
Unix for TOPS-20 Users

Nelson H.F. Beebe
Center for Scienti�c Computing
Department of Mathematics

University of Utah
Salt Lake City, Utah 84112

USA
Tel: (801) 581-5254

[24-Jun-87]

Contents

1 Introduction 1

2 What's in the Name 2

3 Command Processors 2

4 Command Correspondence 5

5 File Tree Organization 13

6 User, Directory, and File Names 17

7 Device Names 17

8 Logical Names 18

9 Pipes, I/O Redirection, and Background Jobs 19

10 Terminal Support in Unix 20

11 EOF and Logout 21

12 Command Aliases 21

13 Environment Customization 22

14 Getting Help On-line 22

15 Operators, Wheels, and Super-Users 23

16 Important Unix Tools 24

17 Further Reading 25

Index 27

i

1 INTRODUCTION 1

1 Introduction

This document has been written to provide a starting point for Tops-20 users
who will be working on Unix systems, particularly the SUN workstations. It is
not a small book about Unix; the last section gives pointers to several books
that should prove useful. Rather, it is intended to provide the reader with
connections between familiar Tops-20 concepts and their analogues on Unix.

Unix has often be criticized for terseness, lack of mnemonic commands, and
command inconsistency, plus for over-emphasis of interactive computer use as
opposed to batch \number crunching". To a considerable extent, these criticisms
are grounded in fact. However, anyone who uses Unix for an extended period
and learns how to make good use of the multitude of tools available almost
without exception becomes a convert. Despite its warts, Unix is in many ways
a very beautiful operating system which has had, and continues to have, enor-
mous inuence on operating systems design, programming languages, software
development environments, and even on hardware of several new architectures.
Its clean, sleek, design can be attributed largely to the small number of very
talented researchers at AT&T Bell Laboratories who developed it for the �rst
several years of its �rst existence on a PDP-11, with subsequent ports to IBM
370 and Honeywell GCOS systems. Several of them deserve mention here, for
you will see their names mentioned frequently in Unix books, literature, and
documentation:

� Ken Thompson for the operating system kernel and �le system;

� Dennis Ritchie for the C language;

� Steve Johnson for the Portable C compiler, and the yacc and lex compiler
generator tools;

� Brian Kernighan, Peter Weinberger, and Al Aho for numerous software
tools and books about Unix and C;

� Stu Feldman for the �rst Fortran 77 compiler anywhere, f77, and for make,
possibly the all-time greatest software tool ever written.

Implementations of Unix run on machines as small as the IBM PC, and as
large as the Cray 2. With only a few exceptions (CDC, Fujitsu, and IBM), nearly
every new supercomputer introduced to the market since 1985 has, or will soon
have, Unix. No other operating system in the world runs on so many di�erent
hardware architectures, providing, for the �rst time in computing's forty-year
history, the possibility of true programmer and software portability across mul-
tiple architectures. From management's point of view, this should make it much
easier to chose computers more on the basis of hardware performance, and less
on maintaining the status quo that has left mainframe computing environments
only super�cially di�erent than they were in 1963 when the �rst multi-model
architecture, the IBM 360 series, was introduced.

2 WHAT'S IN THE NAME 2

2 What's in the Name

Ken Thompson chose the name Unix as a pun on the operating system Multics,
from which it borrowed many ideas. The initial implementation on the PDP-11
was in assembly code, but this was soon rewritten in the C language. Dennis
Ritchie developed C from B, which in turn came from BCPL, one of the �rst
portable systems programming languages. BCPL and B still exist, and B has
produced a descendant, Margay, which is used to write the Waterloo Maple
algebra system. C has completely overshadowed them however.

AT&T Bell Laboratories has trademarked the name Unix, so other vendors
who license it from them must usually come up with new names. AT&T has
now gone through public releases of Version 6, Version 7, System III, System
V, PWB (Programmer's Workbench), and DWB (Documenter's Workbench).
Version 8 is in development internally.

Berkeley has had 4.0, 4.1, 4.2, and 4.3 of BSD (Berkeley Standard Distri-
bution) Unix. Their contributions to Unix are legion; the most signi�cant are
the original port to the DEC VAX architecture, the addition of virtual memory
paging support, the fast �le system, the C shell (csh), and TCP/IP networking
support.

Hewlett-Packard calls theirs HPUX; it is based on System V with Berkeley
extensions.

Sun's implementation is called Unix in their documentation; they are ap-
parently licensed to do so. It is based on 4.3 BSD with System V compatibility,
and Sun is working together with AT&T to produce a common Unix merging
the features of both these major implementations.

IEEE has published a portable operating system interface de�nition called
POSIX, derived from a subset of Version 7, System III, and System V.

Gould's implementation is UTX-32. The IBM RT version is called AIX. On
the Cray 2, it is called UNICOS.

On the IBM PC, we have Venix from VentureCom, and Xenix from Mi-
crosoft.

Nobody to my knowledge has yet produced a cleaned-up version called
Kleenix.

3 Command Processors

Unix o�ers a variety of command processors, called shells, which are analogous
to combinations of the Tops-20 EXEC, MIC, and PCL .

The original one, sh, is known as the Bourne shell, after its author, Steve
Bourne. The most popular one in Berkeley Unix environments is Bill Joy's
csh, the C shell, so called because of its resemblance to the C programming
language. csh o�ers better programmability, command history, command alias-
ing, and importantly, job control allowing starting and stopping foreground and

3 COMMAND PROCESSORS 3

background jobs.
A newer shell is the Korn shell, ksh, which combines features of both sh

and csh, and o�ers command functions and Emacs-style command editing. The
fpsh is a Backus functional-programming style shell. Neither ksh nor fpsh

has received wide distribution, but ksh may eventually replace sh if it receives
strong AT&T backing.

In Sun Unix, shells and other programs may be conveniently run in a win-
dowing environment; see the man pages on dbxtool, shelltool, suntools, and
tektool.

Unlike the Tops-20 EXEC, Unix shells have only a small number of built-in
commands, and these are exclusively for control of shell options. What corre-
sponds to most EXEC commands are actual executable programs whose names
are not known to the Unix shells; they must therefore be typed without ab-
breviation. They are searched for in the �le system in a chain of directories
de�ned by the PATH environment variable, much like the Tops-20 SYS: logical
name. For this reason, and also because Unix was originally developed on slow
teletype printing terminals, Unix commands tend to be short, with many 2-
and 3-letter commands.

The Tops-20 EXEC has knowledge of the syntax for all of its built-in com-
mands, and PCL gives ordinary users the ability to add new ones which are
indistinguishable from EXEC commands as far as their user interface is con-
cerned. When you type something like COMPILE /?, the EXEC knows what
switches are available, and will display them in response to your query, but no
attempt has been made to load any particular compiler into memory. A program
whose syntax is not built-in to the EXEC, such as FORTRA.EXE, cannot give you
help until it is running. That is why FORTRA /? does not work, but FORTRA

followed by a carriage return and /? does, since by that time, the program
is executing. The particular order of switches and �lenames on the command
line is up to whoever de�ned the parsing syntax, and consequently, Tops-20
commands exhibit a variety of styles, including subcommand modes, such as
used by the BUILD and DIRECTORY commands, which have a large number of
options.

In Unix, the shells do not carry built-in knowledge of individual program
options and �lename expectations. Instead, they assume that all commands
are invoked with the syntax commandverb foptional switchesg filelist.
Switches are conventionally pre�xed by a hyphen (though there are exceptions,
such as tar and ar). In any event, everything after the commandverb is assumed
to be a potential �lelist, and the text is scanned for wildcard characters (which
cause �lename expansion), and the command line is expanded into a list of
blank-separated arguments. The main routine in the program itself is then
presented with two parameters|an integer count of the number of arguments,
and a vector of pointers to each of the arguments.

For many purposes, this is quite adequate. No program has to handle wild-
card expansion, since it sees only the �nal list of command-line arguments.

3 COMMAND PROCESSORS 4

Option parsing is simple because the initial character of each argument is ex-
amined to see whether it is a hyphen or not; if it is, an option switch is assumed,
and the remaining characters of the argument are further examined to classify
the argument. Otherwise, the argument is assumed to be a �lename.

There are several disadvantages of this approach.

� No in-line help is available from the shell, like it is with the Tops-20
EXEC. This is a serious aw of essentially every other operating system
but Tops-20, and forces a user who has partially typed a command line
and then forgotten the name of a switch to reach for a printed manual, or
abort the typein and go search for on-line documentation.

� Invalid syntax in the command line is not detected until the program has
already been located in the �le system, loaded into memory, and started,
which wastes system resources. Since typographical errors are common,
this happens frequently.

� The �lename expansion done by the shell is limited to the size of the
pointer vector bu�er, which is unfortunately �xed when the shell is built.
Although it is large, it is not large enough to hold expansions of several
large directories; for example, ls -l /usr/man/man?/* overows the shell
bu�er and the command does nothing.

� Because the shells handle wildcard expansion, everyone assumed that
would always be su�cient, and no Unix library that I am aware of pro-
vides a user-callable function for wildcard expansion. Thus, a program
like Unix Kermit cannot handle a get *.* command, unless that request
was on the command line.

� Expanding wildcards implies searching the �le system, and the way that
the shells, and programs like tar, have done this is to read the directory
�les themselves, making user code unnecessarily knowledgeable about de-
tails that really should be known only to the kernel. In Sun's latest release
of Unix, directories can only be read via special library calls, instead of by
explicit opens and reads of directory �les, indicating that the importance
of my criticism is only now beginning to be understood.

� The non-trivial pattern matching code required by most editors and the
shells has only recently been added to the standard libraries on some Unix
systems (regexp(3)).

The Tops-20 approach for wildcard expansion permits the user to present
a wildcarded �le speci�cation to the Monitor through a system call, then to
retrieve one matching �lename with each subsequent system call. If the program
wishes to o�er fancier pattern matching, it can easily do so by requesting the
most general �le speci�cation from the Monitor in the �rst place, then apply the

4 COMMAND CORRESPONDENCE 5

pattern match �lter to each returned name. Space never has to be allocated to
store all the �le names at once, since the Monitor is able to handle the bu�ering
of �lenames; there is no di�culty then in asking for a listing of all the �les in
the �le system, DIRECTORY PS:<*>*.*.*. In Unix, this can only be done by a
subterfuge of additional options of some commands, like ls. If the user really
wants a complete list of all the �les in the wildcard expansion, then there is no
di�culty in dynamically allocating the space for them as they are retrieved one
by one.

In some recent implementations of 4.3BSD, users have modi�ed shells to
provide some limited in-line help with �lename expansion. On the Sun, if the
csh environment variable filec is set, then if Ctl-D is typed on the command
line (not at the beginning, because that would be an end-of-�le signal), a list
of all �les which match to that point is displayed. This action is suppressed for
the �rst word on each line (the command verb), so you cannot use it to �nd,
say, all commands that begin with a certain letter. It is unfortunate that Unix
chose the query as a pattern matching character; it should have been reserved
for future use as a help character. Ctl-D is much less obvious.

4 Command Correspondence

The following tables give a brief summary of Tops-20 commands (obtained by
typing \?" to the EXEC) and popular programs with Unix equivalents.

In some cases, there is a close match between them, and in others, only
very rough equivalence. For example, although Unix has mount and umount

commands, these correspond to privileged Tops-20 OPR commands SET DISK

AVAILABLE and DISMOUNT, rather than to the EXEC ASSIGN, DEASSIGN, MOUNT,
and DISMOUNT commands. There is no way for a Unix user to request that the
operating system ASSIGN or MOUNT a device, such as a tape drive; the operating
system provides no such control. Instead, the user just references the device
name and hopes no one else had the same idea at the same time (e.g. tar -cv

* writes on /dev/rmt0 without any volume veri�cation).

4 COMMAND CORRESPONDENCE 6

Private TOPS-20 Commands Unix Equivalents
ALERT leave
ANOTHERDIRECTORY ls
BELL echo -n Ctl-G
CD cd, pwd
DSKUSE du, df
FILE-ACCESS-COUNT -n/a-
FINGER �nger
KEYLOAD cat
LPQ lpr
MKDIR mkdir
PCL -n/a-
PQ lpr
PSYS �nger, last, ps, rwho, who
PURGE -n/a-
QSPELL spell
REPEAT for
STCOPY cpio, cp, tar
STRSF3 strsf3
TDELETE �nd | rm
TEST test
TYPE cat
UPDATE-ALERT leave
WAIT sleep, wait
WHAT env, printenv
XDIRECTORY csh, ksh, sh

4 COMMAND CORRESPONDENCE 7

Standard TOPS-20 Commands Unix Equivalents
? apropos, man, whatis, whereis, which
ACCESS -n/a-
ADVISE -n/a-
AGAIN !!, !#
APPEND cat >>
ARCHIVE ar, tar
ASSIGN -n/a-
ATTACH -n/a-
BACKSPACE dd, mt
BLANK clear
BREAK Ctl-D after write
BUILD mkdir, rmdir
CANCEL atrm, lprm
CLOSE -n/a-
COMPILE cc, f77, make, pc, pi, pix, px
CONNECT cd, pwd
CONTINUE csh: fg
COPY cp
CREATE ed, emacs, ex, vi
CREF cxref, ctags, pxref
CSAVE strip, csh: Ctl-n; see also COMPILE
DAYTIME date
DDT adb, dbx, dbxtool, sdb
DEASSIGN -n/a-
DEBUG cc -g, f77 -g, pc -g plus adb, dbx, dbxtool, sdb
DECLARE -n/a-
DEFINE csh: setenv, sh: export NAME=
DELETE rm
DEPOSIT -n/a-
DETACH -n/a-
DIRECTORY ls
DISABLE Ctl-D from su
DISCARD -n/a-
DISMOUNT -n/a-
DO shell command�le

EDIT ed, emacs, ex, sed, textedit, vi
ENABLE su
END-ACCESS -n/a-
EOF -n/a-
ERUN -n/a-
EXAMINE -n/a-

4 COMMAND CORRESPONDENCE 8

Standard TOPS-20 Commands Unix Equivalents
EXECUTE commandname

EXPUNGE -n/a-
FDIRECTORY ls -l
FORK csh: bg, fg; switcher
FREEZE csh: fg plus Ctl-Z

GET -n/a-
HELP apropos, man, emacs Ctl-H I

HISTORY history
INFORMATION atq, env, lpq, printenv
KEEP csh: bg
KMIC -n/a-
LOAD cc, f77, ld, make, pc, pi, pix, px
LOGOUT logout or Ctl-D
MERGE -n/a-
MODIFY -n/a-
MOUNT -n/a-
NAME -n/a-
ORIGINAL -n/a-
POP Ctl-D

PRESERVE -n/a-
PRINT lpr
PUNCH -n/a-
PUSH csh, sh
QD -n/a-
R -n/a-
RDIRECTORY ls -ltu
RECEIVE mesg
REENTER -n/a-
REFUSE mesg
REMARK cat >/dev/null
RENAME mv
RESET csh: kill -9 %#
RETRIEVE -n/a-
REWIND dd, mt
RUN commandname

SAVE csh: Ctl-n
SET leave, csh: set verbose, passwd
SKIP dd, mt
START csh: fg
SUBMIT at
SYSTAT �nger, last, ps, rwho, w, who

4 COMMAND CORRESPONDENCE 9

Standard TOPS-20 Commands Unix Equivalents
TAKE csh �le, sh �le, csh: source �le, sh: . �le
TALK mesg, write
TDIRECTORY ls -lt
TERMINAL reset, stty, tset
TRANSLATE -n/a-
TYPE cat, less, more, view
UNATTACH -n/a-
UNDECLARE -n/a-
UNDELETE -n/a-
UNKEEP -n/a-
UNLOAD dd, mt
VDIRECTORY ls -l
WDIRECTORY ls -lt

4 COMMAND CORRESPONDENCE 10

Common TOPS-20 Programs Unix Equivalents
AMSTEX amstex
AWK awk
BBOARD rn
BOLDx tgrind, vgrind
CB cb, indent
Ctl-T Ctl-T, time
DETAB expand, unexpand
DIFF di�, di�3, sdi�
DOCUMENT format, ro�, nro�, tro�
DOWNLD cat, setkeys
ECHO echo
EGREP egrep
FAIL as
FGREP fgrep
FILCOM di�, di�3, sdi�
FINGER �nger
FORPRT fpr
FORPTX fpr
FTP ftp, rcp, tftp, uucp, uusend
GETSPD stty
GREP grep
HEAD head
INDENT cb, indent
INFSCR du
KERMIT kermit
LATEX latex
LIBREF libref, nm
LPTOPS devps, lptops, transcript
MACRO as
MAKE make
MAKFIL fsplit, mak�l, split
MAKLIB ar, ranlib
MAPLE maple
MIDAS as
MLTCOL pr
MM mail
NETSTAT �nger, netstat, ruptime, rwho, tra�c

5 FILE TREE ORGANIZATION 11

Common TOPS-20 Programs Unix Equivalents
PASTOC pastoc
PCHIST gprof, monitor, prof, tcov
PCLOOK gprof, monitor, prof, tcov
PFORM -n/a-
PFORT pfort
PHOTO script
PRETTY pretty
QSPELL spell
RATFOR e, f77, ratfor
REDUCE reduce
RUNOFF format, ro�, nro�, tro�
SCRIBE scribe
SED sed
SEDIT ed, ex, sed
SETSPD stty
SF3 sf3
SNOBOL icon, snobol
SORT sort, tsort
SRCCOM di�, di�3, sdi�
TAIL tail
TELNET telnet, rlogin, rsh, uux
TEX tex
TMACRO cpp, m4, tmacro
TNET tip
TPUTIL ansitape, dd, mt, tar
TRIM72 awk
TSTAGE �nd
UHELP uhelp
UNITS units
USRLST ls /usr
UUDECODE uudecode
UUENCODE uuencode
VAXTAP ansitape
VMSHELP vmshelp
XREF cxref, pxref
XSEARCH egrep, fgrep, grep, ngrep

5 File Tree Organization

Tops-20 and Unix both o�er what appears to the user to be a tree-structured
�le system made up of ordinary data �les and directory �les; the directory �les
contain lists of �les, including possibly directory �les. Tops-20 �le names are

5 FILE TREE ORGANIZATION 12

case insensitive, and conventionally displayed in upper-case. Unix �le names
are case sensitive: �les foo, FOO, and Foo are distinct. Since ASCII upper-case
letters collate before lower-case letters, Unix users traditionally spell all �le
names in lower-case, except those few special �les that they want to appear at
the start of a directory listing, such as Makefile, README, and TODO, where they
are more likely to be noticed.

Here is a comparison of these �le tree structures.

Directory Object Tops-20
Directory file name.DIRECTORY.1

Root directory device:<ROOT-DIRECTORY>

Top-level directory name device:<ROOT-DIRECTORY>FOO.DIRECTORY.1

Top-level directory device:<FOO>

Subdirectory device:<FOO.BAR>

Ordinary file device:<FOO.BAR>file.ext.gen

Directory Object Unix
Directory file anyname1

Root directory /device

Top-level directory name /device/foo

Top-level directory /device/foo

Subdirectory /device/foo/bar

Ordinary file /device/foo/bar/file.ext2

There are both good and bad points of these �le systems.
Both have the concept of a default login directory and a \current default

directory", so frequently, only the �le name, not its full directory path, has
to be speci�ed. Unix supports relative directory paths, and Tops-20 will too
with the next version of the Monitor to be installed in late spring 1987. This
reduces the amount of typing users have to do, and makes it possible to de�ne
command �les which never have to name a full directory path explicitly, allowing
directory trees to be moved from machine to machine without having to edit
their command �les. The <PLOT79> Unix implementation makes extensive
use of this capability.

On Unix, �les in the current directory can be named without an explicit
path, or pre�xed by a relative path ./, since . is a shorthand for the cur-
rent directory. The parent directory shorthand is .., so a �le in that direc-
tory could be referred to as ../filename. This notation can be repeated:

1Unix has no special directory name format; the directory �le attribute is stored with the

�le protection bits
2Unix does not have �le generations, although multiple periods are permitted in names, so

they can be simulated|file.ext.1 is a valid �le name.

5 FILE TREE ORGANIZATION 13

../../../filename is a �le in the great grandparent directory. You rarely
need to use the ./ notation, but it is sometimes handy to disambiguate a �le-
name with an initial hyphen from an option switch, which is always begun by
a hyphen in Unix; for example, rm -foo raises an error message rm: unknown

option, but rm ./-foo deletes the �le successfully.
Another useful shorthand supported by csh and several utilities, but not by

sh, is tilde to represent the login directory: /.cshrc is a �le in that directory.
For sh, you must use a standard environment variable, HOME: $HOME/.cshrc;
this works with csh too.

On both systems, directory �les are special|they may be readable by a user
program (on Tops-20, only by making system calls, for reasons made evident
below), but only the operating system kernel is ever permitted to write them,
in order to maintain �le system integrity.

The Unix format is simple and consistent, but one cannot tell from the name
if a �le represents a directory �le or not. This often does not matter, for if you
ask for a directory listing of a �le which is a directory, you get a list of the �les
in that directory, but if it is a normal data �le, you just get the name back;
both cases are considered legitimate, and no error is raised for either.

The Unix �le naming syntax and operating system support for it make
devices equivalent to �les from the point of view of the programmer. Here are
some examples:

/dev/tty user terminal
/dev/mt tape drive
/dev/lpr line printer spooler
/dev/null null device
/u/ma/jones/foo.bar ordinary �le

The null device is always empty for input, and never full for output; it is pri-
marily useful for providing dummy input and output �les.

The Tops-20 format is more complex, but clearly distinguishes directory
�les from ordinary data �les. Device names can be used in place of �le names,
but the directory and �le speci�cation are just ignored. Thus, for the above
Unix examples, Tops-20 has

TTY: user terminal
MT: tape drive
LPT: line printer spooler
NUL: null device
APS:<U.JONES>FOO.BAR.3 ordinary �le

There is, however, a signi�cant distinction in the implementation of the directory
system. A Tops-20 directory contains, among other things:

� �le names;

5 FILE TREE ORGANIZATION 14

� �le attributes (byte count, byte size, page count, protection, account, login
or �les-only, owner name, last writer name, reference counts, temporary
or permanent, deleted but not expunged, archived, visible/invisible, : : :);

� times of creation, last read, last write, last update, last backup, and expi-
ration;

� for archived �les, names of two separate tapes on which the �le contents
reside o�-line;

� logical disk address pointers to the parent directory;

� logical disk address pointers to each �le's contents;

� disk quotas;

� login passwords.

Since the Tops-20 operating system caches active directories in memory, �nding
a �le in the current directory normally does not require any disk accesses. The
pointers to parents and children embedded in the directory �le mean that it
cannot be renamed or moved to a new disk structure without being reorganized
and rewritten. There is no e�ective limit to the number of �les in the entire
�le system; �les can continue to be created until there is no more disk space
left in the �le system. If a directory �le block becomes corrupted, it is still
usually possible to reconstruct and recover virtually all of the whole �le system
by virtue of the forward and backward pointers of the directory blocks (each
�le has an index block which points to its owner directory). This is the job of
the CHECKD utility which is run whenever the DEC-20/60 is rebooted after a
hardware or electrical failure which potentially could corrupt the �le system.

Under Unix, directory �les contain essentially only two things:

� �le names;

� for each �le, its index into a master table of all �les in the system (the
Unix inode table);

A Unix directory �le always contains an entry for its parent directory and itself,
and so, like a Tops-20 directory, cannot be moved without internal reorganiza-
tion. On the other hand, �nding the parent directory from a subdirectory can
be done e�ciently from information in the directory �le itself.

Unix stores a �le reference count in its master inode table, which allows a
�le to have multiple names. Deleting a �le removes its name from its owning
directory and decrements the reference count; only when the count reaches zero
is the �le space actually freed. One important use of these \linked �les" is
replication of data �les to large groups of users, such as students in a class|
they can each have their own copies of a problem test �le, but only one copy is

6 USER, DIRECTORY, AND FILE NAMES 15

ever stored on disk. Rewriting the �le breaks the links to the other copies, so
one user cannot change another's �les this way. It also makes it easy to create
aliases for �les or for �le trees.

The master �le table is indexed by the inode number from the directory, and
the entry it selects is a structure containing �le attributes (ownership, protec-
tion, etc.) and physical disk address. The weak point here is this single master
�le table:

� if it is lost, the whole �le system is lost;

� it is a sparse linear table of perhaps 100,000 to 500,000 entries in a large
system, so access can be slow;

� it is not extendable; once it �lls up, the �le system is full, even if lots of
disk space is still empty.

These issues have received considerable attention from Unix developers. Dupli-
cate copies of the master �le table and frequent updates to disk, plus increasingly
reliable disk media and intelligent external disk controllers, have made the fre-
quent �le system losses of the past rare today. Internal memory caching of large
parts of the master table improves the lookup performance. Neither system has
yet been able to deal with the third problem; when it strikes, the only recourse
is a complete rollo� of the �le system to tape, then a complete system rebuild
with an enlarged �le table. On a large system, this could easily be an all-day job
for the operations sta�. To reduce the likelihood of a system-wide inode table
overow, and to allow for selective �le system backup, Unix disks are normally
con�gured into multiple logical volumes, each with their own inode table. If one
of these logical volumes su�ers overow, as long as it is not the root volume, it
can be unmounted and rebuilt without halting the system.

Disk quotas in Unix are maintained on the basis of �le ownership from limits
set in the user authorization �les, not by directories as they are on Tops-20.
The Unix approach is usually more convenient for a user, since the quota is
independent of the number of subdirectories, but it also makes it impossible to
regulate disk usage by directory as can be done on Tops-20.

Unix �le systems tend to make heavy use of directories, which can be con-
fusing for new users. Most, however, adhere to certain common conventions for
naming of system directories. See the man page on hier(7) for an outline of
the important ones.

6 User, Directory, and File Names

On Tops-20, a username is used to form the name of the login directory; user
SMITH has a login directory PS:<SMITH>. Under Unix, the username is deter-

7 DEVICE NAMES 16

mined from a system authorization �le,3and need have no particular connection
with the login directory name.

A Unix login name is limited to 8 characters in length; Tops-20 usernames
can be up to 39 characters long.

Filename length limits vary with the version of Unix. Originally, �lename
components (the parts between slashes in the full name) could not exceed 14
characters in length; the limit on the full �lename including the path speci�-
cation was unclear. With 4.3BSD, any �lename component may be up to 256
characters long, and the entire �lename with complete path speci�cation may
not exceed 1024 characters in length.

Filename components may contain any characters except NUL and slash;
some versions of Unix even permit non-printable characters in �lenames. In
general, use of non-printable and special characters is likely to interfere with
shell wildcard processing and parsing syntax, so the recommended practice is to
restrict �lename characters to letters, digits, hyphen, and underscore. Tilde and
sharp are used by sccs and some editors to mark backup copies. It is perfectly
acceptable to have multiple periods in a name; for example, yacc creates a �le
named y.tab.h. However, to ease �le portability to other operating systems,
you should limit yourself to one period per �lename, and avoid mixed case and
special characters.

Most Unix language compilers require �xed �lename su�xes, like .c, .f,
.o, .p and .s. Executable programs and shell scripts conventionally have no

�lename su�x, making them indistinguishable from one another; the shells ac-
tually read the �rst few characters of the �le to �gure out which of the two �le
types it is.

Filenames beginning with a leading period are treated as hidden �les. Shell
wildcard expansion does not include them unless a pattern beginning with a
period is given. The command ls -a will show all �les, including the hidden
ones. Typically, such �les are used for providing program default initialization
data, such as for login, and for shells and editors.

7 Device Names

One of the great strengths of Unix is that the operating system provides a
uniform view of devices as �les, allowing standard I/O functions to be used
to read, write, and control both without regard to the sometimes substantial
di�erences between them. Kernel device drivers are provided for each of the
devices on the system; device xxx appears to the user as a �le /dev/xxx.

Doing ls /dev will list all of the system devices. /dev/tty is the standard
name for the job's controlling terminal. /dev/null is the null device|reading

3On Unix, the normal text �le /etc/passwd is maintained by the system manager. These

�les list authorized users, their encrypted passwords, group and user numbers, login directory,

and default command interpreter.

8 LOGICAL NAMES 17

from it always returns immediate end-of-�le, and writing to it discards the
output. On a Sun workstation, /dev/fb is a graphics frame bu�er.

/dev/mt is the standard magnetic tape drive. Several points should be noted
about it:

� Tapes are usually available as a \raw" device as well, named /dev/rmt.

� Multiple drives are identi�ed by trailing digits /dev/mt0, /dev/mt1, ...,
/dev/mt15.

� The drive number is frequently keyed to a default tape density, as well
as to an auto-rewind-after-write feature. Consult man section mtio(4) for
details. This bizarre behavior is occasioned by lack of support in the kernel
for tape functions which could permit separate control of tape formats and
positioning.

8 Logical Names

Unix has shell and environment variables which are somewhat analogous to
Tops-20 logical names. They di�er in two important aspects. First, their
values are arbitrary text strings, instead of being restricted to �lename strings.
Second, they are handled by the shells, and not by the Unix kernel.

This means that they can be, and commonly are, used for communicating
arbitrary strings to programs at runtime, which can obtain their values with the
getenv() system call.

A Tops-20 program can open a �le named MUNG:FOO.BAR, and the Monitor
will look up the de�nition of the logical name MUNG:, which might be a chain
of directory names, and pre�x each one in turn to the �lename FOO.BAR until it
�nds a valid �le speci�cation. In Unix, every program which wants this feature
must handle it explicitly, and there is not even a standard library function to do
the job. The shells automatically search the directory list in the PATH variable
to �nd a �le to be executed.

With csh, you set a local shell variable by set NAME=value, and view the
list of current variables by set. With sh, the syntax is NAME=value, and the
set command again displays the current list. Such variables can be used for
later string substitution in shell commands; wherever the string $NAME is found
on the command line, its current value will be substituted.

To make variables available to programs which are run from the shell, they
must be put into the environment. With csh, this is done by setenv NAME

value, and with sh, by export NAME=value, or for the duration of a single
command, by NAME=value; commandname. With both shells, printenv will
display the current variable list.

9 PIPES, I/O REDIRECTION, AND BACKGROUND JOBS 18

9 Pipes, I/O Redirection, and Background Jobs

Unix introduced three enormously valuable notions which had previously not
existed in commercial operating systems. They are the subject of this section.

The �rst of these is that every job has associated with it three standard
sequential I/O streams: stdin, stdout, and stderr. These are intended for
normal input, normal output, and abnormal output, and all three are automat-
ically opened and available for use when any job begins execution, independent
of the programming language it is written in.

The shells handle assignment of �les to these three streams; if you do not
specify otherwise, they default to the controlling terminal. To redirect them,
you just add a phrase anywhere on the command line:

Stream Redirection
stdin <infilename

stdout >outfilename (overwrites)
stdout >>outfilename (appends)
stderr csh: &filename (overwrites)
stderr csh: &&filename (appends)
stderr sh: 2>filename (overwrites)
stderr sh: 2>>filename (appends)

It is frequently desirable to merge the output of stderr and stdout. With
csh, you use >&; with sh, you use 2>&1. The peculiar numbers used in the
sh syntax are an obvious poor design; they reect the fact that the operating
system guarantees that these will be represented in system calls by the integer
�le descriptors 0 (stdin), 1 (stdout), and 2 (stderr).

The second important concept is piping|stdout from one process can be
\piped" into stdin of another by using the syntax prog1 | prog2; the vertical
bar is the pipe symbol. Pipes are one-way sequential data streams which for
e�ciency are not materialized in disk �les. When the �rst process �lls up the
pipe, it is suspended until the second process empties the pipe. Typical pipe
bu�er sizes are about 4K bytes, although this may depend on the particular im-
plementation. Besides saving on disk storage, pipes make it possible for a single
process to communicate to another an amount of data larger than the �le sys-
tem could contain, and they permit simple simultaneous processing. Programs
that transform their single input to produce a single output stream are known
as �lters, and most Unix tools can be used that way. As an example, a simple
spelling checker could be implemented by a program which broke a document
into a stream of words, with its output piped into a dictionary lookup program
which in turn echoed exceptions to its output. This could start producing excep-
tions soon after startup, instead of waiting until a possibly very long document
was broken into words. Instruction pipelining is one of the important ways to
improve hardware performance, and it helps in software performance too.

10 TERMINAL SUPPORT IN UNIX 19

Sometimes you want to trap the data owing through a pipe, perhaps to view
error messages on the terminal, or collect them in a �le. All that is required is a
program that copies its stdin to its stdout, and simultaneously makes a copy
in a �le. The tee program (named for a T-joint in a plumbing pipe) does this:
prog1 | tee filename | prog2.

The third important concept is background job processing. When the shell
starts another process running through the fork() and exec() system calls, it
normally waits for the process to complete before reading more of its own input.
However, if the command line is terminated by an ampersand (&), the shell does
not wait, and the process runs in the background, usually at a lower priority,
while the shell immediately resumes its input processing. This is an extremely
convenient feature, because it allows the user to avoid having the terminal tied
up while a long running process, such as a text search or a compilation, is in
progress.

You can even start a background job and logout, letting it run to completion,
providing you protect it from the hangup signal issued at logout which normally
terminates all running processes belonging to that shell. The nohup (no hangup)
command takes care of this; type nohup somecommand and then logout.

The csh even allows you to suspend and resume processes; the lack of this
job control feature in AT&T System III and System V Unix is one of its more
serious aws in comparison to Berkeley Unix.

10 Terminal Support in Unix

Terminal control has been a perennial problem in every computer system, be-
cause few terminal vendors have been able to agree on what command sequences
should be used to do the same thing, and even when they claim to agree, in
practice, deviations are often found. Many computer vendors therefore tend
to only o�er support for their own terminals, which naturally cost more than
competing products.

The Berkeley Unix developers had no such hardware bias, and chose the
\correct" way to handle terminal support|they de�ned a terminal capability
database, termcap, and a set of utility programs to support it. termcap on
most Unix systems has entries for between 400 and 500 terminal types.

Programs, such as screen editors and spreadsheets, that use termcap need
not contain any terminal-speci�c code, and require only that the user make
the terminal type known to them. This is done with the TERM environment
variable, which is conventionally set at login time by commands in the .login
�le, possibly after prompting the user to supply a type. For example, I am
writing this paragraph on a VT100 compatible terminal, so I just need to type
setenv TERM vt100 if I am using csh, or TERM=vt100; export TERM if I am
using sh.

By default, the database �le is stored in /etc/termcap which is not writable

11 EOF AND LOGOUT 20

by ordinary users. To allow testing a terminal description, you can put it in
a local �le, say mytermcap, then de�ne an environment variable to point to it:
setenv TERMCAP /u/logindir/mytermcap; an absolute pathname is required

here.
Since the termcap �le is reasonably large and therefore time consuming to

read for every command that has to use termcap, the convention has been
adopted that the database entry for the terminal type can be given instead in
the TERMCAP variable itself. This is a long ugly string which you would never
type by hand; the tset program will do it for you. The leading slash in the
absolute path name for a private termcap �le is used to disambiguate it from
an actual termcap entry.

11 EOF and Logout

The end-of-�le signal in Unix is Ctl-D, rather than the Ctl-Z you are used to
in TOPS-20 and other operating systems. To be recognized as such, it must be
typed at the beginning of a line. The shells are just ordinary programs without
any special privileges, and they too accept an end-of-�le signal as part of the
normal course of events, and when they get it, they terminate. This means if
you type a Ctl-D to your login shell, you are logged out. If you intended to do
that, well, it certainly is quick to type a single control character and be logged
out. But suppose you thought you were executing a nested shell, or perhaps you
typed ahead input to your own program, and then couldn't remember whether
you gave it the end-of-�le signal. Getting unexpectedly logged o� is a nuisance
in that you lose your command history and any environment changes, and if
you logged in via a dialup or network, you have also lost that connection too.

Fortunately, the csh o�ers a way to prevent this unhappy accident; you just
set the shell variable ignoreeof to an arbitrary value (e.g. set ignoreeof).
The shell will then respond with \Use "logout" to logout." if you type in a
Ctl-D.

12 Command Aliases

The Bourne shell, sh, has no command alias facility; if you want to make an
alias for some command, then you must create a command script �le for that
purpose.

csh has the alias command; you could type alias tdir ls -lt to make
a command tdir which works like the Tops-20 TDIRECTORY command. This is
much faster than creating a separate command �le, since no �le system access
is required. csh users tend to heavily customize their environments through the
alias command. A bare alias will display the current list of command aliases.

13 ENVIRONMENT CUSTOMIZATION 21

13 Environment Customization

Many programs in Unix permit the user to provide default startup options in a
hidden �le (one beginning with a leading period), usually in the login directory.

For example, the login program reads the .login �le when you login to
the system, just like the Tops-20 LOGIN.CMD �le is processed. Similarly, the
.logout �le is read and executed when you logout. Regrettably, Unix has
no concept of group-wide or system-wide login command �les; this makes it
necessary for each user's .login and .profile �les to reference any group or
system �les explicitly.

csh reads startup information from the �le .cshrc; this makes it analogous
to the Tops-20 COMMAND.CMD �le. The corresponding startup �le for sh is
.profile. These �les are the appropriate places to insert your personalized
aliases and environment variables. Do not put them in the .login �le, because
that �le is not read by spawned shells.

Emacs reads startup information from .emacs.
The mail program has .mailrc as its startup �le, and will automatically

forward mail sent to you to one or more addresses listed in the �le .forward.
Since MM on Tops-20 is vastly superior to Unix mail, I set my .forward �le to
cause all my mail on Unix systems to be sent to Tops-20.

In order to use rcp, rlogin, and rsh between di�erent Unix systems, you
must establish a .rhosts �le in your directory with the proper contents. See
man rlogin for details.

14 Getting Help On-line

All but the smallest Unix systems tend to have substantial on-line documen-
tation, mostly in the form of manual pages. The original Unix documentation
consulted largely of Bell Laboratories reports, papers published in the Bell Sys-
tem Technical Journal, and short command descriptions formatted in a uniform
syntax for the printed manual.

The printed manual was divided into 8 sections, with section 1 describing the
main user commands, and section 3 the operating system interface; the remain-
ing sections were devoted to more obscure commands, and system management
tools. Newer releases of Unix may have more manual sections, and sometimes
these are further subdivided; e.g. section 3F describes the Fortran-callable op-
erating system interface. Unix documentation generally refers to manual pages
by name and section, such as ls(1) and hier(8).

The �les that produce the printed manual are stored in directories /usr/-
man/man1 : : : /usr/man/man8 as �les suitable for input to the troff typesetter
program, as well as for the nroff typewriter text formatter program. The man
command searches these directories for the requested �le, runs the required
formatter on it, and displays the output text. For e�ciency, the output is also

15 OPERATORS, WHEELS, AND SUPER-USERS 22

captured and stored in a corresponding directory /usr/man/cat1 : : : /usr/-

man/cat8; man actually searches these directories �rst in an attempt to avoid
the formatting step.

man's search order is by increasing section, and it stops with the �rst match
it �nds. Thus, if you type man tty, it will display the section 1 entry. There is
also an entry in section 4 for this topic; to see it, you must type man 4 tty.

Sometimes there is a SEE ALSO entry on a manual page which points you to
extended documentation in another section, but often there is not.

To �nd out what manual pages might be of interest, you can type apropos
keyword, or man -k keyword; this will display the title lines of all �les in the
manual directories that contain the requested keyword. This information is
actually stored separately in the �le /usr/man/whatis to avoid having to search
a large number of �les.

man man will display man's own documentation. man 4 intro shows the
introductory page for section 4, which contains a useful summary of the section
contents.

In desperation, you can resort to searching an entire manual page directory,
e.g. egrep "foo|bar" /usr/man/man1/*.

15 Operators, Wheels, and Super-Users

Every operating system has some critical functions which only certain privileged
users are permitted to execute. Obvious ones are shutting down the system, and
accessing protected �les. On Tops-20, these are associated with OPERATOR
and WHEEL capabilities normally restricted to systems personnel. In addition,
they are not in e�ect until explicitly requested by the ENABLE command, and
they are turned o� by the DISABLE command. Also, more than one user can
have such privileges, which is important when the sta� exceeds one person.

Unix reserves special privileges to a single login name, root, and that user is
called the super-user. Because operating sta� may have frequent need for super-
user privileges, the su command is provided to allow spawning a new command
shell for root from a running job; anyone who knows the password can issue
this command. When the user logs out from this job, control returns to the
original shell. This organization is unfortunate, because it makes it necessary
for several people to know the same password, and it does not provide for a
distribution of privileges across several levels of personnel.

16 Important Unix Tools

Unix o�ers a bewildering variety of software tools, and it is hard for a novice to
wade through their man pages and determine which are the most valuable ones
to learn �rst. As a little experiment, I ran two commands on several di�erent

16 IMPORTANT UNIX TOOLS 23

Unix systems. The �rst counts the number of commands in the three standard
directories where system commands reside:

System Command File Count
Gould UTX-32 ls /bin /usr/bin /usr/ucb | wc -w 284
HP9000 HPUX ls /bin /usr/bin /usr/ucb | wc -w 281
ISC 4.2BSD ls /bin /usr/bin /usr/ucb | wc -w 295
Sun 3 ls /bin /usr/bin /usr/ucb | wc -w 302
VAX 4.3BSD ls /bin /usr/bin /usr/ucb | wc -w 287

The second counts the number of commands in the standard local additions
directory; most systems will have more than one of these.

System Command File Count
Gould UTX-32 ls /usr/local | wc -w 107
HP9000 HPUX ls /usr/local | wc -w 6
ISC 4.2BSD ls /usr/local | wc -w 42
Sun 3 ls /usr/local | wc -w 60
VAX 4.3BSD ls /usr/local | wc -w 162

In summary, there are 300 to 450 di�erent commands on a typical Unix system,
not counting the few dozen built-in shell commands.

Here then is a list of the Top Twenty commands you should learn �rst; those
near the start of the list have higher priority.

� man and apropos | get help

� csh or sh | command shell

� more or less| page through command output (automatic on newerUnix
systems)

� ls | directory listing

� cd and pwd | change/print current directory

� cat | type or copy �le

� cp | copy �le or directory

� mv | move (rename) �le or directory

� mkdir | make a directory

� echo | check shell command line expansion

� emacs or vi | screen editors

� make | build software

17 FURTHER READING 24

� grep, egrep, fgrep, ngrep | string search

� sed | automated text editing

� awk | text processing language

� ar and ranlib | source/object library utilities

� diff | source comparison

� script | log terminal session

� rm | remove (delete) �le

� rmdir | remove (delete) directory

With this repertoire of a score of commands, you should be able to work quite
successfully. Note that not a single compiler is listed here; make can handle that
for you for simpler cases. Seasoned Unix users value make highly, and ask it to
direct much of their routine work.

17 Further Reading

Sun provides a number of Beginner's Guides which are useful for new users:

� Getting Started with Unix

� Setting Up Your Unix Environment

� Self Help with Problems

� Windows and Window Based Tools

� Mail and Messages

� Doing More with Unix

� Using the Network

� Games, Demos, and Other Pursuits

There are now a great many introductory books about Unix on the market,
and you may wish to peruse local bookstore shelves, or come and examine my
personal library. Here are some which I have found particularly valuable:

� Maurice J. Bach, The Design of the Unix Operating System, Prentice-Hall
(1986) [advanced de�nitive treatise on the internals of Unix]

� Brian W. Kernighan and Rob Pike, The Unix Programming Environment,
Prentice-Hall (1984) [a must for every serious Unix user]

17 FURTHER READING 25

� Marc J. Rochkind, Advanced Unix Programming, Prentice-Hall (1985) [a
must for every systems programmer, or person writing code which must
run in a variety of Unix implementations]

� Kaare Christian, The Unix Operating System, Wiley (1983) [an interme-
diate treatment of Unix tools and internals, without the detail in Bach's
book]

� AT&T,Unix System Readings and Applications, Volumes 1 and 2, Prentice-
Hall (1987) [a collection of reprints from the Bell System Technical Journal
of key papers on the development and evolution of Unix]

Index

A

Aho, A.V., 1
AIX, 2
aliases, 21
apropos, 22
authorization �les, 16

B

B, 2
Bach, M.J., 26
background jobs, 19
Backus, J., 3
BCPL, 2
Bell Laboratories reports, 22
Bell System Technical Journal, 22,

26
Berkeley Unix, 2, 20
books about Unix, 25
Bourne shell, 2, 21
Bourne, S.R., 2
BSD (Berkeley Standard Distribu-

tion), 2

C

C, 2
case distinction, 13
CDC, 1
Christian, K., 26
command shells, 2
correspondence betweenTops-20 and

Unix commands, 5
Cray 2, 1
Ctl-D, 21
current default directory, 13
customization, 22

D

device names, 14, 17
directory �les, 14
directory names, 17
directory path, 13
disk quotas, 16
DWB, 2

E

environment variables, 18
EOF, 21
EXEC, 2

F

Feldman, S.I., 1
�le attributes, 16
�le generations, 13
�le reference count, 15
�le system rollo�, 16
�le tree comparisons, 13
�le tree organization, 13
�lename length restriction, 17
�lename spelling conventions, 13
�lenames, 17
footnote, 13, 17
Fortran, 1, 22
Fujitsu, 1

G

game of the name, 2
generations, 13

H

help, 22

26

INDEX 27

hierarchical �le system, 13
HOME environment variable, 14
Honeywell GCOS, 1
HPUX, 2

I

I/O redirection, 19
IBM 360 series, 1
IBM PC, 1
important tools, 24
inode table, 15

J

Johnson, S.C., 1
Joy, W., 2

K

Kernighan, B.W., 1, 26
Kleenix, 2
Korn shell, 3

L

linked �les, 16
logical names, 18
logout, 20{21

M

Makefile, 13
man, 22
Maple algebra system, 2
Margay, 2
master �le table, 16
memory caching, 16
MIC, 2
Microsoft, 2
Multics, 2

N

name of the game, 2
nroff, 23

O

on-line documentation, 22
operator, 23

P

parent directory, 15
PATH environment variable, 3
PCL, 2
PDP-11, 1
Pike, R., 26
pipes, 19
POSIX, 2
pun, 2
PWB, 2

R

reading about Unix, 25
README, 13
renaming directories, 15
Ritchie, D.M., 1{2
Rochkind, M.J., 26
root, 23

S

shell variables, 18
shells, 2
short commands|why, 3
super-user, 23
supercomputer, 1
SYS: logical name, 3
system authorization �le, 17
System III, 2, 20
System V, 2, 20

INDEX 28

T

teletype, 3
TERM environment variable, 20
termcap, 20
TERMCAP environment variable, 21
terminal support, 20
Thompson, K., 1{2
TODO, 13
Top Twenty commands, 24
tree structure, 13
troff, 23

U

UNICOS, 2
username length restriction, 17
usernames, 17
UTX-32, 2

V

Venix, 2
VentureCom, 2
Version 6, 2
Version 7, 2
Version 8, 2

W

warts, 1
Waterloo, 2
Weinberger, P.J., 1
wheel, 23

X

Xenix, 2

