index entry, 1005

cross-reference, 1002, 1003, 1008
in LATEX, 1002

Danish alphabet, 1003
dictionary, 1009
discretionary hyphen, 1007, 1008
\documentstyle, 1001, 1002
dollar sign, 1005, 1006

editor, 1004, 1006, 1008, 1009
batch, 1007, 1008

Emacs commands
mark-whole-buffer, 1008, 1009
sort-lines, 1009
untabify, 1008

Emacs text editor, 1004, 1008, 1009
equals, 1005, 1006
escape character, 1005
exception list, 1009
exclamation point, 1002, 1005, 1006

\FILE, 1004
file
.idx, 1002, 1003, 1005–1008
.ilg, 1008
.ind, 1002–1008
.sok, 1009
Makefile, 1002, 1007, 1009
makeidx.sty, 1001, 1002
showidx.sty, 1002, 1004

fragile command, 1006
Free Software Foundation, 1001
ftp, 1001

GNU Emacs, see Emacs
grave accent, 1005, 1006

Harrison, Michael A., 1001
highlighter pen, 1004

\index, 1002, 1004–1008
blank space before, 1001, 1008
control sequences in argument of, 1006
disabling, 1004

index entry
accented, 1003
automatic production, 1003
cross-reference, 1002, 1003, 1008
Danish, 1003
extra space in, 1007
finding topics for, 1003
forgotten \protect, 1009
forgotten sort key, 1008
humor in, 1004
inconsistent

1010 15 January 1998 Version 1.04



Tips on Indexing LATEX Documents 1011

abbreviations, 1008
capitalization, 1008
hyphens, 1008
multi-level, 1008
punctuation, 1008
related entries, 1008
spacing, 1008
TEX ties, 1008

indentation in multiline, 1006
line break in, 1006
long, 1006
maximum levels of, 1002, 1003
multiple adjacent spaces in, 1006
non-roman letters in, 1003
page break before, 1001
\penalty in, 1008
produced two or more ways, 1008
redundant, 1008
roman text, 1003
sort key, 1003
spelling error, 1009
TEX macros not expanded, 1006
text of, 1003
unaccented, 1003

\indexentry, 1002, 1005–1007

\jobname, 1002
\jobname.ind, 1002

Kehr, Roger, 1001, 1003
Kernighan, Brian W., 1001
Knuth, Donald E., 1004

\label, 1002
Lamport, Leslie, 1001
left angle bracket, 1005, 1006
left brace, 1005, 1006
left square bracket, 1005, 1006
line break
hyphenless, 1007, 1008

make, 1003, 1009
makeindex, 1005
Makefile, 1002, 1007, 1009
makeidx.sty, 1001, 1002
\makeindex, 1002
makeindex, 1001–1005, 1007, 1008
mark-whole-buffer, 1008, 1009
marker pen, 1004
markup
structured, 1004

mouse button, 1004

netlib, 1001
numbers

sorting of, 1003

\o, 1003

page break, 1001
\pageref, 1002
\penalty0, 1007, 1008
percent, 1001, 1005, 1006
plural, 1008
\printindex, 1002
\PROGRAM, 1004
program
bibtex, 1003
ftp, 1001
make, 1003, 1009
makeindex, 1005
makeindex, 1001–1005, 1007, 1008
netlib, 1001
sed, 1007
shar, 1001
spell, 1009
texindex, 1001
troff, 1001

\protect, 1006, 1007, 1009

query, 1005, 1006
quotation mark, 1005, 1006

\ref, 1002
rejection count, 1008
right angle bracket, 1005, 1006
right brace, 1005, 1006
right square bracket, 1005, 1006
roman text, 1003

Schrod, Joachim, 1001, 1003
sed, 1007
\see, 1002
shar, 1001
sharp sign, 1005, 1006
showidx.sty, 1002, 1004
singular, 1008
sort key, 1003, 1008
sort order, 1003
avoiding macro expansions, 1006
blanks, 1003, 1006
default, 1003
discretionary hyphen, 1007
exception dictionary, 1009
letters, 1003
numbers, 1003
\penalty item, 1007
special symbols, 1003

sort-lines, 1009
space, 1005, 1006

15 January 1998 Version 1.04 1011



1012 Tips on Indexing LATEX Documents

spell, 1009
spelling error, 1009

using \make to find, 1009
structured markup, 1004

syntax error, 1008

tab character, 1008
TEX control sequence

\", 1005
\aa, 1003

\ae, 1003
\begin{document}, 1002
\documentstyle, 1001, 1002
\FILE, 1004

\index, 1002, 1004–1008
\indexentry, 1002, 1005–1007

\jobname, 1002
\label, 1002

\makeindex, 1002

\o, 1003
\pageref, 1002

\penalty0, 1007, 1008
\printindex, 1002

\PROGRAM, 1004
\protect, 1006, 1007, 1009

\ref, 1002
\see, 1002

\verb, 1007
\X, 1006, 1007

\XFILE, 1004, 1006
\XPROGRAM, 1004, 1006

texindex, 1001

text editor, see sed, see editor, see Emacs
tilde, 1005, 1006

tradename, 1008
troff, 1001

underscore, 1005, 1006
untabify, 1008

\verb, 1007

verbatim text, 1007
vertical bar, 1002, 1005, 1006

warning count, 1008

whitespace, 1001

\X, 1006, 1007

X Window System, 1004
\XFILE, 1004, 1006

\XPROGRAM, 1004, 1006

� Nelson H. F. Beebe
Center for Scientific Computing
University of Utah
Department of Mathematics, 105
JWB

155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
Tel: +1 801 581 5254
FAX: +1 801 581 4148
Internet: beebe@math.utah.edu,
beebe@ams.org, beebe@ieee.

org

1012 15 January 1998 Version 1.04


	Introduction
	LaTeX {} indexing macros
	Typesetting the index
	Controlling the sort order and fonts
	Finding topics to index
	Special characters in index entries
	Long index entries
	Controlling macro expansion
	Checking the index

