
2 1 INTRODUCTION

1

10

100

1000

10000

1980 1982 1984 1986 1988 1990 1992 1994

Performance

Year

DRAM

CPU
(slow)

CPU
(fast)

♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦

♦ ♦ ♦ ♦ ♦ ♦♦
♦

♦
♦

♦
♦

♦
♦

♦
♦

♦ ♦ ♦ ♦ ♦ ♦♦
♦

♦
♦

♦
♦

♦
♦

♦
♦

Figure 1: CPU and memory performance. This drawing uses 1980 as a baseline.
Memory speed (dynamic random-access memory, DRAM) is plotted with an annual
7% increase. The slow CPU line grows at 19% annually until 1985, and at 50% an-
nually since then. The fast CPU line rises at 26% annually until 1985, and at 100%
annually since then. The data is taken from [73, Fig. 8.18, p. 427], but extended
beyond 1992.

The existence of a memory hierarchy means that a few well-behaved
programs will perform almost optimally on a particular system, but alas,
most will not. Because the performance difference between the extremes of
good and bad behavior can be several orders of magnitude, it is important
for programmers to understand the impact of memory access patterns on
performance.

Fortunately, once the issues are thoroughly understood, it is usually pos-
sible to control memory access in high-level languages, so it is seldom nec-
essary to resort to assembly-language programming, or to delve into details
of electronic circuits.

The purpose of these notes is to give the reader a description of the
computer memory hierarchy, and then to demonstrate how a programmer
working in a high-level language can exploit the hierarchy to achieve near-
optimal performance.

2 1 INTRODUCTION

1

10

100

1000

10000

1980 1982 1984 1986 1988 1990 1992 1994

Performance

Year

DRAM

CPU
(slow)

CPU
(fast)

� � � � � � � � � � � � � � �

� �
� �

� ��
�

�
�

�
�

�
�

�
�

�
�

�
�

�
��

�

�

�

�

�

�

�

�

�

Figure 1: CPU and memory performance. This drawing uses 1980 as a baseline.

Memory speed (dynamic random-access memory, DRAM) is plotted with an annual

7% increase. The slow CPU line grows at 19% annually until 1985, and at 50% an-

nually since then. The fast CPU line rises at 26% annually until 1985, and at 100%

annually since then. The data is taken from [73, Fig. 8.18, p. 427], but extended

beyond 1992.

The existence of a memory hierarchy means that a few well-behaved

programs will perform almost optimally on a particular system, but alas,

most will not. Because the performance difference between the extremes of

good and bad behavior can be several orders of magnitude, it is important

for programmers to understand the impact of memory access patterns on

performance.

Fortunately, once the issues are thoroughly understood, it is usually pos-

sible to control memory access in high-level languages, so it is seldom nec-

essary to resort to assembly-language programming, or to delve into details

of electronic circuits.

The purpose of these notes is to give the reader a description of the

computer memory hierarchy, and then to demonstrate how a programmer

working in a high-level language can exploit the hierarchy to achieve near-

optimal performance.

Nelson Beebe, U of Utah
The left-hand page uses
PostScript Type 1 outline
fonts [Computer Modern
Bakoma]. Use the Acrobat
Reader magnifier to enlarge
the images for comparison
of character quality.

Nelson Beebe, U of Utah
The right-hand page uses
600dpi bitmap fonts [Computer
Modern in mode laserjetfour].
Both pages, Use the Acrobat
Reader magnifier to enlarge
the images for comparison
of character quality.

