
Comments on “Opportunities and
Challenges in 21st Century Experimental

Mathematical Computation: ICERM
Workshop Report”

Nelson H. F. Beebe
University of Utah

Department of Mathematics, 110 LCB
155 S 1400 E RM 233

Salt Lake City, UT 84112-0090
USA

E-mail: beebe@math.utah.edu
Web: http://www.math.utah.edu/~beebe

Telephone: +1 801 581 5254
FAX: +1 801 581 4148

5 September 2014
Version 2.00

Preface

The workshop report in the title of this document can be found at

• http://www.thecarma.net/jon/ICERM-2014.pdf;

• http://www.davidhbailey.com/dhbpapers/ICERM-2014.pdf

• http://www.math.utah.edu/~beebe/icerm/ICERM-2014.pdf

This document is an almost-verbatim conversion to LATEX and PDF of
plain-text remarks distributed via e-mail to the ICERM report authors. How-
ever, to improve readability, I have dressed it up with color, live hyperlinks,
and multiple fonts, and fixed my fumble-fingered typos. It is available at
http://www.math.utah.edu/~beebe/icerm/ICERM-2014-NOTES.pdf. I have
also given it a version number, starting at 2.00, in the expectation that fur-
ther minor tweaks may be applied in the future.

During the conversion, I added many hyperlinks, and a couple of addi-
tional remarks that are set off as indented paragraphs in a sans-serif font, with
marginal version numbers.

1

beebe@math.utah.edu
http://www.math.utah.edu/~beebe
http://www.thecarma.net/jon/ICERM-2014.pdf
http://www.davidhbailey.com/dhbpapers/ICERM-2014.pdf
http://www.math.utah.edu/~beebe/icerm/ICERM-2014.pdf
http://www.math.utah.edu/~beebe/icerm/ICERM-2014-NOTES.pdf

General Remarks

First, bravo! I agree strongly with most of that report.
I have several nits, however. Here they are, in no particular order.

1. While commercial packages like MATLAB, MAPLE, MATHEMATICA, and
S-PLUS are well-designed, and generally well-documented, their use
has several drawbacks:

• They run on only relatively few platform classes (even though class
members may be numerous), often just MICROSOFT WINDOWS,
APPLE MAC OS X, and selected distributions of GNU/LINUX, all of
those now only on a single CPU family — the INTEL X86/X86-64,
also implemented by AMD and several other now-historical chip
vendors. If your chosen (or only available) platform is, say, an IBM
Z-SERIES system, or a POWERPC system, or a SPARC system, or
an ARM system, or . . . , then you are out of luck. The cheapness,
and low-power requirements, of ARM processors has made them
the CPU of choice in mobile devices, and recently, they can sup-
port multiple virtual machines (see http://www.math.utah.edu/

pub/tex/bib/sigarch.html#Dall:2014:KAD).

Experts in floating-point arithmetic are keenly aware of the Version 2.00.

peculiarities of the x86 architecture, where the Intel 8087
floating-point coprocessor chip was introduced in 1981, after
a draft of the IEEE binary floating-point standard had been
published, but before it was finally adopted in 1985. As a result,
there are serious issues with double rounding, precision control,
and having only a single kind of NaN, instead of both the quiet
and signaling NaNs required by the final standard. However,
novices, and even experienced programmers, are often surprised
by the floating-point misfeatures in the x86 family, which can
operate with 32-bit, 64-bit, or 80-bit formats.

The x86-64 extension, introduced by AMD and copied Version 2.00.

by Intel, could eliminate the double-rounding issues with its
new 32-bit and 64-bit registers, but because the x86 instruc-
tion set remains accessible, compilers may use a mixture of
both sets, making it hard to predict, without examining gener-
ated assembly code, exactly how arithmetic is being done, and
making it hard to guarantee uniform behavior across compilers,
and even compiler optimization levels. Regrettably, the NaN
deficiency remains, and as a result, it has contaminated the
virtual machines that underlie the popular Java and C# pro-
gramming languages, and all other languages that run on top
of the Microsoft .NET environment, which further cripples
the otherwise outstanding IEEE arithmetic system.

• Their source code is closed and inaccessible to inspection.

2

http://www.math.utah.edu/pub/tex/bib/sigarch.html#Dall:2014:KAD
http://www.math.utah.edu/pub/tex/bib/sigarch.html#Dall:2014:KAD

• They tend to support only what their vendors view as ‘popular’
platforms (will any still run on an x86 processor a decade from
now?), and as a result, computations with them on a current plat-
form are unlikely to be reproducible in the future. Also, a customer
who wants to experiment with different hardware or a different op-
erating system is strongly discouraged from doing so, because of
the danger of loss of access to those commercial packages. That
tends to increase monoculture, which, in both computers and bi-
ology, is extremely dangerous for long-term survival.

• Several commercial vendors have recently changed their license- Version 2.00.

manager practices, so that only the two or three most-recent
versions can be run. That regrettable decision far too quickly
makes it impossible to reproduce computations made even as
recently as two or three years ago. Work is simply not scientific
when it is not reproducible.

• Vendors come and go, and any of them could be swallowed up by
a larger company, perhaps with the only purpose being to either
monopolize the market, or destroy it. Consider MICROSOFT’s de-
struction of numerous smaller companies (e.g., WORDPERFECT),
and ORACLE’s acquisition of PEOPLESOFT and SUN MICROSYSTEMS,
with threatened destruction of PEOPLESOFT support, and pricing
of SUN-developed hardware and software out of the budgets of
SUN’s former academic, and small business, customers (my de-
partment is in that situation, after being a loyal SUN customer for
27 years). Once again, computations may become unreproducible.

• Students in particular cannot afford the high prices (often, thou-
sands of US dollars per machine) once they leave school, even if
they enjoyed lower-cost access while still on campus. We there-
fore have an academic and moral duty, in my strongly-held view,
to teach them about free alternatives (more below on that point).

• The AXIOM computer-algebra team is engaged in a complete
rewrite of that venerable system, which began as the IBM
SCRATCHPAD system more than 40 years ago. They are rewriting
Axiom as a literate program on the grounds that that is the only
way in which the code can be maintained by generations of ex-
pert mathematicians, and the only way in which non-computer-
using mathematicians just may be willing to trust results from a
computer-algebra system.

2. SAGE is an agglomeration of existing packages, including OCTAVE,
GP/PARI, and MAXIMA, using python code to attempt to achieve tighter
integration between disparate, and radically-different, tools. A success-
ful build of SAGE requires success for each of its dependent packages,
and that too, in my extensive experience, means that Sage is almost a
monoculture product. That could be fixed, of course, if only we could

3

convince programmers to strive for the cleanest most-portable code in
everything they write. History so far says that is impossible:

• The portability of the GNU gcc compiler family went down the
flush in 2005 with the 4.x series. The family is widely used, and has
backends for at least Ada, C, C++, Fortran, Java, Objective C, and
Pascal, so in practice, it supplies much of the compiler technology
on many systems today.

• The situation with LLVM + CLANG is far worse (see http://www.

math.utah.edu/pub/llvm/).

• The OPEN64 compiler project for X86 and X86-64 CPUs is nearly
dormant.

• The beautifully small and literately-programmed AT&T/
PRINCETON lcc compiler, which needs only about 600 lines
of code for any architecture-dependent backend code-
generator, is effectively dead, stuck at language level C89,
with no support for 64-bit integers or other C99 features (see
http://www.math.utah.edu/pub/tex/bib/lcc.html).

• The fast and streamlined tcc compiler for C89 and
parts of C99, which runs only on a small number of
O/Ses for the X86 platform (and not at all on any of
{DRAGONFLY,FREE,KFREE,MIR,NET,OPEN}BSD. or GNU HURD,
or SUN/ORACLE SOLARIS), is also in a code freeze after its sole
author ran out of development energy.

• Despite hundreds, or even thousands, of computer-science stu-
dent compiler projects, no other robust, and freely-distributable,
C/C++ compiler family has arisen from all of that work.

• Computer scientists seem bent on inventing new programming
languages much more rapidly than any user community can ever
develop to write in them, much less document them in textbooks.

Most serious large scientific software projects have compo- Version 2.00.

nents that are decades old; fly-by-night programming languages
are useless for implementation of such software.

• Developers of gcc and the LINUX kernel seem to be obsessed with
extending gcc compilers with new syntax, and using it in at least
kernel code, and then spattering it all through standard C and
C++ header files, making it difficult for other compilers to handle
such files without also duplicating gcc extensions. For that reason,
lcc supplies its own standard header files, but often cannot parse
other widely-used UNIX header files, such as <sys/types.h> and
<sys/time.h>. We need strict conformance to ISO language stan-
dards, and it should be possible to parse any header file named in
those standards with a compiler that implements no more syntax
than the standards specify.

4

http://www.math.utah.edu/pub/llvm/
http://www.math.utah.edu/pub/llvm/
http://www.math.utah.edu/pub/tex/bib/lcc.html

• No serious free-software developer should ever consider using a
programming language for long-term software development when
that compiler runs only on a single O/S–CPU platform, or has only
a single compiler implementation. Thus, with the exception of awk,
JAVA, and sh, we must reject virtually all scripting languages, in-
cluding icon, javascript, perl, php, python, ruby, [awk and sh

are defined by several IEEE POSIX standards, and there are five or
more completely independent implementations of each of them.]

3. Reference 6 has a run-together word:

theontology -> the ontology

4. Reference 24 to the FlySpeck Project can now be updated to show
the successful completion of the project in early August 2014, after
the ICERM meeting was held [I’ll forward a copy of my posting about
that significant event after posting these comments]. See http://www.

math.utah.edu/pub/tex/bib/kepler.html for publications on the his-
tory and solution of the famous Kepler Conjecture on sphere packing,
which dates back to 1661.

5. “Data” is plural, and “datum” is singular, calling for these changes:

data itself is -> data themselves are

access to this data -> access to these data

6. There is a small group of logicians, one of whom recently retired from
my University, but is still accessible via e-mail, who are interested in
computer proofs of mathematical theorems. A significant problem that
they face is that proofs are often done in radically different software sys-
tems, so rather than develop N(N − 1)/2 pairs of language translators,
they are developing a common lingua franca that allows proof programs
to be translated to and from a core language with just N translators. So
far, their work has mostly been with fundamental axioms of logic and
mathematics, but with more people involved, it could grow to a much
larger proof repository such as is mentioned in the ICERM report. I can
probably dig out details from my retired colleague for anyone interested
in learning more.

7. As a future small contribution to the family of computer arithmetic
packages, earlier this year I designed, and built from scratch, a new
multiple-precision integer package, and wrote a 256-page book about
it. Before it is released on the Web, there are a few more algorithms
that I want to add to it, notably for efficient modular arithmetic, and
then I plan to build a flexible multiple-precision floating-point arith-
metic package on top of it.

5

http://www.math.utah.edu/pub/tex/bib/kepler.html
http://www.math.utah.edu/pub/tex/bib/kepler.html

The main goal for me is demonstration of extreme code portability and
flexibility: there is no platform-dependent configuration needed for it,
and coefficient arrays can be represented with compile-time choices of
8-bit, 16-bit, 18-bit, 32-bit, 36-bit, and 64-bit integers, with and with-
out sanity checking of arguments, giving several different link libraries
to choose from, while needing zero changes in user code to switch be-
tween those libraries.

The reason for offering a choice of coefficient representations, Version 2.00.

rather than hard-coding the size as all other such packages do, is
that computer architectures differ substantially in their efficiency
of handling of integers of various sizes, so for numerically-intensive
work, it may be beneficial for users to benchmark their own pro-
grams with various coefficient sizes, and then choose the fastest
representation.

8. Page 2, near the middle of the prose, says

Note, strikingly, that the aggregate performance of

the 500 systems in the 1994 list was surpassed by

the lowest-ranked machine a decade later!

If I look at Figure 1, the intersection of vertical axis for year Y with
the orange line, it appears to reach the 1 Tflop/s 1994 aggregate only
at Y = 2006, not 2004. The exponential performance improvement is
nevertheless impressive.

Of course, few research mathematicians have access to any of the TOP-
500 systems, and most likely have to limit themselves to a multicore
desktop or laptop, where the performance gains have been much less
impressive. The biggest improvement has been instead in the cost of
DRAM (my department now has a 1TB 64-core server, and 8 servers
with 128GB or 256GB DRAM on 32 to 128 cores), and storage (1 TB
of cheap USB-3 shirt-pocket disk today costs US$75; by contrast, our
600MB washing-machine-sized DEC RP06 cost $20,000 in 1984, which
scales to $35M/TB, or a cost reduction factor of 466,000. Even better,
when inflation is taken into account, with US$1 (1984)≡US$2.29 (2014)
[see http://www.bls.gov/data/inflation_calculator.htm], the cost
reduction is more than 1,000,000 times.).

9. Page 8, about 2/3 down:

an habit -> a habit

[I don’t support the sloppy American dialect that drops leading h’s, talk-
ing about ‘yoouge yoomans eating erbs’ instead of ‘huge humans eating
herbs’]

6

http://www.bls.gov/data/inflation_calculator.htm

10. I applaud the ICERM report’s urging of the creation of scientific data
repositories, but I would go even further. I would mandate that both
software and data, and documentation thereof, developed under fed-
eral grant support be both deposited in public copyright-free (or open-
source-licensed) replicated repositories, and also be reviewed as part of
the normal satisfactory-completion process at the end of the grant pe-
riod.

We need to get beyond the idea that all that matters for grant com-
pletion is a summary report of research publications in peer-reviewed
commercial journals. Grant agencies could even forbid publication in
commercial journals of results from grant-supported research, and in-
stead, permit only open-source journals with replicated, and world-
wide distributed, archives at sites that are expected to have signifi-
cant longevity, such as venerable academic institutions and national li-
braries.

11. Section 3.3, page 9, lists several software packages. I suggest tossing
in a reference to Cowell’s 1984 book (see http://www.math.utah.edu/

pub/tex/bib/master.html#Cowell:1984:SDM), because many of those
packages still exist and are in use three decades later.

• To the first item, I would add at least AXIOM, MACAULAY2, MAGMA,
MAXIMA (included in SAGE), MUPAD, and REDUCE. MACSYMA

(MAXIMA’s grandparent) and REDUCE were the first computer-
algebra systems that have survived, the first from MIT, and the sec-
ond from UTAH. Both are now open source, and both have small
development teams. MAXIMA can be built on top of any of 8 differ-
ent COMMON LISP systems, and REDUCE on at least two COMMON

LISPs, and on PSL (PORTABLE STANDARD LISP). I have built both
from source many times on many systems.

Here are Web addresses for some of the mentioned computer- Version 2.00.
algebra systems:

– http://magma.maths.usyd.edu.au/magma

– http://maxima.sf.net/

– http://pari.math.u-bordeaux.fr

– http://reduce-algebra.sourceforge.net/

– http://www.axiom-developer.org

– http://www.math.uiuc.edu/Macaulay2

– http://www.sagemath.org/

Here are corresponding extensive bibliographic resources for Version 2.00.

most of them:

– http://www.math.utah.edu/pub/tex/bib/axiom.html

– http://www.math.utah.edu/pub/tex/bib/common-lisp.html

– http://www.math.utah.edu/pub/tex/bib/macsyma.html

7

http://www.math.utah.edu/pub/tex/bib/master.html#Cowell:1984:SDM
http://www.math.utah.edu/pub/tex/bib/master.html#Cowell:1984:SDM
http://magma.maths.usyd.edu.au/magma
http://maxima.sf.net/
http://pari.math.u-bordeaux.fr
http://reduce-algebra.sourceforge.net/
http://www.axiom-developer.org
http://www.math.uiuc.edu/Macaulay2
http://www.sagemath.org/
http://www.math.utah.edu/pub/tex/bib/axiom.html
http://www.math.utah.edu/pub/tex/bib/common-lisp.html
http://www.math.utah.edu/pub/tex/bib/macsyma.html

– http://www.math.utah.edu/pub/tex/bib/magma.html

– http://www.math.utah.edu/pub/tex/bib/maple-extract.html

– http://www.math.utah.edu/pub/tex/bib/maple-tech.html

– http://www.math.utah.edu/pub/tex/bib/mathematica.html

– http://www.math.utah.edu/pub/tex/bib/mathematicaj.html

– http://www.math.utah.edu/pub/tex/bib/matlab.html

– http://www.math.utah.edu/pub/tex/bib/mupad.html

– http://www.math.utah.edu/pub/tex/bib/red-a-f.html

– http://www.math.utah.edu/pub/tex/bib/red-g-l.html

– http://www.math.utah.edu/pub/tex/bib/red-m-z.html

– http://www.math.utah.edu/pub/tex/bib/redbooks.html

– http://www.math.utah.edu/pub/tex/bib/redextra.html

– http://www.math.utah.edu/pub/tex/bib/reduce.html

In each case, changing the suffix from .html to .bib refers to
the BibTEX version of that file.

• To the second, I would add the commercial, and widely-used, SAS
and S-PLUS systems, and possibly also BMDP, NAG, and IMSL
(aka PRECISION NUMERICS), and STATSOFT (now owned by DELL).

• There should be a bulleted item for fixed-precision (hardware)
floating-point systems, including MATLAB and OCTAVE (included
in SAGE) and SIMULINK (for which no free alternative exists). MAT-
LAB could fit in the third point, but it now does so much more, so a
separate point is preferred.

12. On pages 5 and 9, there is mention of Padé-approximant fits. In prac-
tice, however, minimax polynomial fits are generally much better, be-
cause they fit over the entire region of approximation, and their fits
are even better when rational minimax polynomial approximations are
used, despite the need for a single final division. My MATHCW library
(see http://www.math.utah.edu/pub/mathcw) makes extensive use of
such fits, and its forthcoming book describes how to generate them, and
discusses the difficulty of computing them for high-precision approxi-
mations.

The extensive experience documented in my book strongly sug- Version 2.00.

gests that polynomial fitting is not a fully-solved problem, and
further research and software improvements are needed to pro-
vide robust and portable algorithms that can be implemented in
many different programming languages. Current algorithms require
arbitrary-precision arithmetic with digit counts that are often many
times higher than that of the final fit.

My book also discusses, and sometimes implements in software, Version 2.00.

continued-fraction algorithms for computation of certain functions.

8

http://www.math.utah.edu/pub/tex/bib/magma.html
http://www.math.utah.edu/pub/tex/bib/maple-extract.html
http://www.math.utah.edu/pub/tex/bib/maple-tech.html
http://www.math.utah.edu/pub/tex/bib/mathematica.html
http://www.math.utah.edu/pub/tex/bib/mathematicaj.html
http://www.math.utah.edu/pub/tex/bib/matlab.html
http://www.math.utah.edu/pub/tex/bib/mupad.html
http://www.math.utah.edu/pub/tex/bib/red-a-f.html
http://www.math.utah.edu/pub/tex/bib/red-g-l.html
http://www.math.utah.edu/pub/tex/bib/red-m-z.html
http://www.math.utah.edu/pub/tex/bib/redbooks.html
http://www.math.utah.edu/pub/tex/bib/redextra.html
http://www.math.utah.edu/pub/tex/bib/reduce.html
http://www.math.utah.edu/pub/mathcw

It introduces relatively-recently discovered computational recipes
that remove most of the premature overflow and underflow prob-
lems of traditional continued-fraction work, and reduce the num-
ber of divisions to just one. The beauty of such algorithms is
that they are often fairly compact, rapidly convergent, precision
independent, and sometimes have a wider range of convergence
of arguments, compared to series expansions. They have largely
been ignored in numerical analysis texts of the 20th Century, per-
haps because of the long-held mantra that ‘division is expensive’.
They deserve better treatment, and I look forward to reading the
just-appeared book Neverending Fractions (ISBN-10 0-521-18649-
8, ISBN-13 978-0-521-18649-0), one of whose authors appears on
the ICERM report.

13. On page 13, in the last bullet, MYSQL appears alone. Although that was
long a freely-available database program that grew to industrial strength
and worldwide adoption, its acquisition by Oracle has left its status and
continued development in significant doubt (I recently could not down-
load the source code anymore, despite having done so many times in
the past). The original architect of MYSQL, Michael (aka ‘Monty’) Wide-
nius, and some members of his MYSQL development team have conse-
quently spun off a new open-source project, MARIADB, that is program-
name, and command-name, compatible with MYSQL, but incorporates
significant performance improvements. See https://mariadb.org/.

Mention should also be made of POSTGRESQL, which grew out of
Michael Stonebraker’s INGRES database work at UC/Berkeley, and
which, like MYSQL is highly portable and certainly industrial strength.
See http://www.actian.com/products/operational-databases/ and
http://www.postgresql.org/.

Thus, INGRES, IBM’s DB2, MICROSOFT’s SQL SERVER, ORACLE, and
SYBASE should also receive mention, with a note that they are all com-
mercial, and complex to setup and manage.

I run 9 SQL databases here containing the TUG and BIBNET PROJECT

bibliography archives (see http://www.math.utah.edu/pub/tex/bib

and http://www.math.utah.edu/pub/bibnet), now with 1.04M entries,
and have used all of the above, plus SQLITE3, which is a public-domain,
small, and astonishingly-portable database system that can easily han-
dle tens of thousands of records without needing any database admin-
istrator, or database server, or access controls, and whose database files
are independent of byte-order, CPU, and O/S, and can thus be shared
across the entire Internet without change. Thus, SQLITE3 should be
mentioned too. It won’t handle terabytes of data with satisfactory per-
formance, but it can handle tens to hundreds of megabytes acceptably
well. For more on the subject of database choice, see the documenta-
tion and papers at http://www.math.utah.edu/pub/bibsql.

9

https://mariadb.org/
http://www.actian.com/products/operational-databases/
http://www.postgresql.org/
http://www.math.utah.edu/pub/tex/bib
http://www.math.utah.edu/pub/bibnet
http://www.math.utah.edu/pub/bibsql

14. On page 13, third bullet, I am extremely uneasy with recommendations
for use of things like DROPBOX, GOOGLE DOCS, and so on. Yes, they are
convenient in the short term, but there is no guarantee that they will be
here tomorrow, or next year, or a decade hence. Also, they are free be-
cause the data are mined to produce advertising and data-information
revenues. Our campus this summer inaugurated a campus-controlled
solution at http://box.utah.edu that offers partial solutions to my ob-
jections.

I am similarly unhappy with use of social-media sites (Facebook, Version 2.00.

MySpace, Twitter, . . .), blogs, and other forms of electronic
communication that do not have mechanisms for long-term archiv-
ing and open access to content. By contrast, I’m perfectly satisfied
with http://arxiv.org/, which has now received wide accep-
tance in the hard sciences and mathematics.

15. Reference 21 has a bogus, but hard-to-spot, trailing digit in an author
name:

[21] Jean-Baptiste Michel1, \ldots{}

Conclusion

Thanks for holding the conference, and writing the report. I would have been
interested in attending the ICERM meeting, but it overlapped with another
conference on the opposite coast with a group for which I have a 35-year-long
devoted association.

10

http://box.utah.edu
http://arxiv.org/

