
REFERENCE MANUAL

RC 4000 COMPUTER

REFERENCE MANUAL

· 2. Edition

Edited by

Per Brinch Hansen

A/S REGNECENTRALEN
Copenhagen - June 1969

RCSL No: 55-Dl

FOREWORD

The RC 4000 is a general-purpose digital computer, designed and manufactured
by A/S Regnecentralen for real-time control, numerical computation, and admini
strative data processing. Its principal features are: direct addressing of a large
internal store; integer and floating-point arithmetic; standardized connection of
peripheral devices; program interruption; storage protection and privileged instruc
tions.

This manual provides basic programming and operating information for
programmers and users of the RC 4000 computer.

A summary of the RC 4000 is given in Chapter 1. Chapter 2 describes the
considerations that guided the design of the computer. Chapters 3 to 9 contain
specifications of word formats, storage addressing, arithmetic, multiprogramming
features, and input/output control. Chapters IO to 12 summarize the functions of
the standard peripheral devices and the panels for operator control and engineering
maintenance. Chapters 13 and 14 complete the picture with an exact definition of
the instruction execution; the basic instruction cycle and all operations are
described in an extended Algol language.

The main difference between the present second edition and the first edition of
the reference manual (April 1967) is due to the extension of the RC 4000
computer with floating-point arithmetic, a new protection system, and a high-speed
data channel. The speed of the machine has been increased by 25 percent.

Although the manual contains hints about the effective use of the instruction set
no attempt has been made to teach programming techniques.

The function of peripheral devices is described in a separate manual.

CONTENTS

I. RC 4000 SPECIFICATIONS 9
2. DESIGN CONSIDERATIONS . 11

2.1. Word Length . 11
2.2. Register Structure . 11
2.3. Address Modification . 11
2.4. Monitor Control . 12
2.5. Input/Output Control . 13

3. DATA AND INSTRUCTION FORMATS 15
3.1. Data Formats . 15
3.2. Storage Addressing . 15
3.3. Working Registers . 16
3.4. Instruction Format . 17
3.5. Address Modify Instruction . 18

4. INTEGER ARITHMETIC . 19
4.1. Number Representation . 19
4.2. Byte Arithmetic . 19
4.3. Multiplication and Division . 20
4.4. Overflow and Carry Indication . 21

5. FLOATING-POINT ARITHMETIC 22
5.1. Number Representation 22
5.2. Arithmetic Operations . 23
5.3. Normalization and Rounding . 23
5.4. Precision Modes . 24
5.5. Underflow, Overflow, and Non-Normalized Operands 25
5.6. Number Conversion . 26
5.7. Exact Arithmetic with Floating-Point Instructions 26

6. PROTECTION SYSTEM . 28
6.1. Storage Protection . 28
6.2. Privileged Instructions . 29
6.3. Summary of Protection System . 29
6.4. An Example of Protected Areas . 30

7. INTERRUPTION SYSTEM . 32
7.1. Interruption Logic . 32
7.2. Interruption Conditions . 33

6 CONTENTS

8. LOW-SPEED DATA CHANNEL 35
8.1. Main Characteristics . 35
8.2. Input/Output Instruction . 35
8.3. Channel Operation . 36
8.4. Disconnected and Busy Indication . 37
8.5. Device Commands . 37
8.6. Read . 37
8.7. Sense . 37
8.8. Write . 38
8.9. Control . 39
8.10. Summary of Low-Speed Channel . 39

9. HIGH-SPEED DATA CHANNEL 41
10. STANDARD PERIPHERAL DEVICES 43

10.1. Console Devices . 43
10.2. Interval Timer . 43

11. OPERATOR CONTROL PANEL 44

1 I.I. Indicators and Control Keys . 44
11.2. Machine Errors . 44

11.3. Reset Control . 44

11.4. Start Control . 45
11.5. Autoload Control . 45
11.6. Local/Remote Indication . 46

12. TECHNICAL CONTROL PANEL 47
12.1. Operating Modes 47
12.2. Instruction Step Keys 47
12.3. Register Setting and Display . 4 7
12.4. Microinstruction Selection and Display 48
12.5. Parity Control . 48

13. INSTRUCTION SET . 49
14. DEFINITION OF INSTRUCTIONS 51

14.1. Algol Notation 51
14.2. Register Structure . 51
14.3. Elementary Operations . 54
14.4. Control Panel Functions . 55
14.5. Instruction Fetch Cycle
14.6. Protection Procedures
14.7. Arithmetic Procedures
14.8. Instruction Execution

............................. 55

56
.............. 57

58

CONTENTS 7

APPENDIX . 79
A. l. Reserved Storage Locations . 79
A.2. Numeric Instruction Codes . 80
A.3. Instruction Execution Times . 81

INDEX ... 83

Chapter 1

RC 4000 SPECIFICATIONS

Implementation
Monolithic integrated circuits extensively used.

httemal Store
Magnetic core store with 1.5 usec cycle time.
Basic module of 16384 words. Direct addressing of up to 8 388 608 words. Each
word contains 24 data bits, 3 protection bits, and 1 parity bit.

Backing Store
Magnetic drum or disk.

Working Registers
4 result registers of 24 bits each. Three of these also function as index registers.
The registers are addressable as the first four words of the internal store.

Data Formats
12 bit bytes and 24 bit words for integer arithmetic.
48 bit double words for integer and floating-point arithmetic.

htstruction Format
24-bit single-address instruction. Address modification includes indexing, indirect
addressing, and relative addressing.

htstruction Execution Times
1.5 to 4.5 usec typically (including access time).

htstruction Set
58 instructions.
Arithmetic includes add, subtract, multiply, and divide.
Data manipulation assisted by byte operations and word comparison.
Logical operations permit setting and testing of single bits.

Protection System
Privileged instructions and storage protection associated with a monitor mode
ensure complete monitor control.

10 1. RC 4000 SPECIFICATIONS

Interruption System
Program interruption system with 24 maskable priority levels.

Interrupt response time is 7 .5 usec.

Input Output Control
Low-speed data channel for transfer of single words between character-oriented
devices and working registers under program control.
High-speed data channel for transmission of blocks between block-oriented
devices and the internal store simultaneous with program execution.

Chapter 2

DESIGN CONSIDERATIONS

This chapter describes some of the factors that influenced the design of the
RC 4000.

2.1. Word Length
Arithmetic Operands. The basic arithmetic operand is a 24-bit word. This

word length is sufficient for most integer arithmetic in process control
applications. Double-length operands of 48 bits satisfy the requirements of
engineering computation and administrative data processing.

Byte Handling. As a control computer, the RC 4000 must handle a large
number of analog input data of from 10 to 12 bits each. Direct addressing of
12-bit bytes ensures efficient storage of these small integers. Byte handling is also
a powerful tool in the manipulation of character strings encountered in file
maintenance activities and program translation.

2.2. Register Structure
In earlier computers there is a sharp distinction between the accumulator (the

register in which arithmetic operations are performed) and index registers (used
solely to modify the address part of the instruction). This register structure often
makes programming awkward. Since all operations destroy the previous contents
of the accumulator the programmer is forced to make numerous storage
operations in order to save and restore intermediate results. Empty transfers to
the store are also required when an index register must be modified by the
contents of the accumulator.

The RC 4000 eliminates this deficiency with four working registers, three of
which also function as index registers. By extending the number of accumulators
to four and removing the distinction between accumulators and index registers,
the full instruction set becomes available for immediate address modification,
while empty transfers of registers to the store are considerably reduced.

2.3. Address Modification
The efficiency of computer programs is closely connected to the handling of

address fields within instructions. The two main problems here are program
relocation and table look-up.

12 2.4. MONITOR CONTROL

Program Relocation. The ability to relocate programs in the internal store is
vital in a computer in which the library of programs is kept on a backing store

and only brought to the internal store when active. Normally it is not possible to

predict the combinations of programs and data in the store when a program must
be loaded. The programs therefore cannot expect to be loaded into their previous
storage areas, but must be relocated to new areas currently available. Efficient

relocation requires that program.s can be written in such a way that their
execution is independent of their location. In the RC 4000 this is achieved by a
bit in the instruction format specifying relative addressing. This implies that the
address part of the instruction is interpreted relative to its current location in the
store.

Table Look-Up. The purpose of data processing is to transform a set of data

into a result according to certain rules. In a computer with an addressable store,
one of the most general ways of specifying the rules of transformation is to use a

set of tables. Each item of data to be transformed is converted to an address that

is used to look up a table to extract a new data value or the address of an action
to be performed. The requirement that addresses can be modified by the values
of data being processed is met efficiently through the use of index registers. The

RC 4000 instruction format permits the programmer to specify a modification of
the address part with the contents of a working register.

2.4. Monitor Control
In the process control applications the computer usually has a number of

concurrent tasks to perform. These tasks must be repeated at regular intervals if
real-time control of the plant is to be maintained. In such a multiprogramming
system it is vital that erroneous programs are prevented from interfering
destructively with other programs. The different tasks must therefore be
coordinated by a monitor program that has complete oontrol of the system. In

the RC 4000, monitor control is guaranteed by (1) storage protection, (2)
privileged instructions, and (3) program interruption.

Storage Protection. An erroneous program may attempt to destroy data or
instructions within other programs. The protection system for the RC 4000

permits mutual storage protection of up to 8 programs including a monitor
program. The protection is achieved by providing each storage word with a

protection key of 3 bits and by introducing a protection register to specify
which protection keys are accessible within the current program. Although a

subordinate program can read a protected word, only the monitor program can

2.5. INPUT/OUTPUT CONTROL 13

alter its contents. Any attempt to execute or destroy the contents of a protected
location leads immediately to an interruption of the current program. The
protection sphere of a program can be changed immediately by loading the

protection register with another bit pattern. The system is thus well suited to
multiprogramming applications in which the computer must switch rapidly
among a number of independent programs.

Privileged Instructions. Further system protection is achieved by privileged
instructions that can only be executed within the monitor program. These
instructions include all input/output functions as well as control of the
interruption system and storage protection.

Program Interruption. A computer used in process control must respond
quickly to exceptional internal and external events. In the RC 4000 this is
achieved through a program interruption system that can register up to 24 signals
simultaneously. Any of these signals interrupts the current program immediately

and starts the monitor program.

2.5. Input/Output Control
The design of the input/output control is based on the following principles:
(1) The computer makes no restrictions on the kinds of peripheral devices

that can be connected to it.

(2) Program execution continues while input/output operations are in pro
gress.

(3) Exceptional events occurring in input/output operations are completely
under program control and will never cause a machine stop.

To permit future expansion of the array of peripheral equipment the
connection of devices has been standardized in such a way that the computer is
unaware of the types of devices attached to it. First, the RC 4000 handles all

input/output operations by a single instruction that identifies devices by ad
dresses only. Second, all devices are connected to a standard data channel,

capable of transferring 24 bits of data.

In real-time applications it is unacceptable to halt computation while a data
transfer is in progress. Accordingly, the peripheral devices release the RC 4000 as

soon as an input/output operation has been initiated. The computer then continues

the program, while the device in question completes its operation independently.

14 2.5. INPUT/OUTPUT CONTROL

When the computer attempts to initiate an input/output operation, the
peripheral device may answer by a rejection, indicating that it is occupied with
another operation. This information is made available in an exception register,
which can be sensed by the program to decide an alternative course.

When a data transfer is completed, the program can request the device to deliver
information about exceptional conditions that occurred during the transfer. This is
necessary because a real-time system cannot rely on the operator to discover and
react to such emergencies.

Chapter 3

DATA AND INSTRUCTION FORMATS

3.1. Data Formats
The data structure of the RC 4000 is shown in the following figure:

- DOUBLE WORD -

FIRST WORD - - SECOND WORD -

~BYTE BYTE - - BYTE BYTE---+ -

INTEGER BYTE INTEGER BYTE

0 11 12 23

INTEGER WORD

0 23

FRACTION EXPONENT

0 35 36 47

INTEGER DOUBLE WORD

0 47

The basic arithmetic operand is an integer of 24 bits. Small integers are packed with
two bytes per word. The 12-bit bytes are directly addressable. Double words are
used to represent integers of 48 bits and floating-point numbers with 36-bit
fractions and 12-bit exponents.

3.2. Storage Addressing
Storage addresses are always expressed as byte addresses. The byte locations are

numbered consecutively starting with zero.
In word operations, the right-most bit in the effective address is ignored. Thus it

is irrelevant whether a word operation refers to the left or right half of a word.

16 3.3. WORKING REGISTERS

In double-word operations, the right-most bit in the effective address is ignored.

The word thus specified is the second word of the operand.

3.3. Working Registers
The register structure of the RC 4000 consists of four working registers of 24

bits each. In each instruction, one of these registers is specified as the result register.
Three of the registers also function as index registers. The current index register is

selected by the instruction format.
The working registers are addressable as the first eight bytes (or four words) of

the internal store. The programmer can therefore perform operations directly

between two registers by specifying a storage address between 0 and 7. It is also
possible to execute instructions stored in the working registers. Like the rest of the
storage words each working register is supplied with its own protection key (see

Section 6.1.).

BYTE ADDRESS

0

2

4

6

24 BITS

24 BITS

24 BITS

24 BITS

WORKING REGISTER 0

WORKING REGISTER 1

WORKING REGISTER 2

WORKING REGISTER 3

Two adjacent working registers can be used to hold a double length operand of
48 bits. In double-length operations, the four registers are connected cyclically as

follows:

W3 concatenate WO
WO concatenate W 1
Wl concatenate W2
W2 concatenate W3

These connections are established by specifying the second register WO, Wl, W2,

and W3, respectively, in the instruction format.

3.4. INSTRUCTION FORMAT 17

3.4. Instruction Fonnat
The instruction format is divided into an operation byte and an address byte of

12 bits each:

F W M X D

6 12

3

The operation byte specifies 64 basic operations in the F field of 6 bits. One of

the four working registers is specified as the result register in the W field of 2 bits.
The current index register is selected by the X field of 2 bits. Only working registers

Wl, W2, and W3 act as index registers (X field = 0 indicates no indexing).
A truncated address of 12 bits (the D field) specifies a displacement from

-2048 to +2047 bytes within the program. This is adequate for the majority

of addresses. It is, however, insufficient for direct addressing of the entire
store. A full address of 24 bits is formed by means of the displacement D in
connection with the contents of an index register X and the contents of the
instruction counter IC. The generation of the effective address A is controlled
by the address mode field M as follows:

M=00
M = 01

M= 10
M = 11

A=X+D
A= word (X + D)
A =X +IC+ D
A= word (X +IC+ D)

In the address calculation, the displacement is treated as a 12-bit signed integer
that is extended towards the left to 24 bits, before being added to the index register
and the instruction counter. In the final addition of X, IC, and D, overflow is
ignored.

The address modes 01 and 11 permit indirect addressing in one level. The
indirect address fetched from the store is assumed to be a full address of 24 bits.

The address modes 10 and 11 modify the indexed displacement with the current
load address of the instruction. This permits relocation of programs during loading.

In storage access operations, the effective address is treated as an unsigned
integer of 24 bits. The_ upper limit to the expansion of the store is therefore 16 777
216 bytes. In an installation in which only a part of the maximum storage capacity
is available, reference to a nonexistent storage location will cause a program

interruption (see Section 7.2.).

2

18 3.5. ADDRESS MODIFY INSTRUCTION

(At this point it is suggested that the reader studies Chapter 1 in the manual of the
Slang Assembler in order to become familiar with the notation used in the follow

ing programming examples).

3.5. Address Modify Instruction
The instruction modify next address deserves special mention in connection with

the possibilities of address modification. This instruction modifies the displacement
in the following instruction by its own effective address. We shall use the mnemonic
operation codes defined in Chapter 13 to illustrate three uses of this instruction: (1)
direct indexing with the contents of any storage location, (2) multiple indexing
with the sum of two or more working registers, and (3) multi-level indirect

addressing.
The possibility of using any storage location as an index register is illustrated by

the following example:

AM (Xl + Dl)
JL D2

The effective address of the AM instruction is Al= word (Xl + Dl). This is used to
modify the displacement D2 in the following JL instruction to produce an effective

address A2 = word (XI+ Dl) + D2.
A series of AM instructions can be used to modify an instruction with the sum

of several index registers. The second example shows the actual instructions to the

left and their effective addresses to the right:

AMXl + 0
AMX2+0
JL X3 + D3

Al =Xl
A2 =Xl + X2
A3 = Xl + X2 + X3 + D3

The third example illustrates the use of the AM instruction to obtain multi-level

indirect addressing:

AM (Xl + D1);
AM(O)
AM (0)

etc.

Al = word (Xl + Dl)
A2 = word (Al)
A3 = word (A2)

Chapter 4

INTEGER ARITHMETIC

4.1. Number Representation
The standard arithmetic operands are signed integers of 12 and 24 bits:

Is BYTE INTEGER

0 11

s WORD INTEGER

0 23

Positive numbers are represented in true binary form with a zero in the sign bit.
Negative numbers are represented in the two's complement notation with a one in
the sign bit. The two's complement of a number may be obtained by inverting each
bit in the number and adding 1 to the rightmost bit.

The main virtue of the complement notation is the simple handling of signed
operands. An addition or subtraction of two data-words is simply performed as if
they both were unsigned binary numbers of 24 bits.

The complement notation also facilitates the handling of small integers
represented by 12-bit bytes. A small integer can be extended to the standard form
of 24 bits simply by a duplication of the sign bit toward the left; conversely, when
the high-order digits of a small integer are elided, the leading digit of the truncated
integer still reflects the sign properly.

4.2. Byte Arithmetic
A signed integer represented by a 12-bit byte must be confined to the following

range:
-2**1 l = -2048<= integer byte<= 2047 = 2**11-1

The instruction load integer byte serves to extend a signed 12-bit byte toward
the left to 24 bits, as it is placed in a working register. The arithmetic instructions
add and subtract integer byte perform addition to or subtraction from a working
register with a byte fetched from the store and extended to 24 bits. The instruction
store half register stores the right-most 12 bits of a working register in a byte.

The sign extension of byte operands makes it possible to perform integer

arithmetic with mixed 12-bit and 24-bit operands.

2*

20 4.3. MULTIPLICATION AND DIVISION

4.3. Multiplication and Division
Integer multiplication of the contents of a working register with the contents

of a storage word produces a double-length product that is placed in a double
register of 48 bits with the sign bit at the extreme left:

0 23 24 47

A double-length product will normally consist of a sign plus a most 46 digits.
In this case, bit 1 in the double register will be identical with the sign bit.

The only exception to this occurs in the multiplication of two maximum
negative numbers:

(-2**23)*(-2**23)=2**46
This result will be represented as shown below:

0 0 0---- oio--------- oj
0 23 24 47

It should be noted that in this representation of double-length integers, bit 24
does not function as a sign bit, but contains a significant digit.

The contents of a double register can be divided by the contents of a storage
word. The dividend is then replaced by a 24-bit remainder in the left-hand
register and a 24-bit quotient in the right-hand register. A non-zero remainder
satisfies the following requirements:

(1) dividend = divisor * quotient + remainder
(2) 0 < abs (remainder) < abs (divisor)
(3) sign (remainder) = sign (dividend)

is DIVIDEND

0

js REMAINDER js QUOTIENT

0 23 0

47

23

4.4. OVERFLOW AND CARRY INDICATION 21

4.4. Overflow and Carry Indication
Arithmetic operations indicate a normal or an exceptional result by setting the

right-most 2 bits of a 3-bit register, called the exception register. This register
can be tested by a single instruction, skip if no exceptions.

After a normal result, exception bits 22 and 23 are set to zero. An integer
overflow will set exception bit 22 to one and provoke a program interruption as
defined in Section 7.2. An overflow condition is recognized in the following
situations.

(1) The result of an addition, subtraction, or division exceeds the range of a
24-bit signed integer:

-2**23=-8 388 608<= integer word< = 8 388 607 = 2**23-1
(Note that multiplication can never produce overflow).

(2) The instruction load address complemented specifies complementation of
the maximum negative number: -(-2**23) = 2**23.

(3) One or more significant digits are lost during arithmetic shifts toward the
left. (The shift instructions test overflow conditions after each single-bit shift).

If overflow occurs in division the dividend remains unchanged in the working
registers. All other arithmetic operations deliver the result moduls 2 **24 after an
overflow.

Exception bit 23 is set, when addition or subtraction produces a carry from
the sign position. This indicates that the result interpreted as an unsigned integer
of 25 bits exceeds 2**24 - 1 = 16 777 215. The carry indication simplifies the
programming of multiple-length addition and subtraction.

Thus, the exception register has the following meaning after an integer

arithmetic operation:

exception bit:
21 (unchanged)
22 integer overflow
23 integer carry

Chapter 5

FLOATING-POINT ARITHMETIC

5.1. Number Representation

A floating-point number F = fraction * 2 ** exponent is stored in a double
word or a pair of working registers:

FRACTION EXPONENT

s is
0 23 24 35 36 47

... ..;....___ FIRST WORD ----1 1--- SECOND WORD____.

The address of a floating-point number refers to the second word of the
storage operand. The working register field within a floating-point instruction
refers to the second word of the register operand.

The left-most 36 bits of a floating-point number represent a signed, nonnal
ized fraction in the two-s complement notation. The right-most 12 bits is a
signed exponent also in the two-s complement form.

The range of floating-point numbers is the following:

-1 * 2**2047 <= F < -0.5 * 2**(-2048) F negative
F = 0 * 2**(-2048) F zero

0.5 * 2**(-2048)<= F < 1 * 2**2047 F positive

or approximately:

10**(-616) < abs(F) < 10**616
The relative precision of a floating-point number is 2**(-35) / abs(fraction)

whichliesbetween2**(-35) = 3 * I0**(-11) and 2**(-34) = 6 * 10**(-11).
The left-most two bits of a normalized fraction are 01 and 10, respectively,

for positive and negative numbers.

The floating-point zero is represented by the fraction O and the exponent
-2048.

Accordingly, the sign or zero value of a floating-point number may be
determined by examining its first word only. This can be done by means of the
instructions skip if register high, low, equal, or not equal using the effective
address zero as a comparison operand.

5.2. ARITHMETIC OPERA TIO NS 23

As an example, consider a floating-point number with the address FO. The
following instructions will load the floating-point number in wO and wl and test
whether it is negative:

DL Wl FO
SH WO -1 if FO < 0
JL GO ; then goto GO;

5.2. Arithmetic Operations
Before an arithmetic operation, the fractions are placed left-justified in

anonymous 38 bit registers and extended to the right with two zeroes. The
positions are numbered O through 37 in these registers.

Addition and subtraction require an alignment of radix points. This is done by
shifting the fraction with the smaller exponent to the right a number of positions
equal to the difference in exponents. Bits shifted out of the 38 bit register are
thrown away. After alignment, the addition or subtraction of the fractions is
performed, and the larger exponent is attached to the result. The resulting
fraction is normalized and rounded as described in Section 5 .3.

Multiplication is performed by addition of the exponents and multiplication
of the fractions. The fraction product of 38 bits is formed by repetition of an
add-and-shift cycle. Bits shifted out of the 38 bit register are thrown away.
Normalization and rounding of the resulting fraction proceeds as for addition and
subtraction, see Section 5 .3.

Division is performed by subtraction of the exponents and division of the
fractions. The fraction quotient of 36 bits is formed by the non-restoring division
method. The shift-and-add(subtract) cycle is repeated until the quotient is
normalized. The exponent is adjusted by adding 35 initially and subtracting 1 per
cycle. Rounding of the quotient is performed as described in Section 5.3. The
remainder is thrown away.

5.3. Normalization and Rounding
If the resulting 38 bit fraction is zero, a floating-point zero with exponent

- 2048 is delivered as final result.
A non-zero fraction is normalized either by left shifts to eliminate leading sign

bits or by a single right shift to correct for overflow of the fraction. The
exponent is decreased (increased) by the number of left (right) shifts performed.

A non-zero, normalized fraction is rounded by adding 1 in bit 36. After
rounding, the fraction may require normalization once more before the high
order 36 bits and the exponent are delivered as the final result.

24 5.4. PRECISION MODES

The maximum value of the rounding error is 0.5 in the least significant
position of the 36 bit fraction of the result.

For addition and subtraction this may be seen as follows: Consider the 36 bit
fractions fl and f2 to be exact, fl being the fraction of the larger operand. If
the exponents differ less than three, f2 is shifted at most two positions and
retains all significant bits in the 38 bit register. If the exponents differ more than
two, f2 and the resulting fraction satisfies the following inequalities:

abs(f2 shifted)<= l * 2**(-3)

abs(fl + or - f2 shifted) > = 0.5 - 1 * 2**(-3) = 3/8
Thus, at most one left shift is required to normalize the result. If fraction
overflow occurs, normalization requires a single right shift. In both cases, the
result contains at least 37 significant bits, and rounding to 36 bits can at most
cause an error of 0.5. This is also true in the special cases requiring re-normal
ization.

After multiplication, the product of the fractions lies in the interval:
0.25 <= abs(fl * f2) <= 1

and may thus require one left shift for normalization. Again, the result contains
at least 37 significant bits before rounding takes place.

After division, rounding of the resulting fraction is performed by adding 1 in
bit 35 if bit 36 is 1. Since rounding to 36 bits is performed on a normalized
quotient of 37 bits, it follows that the maximum error is 0.5.

5.4. Precision Modes
The arithmetic operations may be performed in two modes called full and low

precision. The significance of a numerical result may be estimated by performing
the same computation in both modes and comparing the results.

In the full precision mode, the result is computed with a 36 bit fraction
correctly rounded as described above.

In the low precision mode, the result is first computed and rounded as in the
full precision mode, but in the final result the fraction bits 34 and 35 are set
equal to bit 33.

The precision mode is selected by setting bit 21 in the exception register: 0 =
full precision, 1 = low precision.

The effect of the low precision mode is that of working with floating-point
numbers with a 33 bit fraction with practically the same error characteristics as
the full precision arithmetic.

This can be shown as follows: the rounding of the eight possible values of bits
33, 34 and 35 to either 000 or 111 introduces errors of 0, -1/8, -2/8, -3/8,
3/8, 2/8, 1/8, and 0, respectively, in the least significant position of the 33 bit

5.5. UNDERFLOW, OVERFLOW, AND NON-NORMALIZED OPERANDS 25

fraction. Assuming these eight values occur with equal probability, obviously the
mean and maximum errors are 0 and 3/8, respectively. If we further assume an
operand distribution such that the error from rounding in bit 36 has the mean

value 0, then the mean and maximum total errors of the low precision fraction
becomes O + 0 = 0 and (3 + 0.5)/8 = 0.44, respectively.

Now let F33 and F36 be the results of a given computation performed in the

two modes. If the exact result is denoted by F we have:
F = F33 + error33 = F36 + error36

and hence:
F36 - F33 = error33 - error36

Assuming that errors in the full and low prec1S1on modes are uniformly
distributed with mean values O and maximum values 0.5 and 3.5, respectively,
there is a high probability that abs(error33) >> abs (error36), which justifies the

approximation:
F36 - F33 = error33

This means that the identical digits in the two results in most cases can be
regarded as the significant digits of F33. This has been verified in a limited

number of numerical experiments.
The operation times are the same in the full and low precision modes.

5.5. Underflow, Overflow, and Non-Normalized Operands
Underflow and overflow occur when the exponent of the final result (after

normalization, rounding, and re-normalization) is less than -2048 or greater than
204 7, respectively. This will set bit 22 in the exception register to one and
provoke a program interruption as defined in Section 7.2.

After underflow or overflow, the fraction is correct while the exponent is
taken modulo 4096. Thus, if the sign of the resulting exponent is negative, the

interrupt was caused by overflow, otherwise by underflow.
Division by zero leaves the register operand unchanged and gives an interrupt;

this is also true if zero is divided by zero.
Considering the enormous range of floating-point numbers, both underflow

and overflow will usually be an indication of a programming mistake.
It is not checked whether operands are correctly normalized floating-point

numbers. If a floating-point operation is carried out on non-normalized numbers

it will in some cases give a non-normalized result.
The exception register has the following meaning after a floating-point

arithmetic operation.
exception bit 21: low precision (unchanged)

22: floating-point underflow or overflow

23: 0

26 5.6. NUMBER CONVERSION

5.6. Number Conversion
The instruction convert integer to floating converts a 24 bit integer stored in a

working register to a 48 bit floating-point number stored in a pair of working
registers consisting of the register specified in the instruction and the preceding
one. The effective address A of the instruction is used as a signed scaling factor.
Thus, the value of the floating-point number becomes:

integer * 2**A
Program interruption with bit 22 of the exception register set to one occurs if

the resulting exponent exceeds the 12 bit range.
The instruction convert floating to integer converts a 48 bit floating-point

number stored in a pair of working registers to a 24 bit rounded integer stored in
the register specified in the instruction. The effective address A of the instruction
is used as a signed scaling factor. Thus, the value of the integer becomes:

round(floating-point number * 2 ** A)
Program interruption with bit 22 of the exception register set to one occurs if

the resulting integer exceeds the 24 bit range.
The conversion instructions do not distinguish between low and full precision

because they always convert to and from a much lower precision of 24 bits.
If the real F0 and the integer IO are two Algol variables, the assignment

statement IO:= F0 can be performed by the instructions:

DL Wl F0; W0WI: = F0
CF Wl 0 ; Wl: = round(W0WI * 2**0)
RS WI IO ; IO : = WI

The assignment F0:= IO may be performed in a similar way.
Since the CF instruction rounds off the result the Algol function entier(F0)

may be performed by subtracting 0.5 before the conversion:

DL Wl F0 ; W0WI := F0
FS WI Fl ; W0Wl := W0WI - 0.5
CF Wl 0 ; Wl:= round(W0Wl * 2**0)

5.7. Exact Arithmetic with Floating-Point Instructions

The floating-point arithmetic may be used to simulate exact arithmetic with
35 bits integers in the following sense: as long as operands and results only
assume integer values in the range

-2**35 <= F < 2**35
any floating-point operation gives the exact integer result. All integers in this

5.7. EXACT ARITHMETIC WITH FLOATING-POINT INSTRUCTIONS 27

range can be represented exactly as floating-point numbers, and since the error in
each operation cannot exceed 0.5 in the 36th fraction bit the error must be zero.

While addition, subtraction, and multiplication of the integer values automati
cally give integer results, it is often necessary to modify a floating-point quotient
to obtain an integer value. If the absolute value of the quotient does not exceed
2**34 the correctly rounded integer quotient may be obtained by adding and
subtracting the floating-point number 2**34. In Algol the real quotient F0 may
be rounded by the statement:

F0:= F0 + 2**34 - 2**34
This works because the addition will shift the fraction of F0 to the right until

the last retained bit corresponds to the integer unit position of F0.
The integer division in Algol defined by:

F0//Fl = sign(F0/Fl) * entier(abs(F0/FI))
may be simulated in floating-point arithmetic by the following statements:

Q:= F0/Fl;
Q:= if Q>=0 then (Q - 0.5) else (Q + 0.5);
Q:= Q + 2**34 - 2**34;

Chapter 6

PROTECTION SYSTEM

6.1. Storage Protection

The RC 4000 is designed to operate as a multiprogramming system under the
control of a monitor program. Monitor control of the RC 4000 is guaranteed by
storage protection and privileged instructions.

Each storage word is provided with a protection key of 3 bits. It is thus
possible to identify eight different storage areas which can be prevented from
destroying one another. The setting of the protection keys is controlled by the
monitor program. The protection keys do not enter the working registers in the
data operations. They are used only by the control unit to test whether the

current program is allowed to alter or jump to a given storage word. Attempts to
violate storage protection cause program interruption.

A protection register of eight bits specifies the storage areas which may be
altered or entered by the current program. Each bit in this register corresponds
to one of the eight different protection keys. In store and jump operations, the
protection key of the addressed word is used as an index to select a bit within
the protection register. This bit defines whether the storage word is protected
against the current program.

As an example, a program may attempt to store the contents of a working
register into a storage word in which the protection key has the value 5. In this
case, the control unit tests bit number 5 in the protection register. If the selected
bit is zero the storage operation will be executed, otherwise the current program
will be interrupted.

PROTECTION REGISTER

I-
0 5 7

1---
\

5

DATAWORD PROTECTION KEY

6.2. PRIVILEGED INSTRUCTIONS 29

In this system, the monitor can change the protection sphere of a subordinate
program immediately by loading the protection register with another bit pattern.

The protection key zero is reserved for the monitor program, and bit O in the
protection register is permanently equal to one. Thus the monitor is always
protected from being destroyed by subordinate programs. It is also protected
against erroneous calls i.e. jumps that enter the monitor at arbitrary points.

A call of the monitor program within a subordinate program is possible now
only by provoking a program interruption (e.g. by attempting a direct jump to
the monitor). Prior to this, information about the desired entry can be loaded
into a working register. The program interruption transfers control to a fixed
point in the monitor, which then decides whether the entry is correct or not.

6.2. Privileged Instructions
It is highly desirable that the protection status of the internal store can be

controlled by the monitor. This has been achieved by two instructions, load
protection register and store protection key, which can only be executed within
the monitor, i.e. the interrupt response program. This concept of privileged
instructions has been further extended to prevent subordinate programs from
accidently seizing control from the monitor. First, subordinate programs cannot
change the status of the interrupt system (e.g. by disabling it permanently).
Second, it is impossible for a subordinate program to monopolize an input/out
put device needed by other programs. The following classes of instructions are
therefore executable within the monitor only:

Storage Protection Control:
LOAD PROTECTION REGISTER
STORE PROTECTION KEY

Program Interruption Control:
LOAD MASK REGISTER
CLEAR INTERRUPT BITS
JUMP WITH INTERRUPT ENABLED
JUMP WITH INTERRUPT DISABLED

Input/Output Control:
INPUT /OUTPUT
AUTOLOAD WORD

6.3. Summary of Protection System
The protection system can be summarized as follows:
A program interruption sets the control unit in the monitor mode and starts a

monitor program at a well-defined point. In the monitor mode, all instructions

30 6.4. AN EXAMPLE OF PROTECTED AREAS

can be executed as long as they are fetched from protected storage words. It is
also'allowed within the monitor to alter protected storage words.

The control unit returns to the task mode, when the first unprotected
instruction is executed. In the task mode, program interruption results if the
following is attempted:

(1) Executing a privileged instruction.

(2) Storing into a protected location.

(3) Jumping to a protected location (by explicit branching or by sequential
program execution).

The protection status of a storage word is defined by the value of its
protection key in connection with the corresponding bit in the protection
register.

6.4. An Example of frotected Areas
As an example, consider a multiprogramming system in which the internal

store is divided between a monitor program and three subordinate programs A,
B, and C. The protection keys of the four program areas are 0, 1, 2, and 3,
respectively.

Let the protection spheres of these programs be defined as follows:

1) Neither A, B, nor C have access to the monitor area.
2) A, B, and C of course have access to their own areas.
3) Furthermore, A can access C, while B can access both A and C.

PROTECTION KEY

0 MONITOR

PROGRAM A

2 PROGRAM B

3 PROGRAM C

6.4. AN EXAMPLE OF PROTECTED AREAS 31

Each time the monitor transfers control from one program to another, it loads
the protection register with one of the following bit patterns:

PROGRAM A

PROGRAM B

PROGRAM C

PROTECTION REGISTER

1 0 1 0 - - - -

1 0 0 0 - - - -

1 1 1 0 - - - -

0123---7

7 .1. Interruption Logic

Chapter 7

INTERRUPTION SYSTEM

The program interruption system permits an automatic switching from the
current sequence of instructions to another sequence in immediate response to

specific internal or external events.
The interruption system performs the following functions: (1) Collection of

interrupt signals, (2) Interrogation of interrupt signals, (3) Selection among
competing interrupt requests, (4) Saving of return information, and (5) Branching

to the interruption program.
The RC 4000 can collect up to 24 interrupt signals in an interrupt register.

The monitor has selective control over these interrupt lines by means of a mask
register. For each of the 24 interrupt lines a mask register bit defines whether an
interrupt request will be honoured (mask bit =l) or ignored (mask bit =0). The
interrupt register is interrogated once in every instruction cycle. If any of the
masked interrupt bits are set, the contents of the instruction counter will be
stored in storage word 10, before branching to an address kept in storage word
12. The problem of simultaneous interrupt signals is solved by selecting the
left-most signal first. This is done by turning the interrupt bit off and storing its
register position as an integer (0 - 23) in storage word 8. The interruption
program uses this interrupt number to branch to a specific service routine. To
facilitate the branching, the interrupt number is stored as a word address, with

the unit position in bit 22 and with bit 23 equal to zero.

INTERRUPT REGISTER

MASK REGISTER

0 23

STORAGE ADDRESS

8 INTERRUPT NUMBER

10 RETURN ADDRESS

12 SERVICE ADDRESS

0 23

7.2. INTERRUPTION CONDITIONS 33

Only the instruction counter is stored as return information about the
interrupted program. The interruption program is responsible for saving and
restoring the contents of the working registers and the exception register.

The entire interruption system can be disabled for short intervals when an
interruption would be awkward (e.g. while a previous interrupt is being proces
sed). When the system is disabled, interrupt signals are still collected, but not
interrogated. The system is automatically disabled, when the interruption pro
gram is entered. It can be enabled again (or disabled) within the monitor using
the privileged instructions jump with interrupt enabled (or disabled).

7 .2. Interruption Conditions
The interrupt signals can be classified according to priority as follows:

First: Instruction Exception
Second: Integer Overflow
Third: Floating-Point Overflow
Fourth: External Interruption

(bit 0)
(bit I)
(bit 2)
(bits 3 - 23)

Instruction exceptions are internal interrupts generated by instructions that
attempt to violate the protection system. This interrupt has the highest priority
and is the only one that can neither be masked off nor disabled. The interrupt
number is set to zero before branching to the interruption program. Instruction
exceptions are recognized in the following situations:

(1) Execution of an unassigned operation code.

(2) The effective address of an instruction refers to a non-existent storage
location.

These two kinds of instruction exceptions will cause interruptions even when
detected within the monitor program.

In the task mode, instruction exceptions are also caused by:

(3) Execution of a privileged instruction, and

(4) Attempts to alter or jump to a protected location.

3

34 7.2. INTERRUPTION CONDITIONS

An integer interruption with interrupt number 2 is caused by overflow
occurring in integer arithmetic. This interruption can be masked off.

A floating-point interruption with interrupt number 4 is caused by exponent
overflow or underflow in floating-point arithmetic. The interruption is maskable.

The remaining 21 bits in the interrupt register can be assigned to external
signals. They have interrupt numbers from 6 to 46 and are all maskable. Through
these interruptions the computer can respond to attention signals from real-time
clocks, alarm contacts, operator interruption keys, and input/output devices. The
system permits the connection of several interrupt signals to a single interrupt
bit. This is done by connecting the interrupt bit to an external register of 24
bits. Each device connected to the same interrupt level has a bit position in this
register. The external register is treated as a peripheral device by the computer. It
can be input and cleared when the individual signals must be identified and

served.

Chapter 8

LOW-SPEED DATA CHANNEL

8.1. Main Characteristics
Slow character-oriented devices such as typewriters, paper tape readers, and

paper tape punches are connected to a single low-speed data channel that
communicates directly with the internal working registers. Each device has a

separate buffer register of up to 24 bits, which transmits or receives one
character at a time to or from the external data medium.

CHANNEL CONTROL UNIT

INPUT/OUTPUT BUS

EXCEPTION REGISTER

DEVICE 0 DEVICE 1 DEVICE 2

WORKING REGISTERS

The data channel consists of a channel control unit and an input/output bus,
with 24 bits for transfer of data to or from the device buffers and 6 bits for
channel control signals. The transfers of data between the working registers and
the device buffers take place one at a time under program control. Transfers
between buffer registers and the external data media are, however, controlled
independently by the devices; thus several of these transfers can take place at
one time. The operation of this low-speed data channel will now be described in
detail.

8.2. Input/Output Instruction
Initial program loading is controlled by the input instruction, autoload word

(see Section 11.5 .). All other input/output operations are handled by a single
instruction, input/output, which has the standard instruction format (defined in
Section 3.4.). Here, ·the W field selects the internal working register that will be
connected to the data channel.

3*

36 8.3. CHANNEL OPERATION

The effective address of the instruction is interpreted as follows:

DEVICE COMMAND

0 17 18 23

The device is identified by a device number of 18 bits. Installations in which the
channel does not have the capacity to address the maximum number of devices
will interpret the device address modulo 2**N, where N < 18.

The input/output operation desired is defined by a command code of 6 bits.

8.3. Channel Operation
An input/output operation is initiated by the computer in two stages:

Selection Phase. The channel control unit attempts to establish a connection
with the device by sending the device number on the bus simultaneously through
all device control units. The success of this selection depends on whether the
device in question is:

(1) available,
(2) busy, or
(3) disconnected.

The device is considered disconnected, if no device responds to the selection.
This is either because the device number designates a non-existent device or
because the power to the device is switched off, or because the device has been
removed from its control. unit.

The device responds to the selection with a busy signal, if it is in the process
of executing a previous input/output operation. In the busy and disconnected
states, the input/output operation is rejected and the computer proceeds
immediately to the next instruction. The cause of rejection is made available to
the program in the exception register.

Data Transfer Phase. If the device is available, it will accept the command code
from the busline. Some of the commands will now cause the channel to perform an
immediate data transfer from a working register to the external buffer register or
vice versa. Finally, when the device operation is initiated, the computer proceeds
to the next instruction.

8.4. DISCONNECTED AND BUSY INDICATION 37

8.4. Disconnected and Busy Indication

The exception register has the following meaning after an input/output
operation:

exception bit:
21 (unchanged)
22 disconnected
23 busy

8.5. Device Commands

The command code of 6 bits is divided into a basic command field of 2 bits
and a modifier field of 4 bits:

DEVICE COMMAND

MODIFIER BASIC

18 21 22 23

The 16 possible modifications are specific for each type of device. The
channel control unit recognizes only the 4 basic commands which are:

8.6. Read

00 sense
01 control
10 read
11 write

The read command directs the device to start a transfer of the next character
from the external data medium into its buffer register. The computer is released
as soon as the operation is initiated (or rejected). The device is busy until the
read operation has been completed.

8.7. Sense

The sense command is a request to the device to transfer the contents of its
buffer register to a working register. This is done immediately under program
control. The device is available after a sense command.

38 8.8. WRITE

The right-most bits of the data-word transferred contain the last character
received in the buffer register, whereas the left-most bits are status bits set during
the input/output operation. The number of bits reserved for status information
and for the character depends on the type of device. Unused bits in the
data-word are permanently equal to zero.

STATUS CHARACTER

0 23

Non-zero status bits indicate an exceptional result of the last input/output
operation. The following are examples of status bits:

intervention
transmission error
timer
end of medium

Intervention is indicated when the operator has interfered manually with the
device, e.g. by opening the door of a tape station.

Transmission error signifies a parity error during input from a paper tape
reader; an analog input signal that is out of range, and so forth.

Timer indication is set when the device does not complete an operation within
a certain time interval, for example, if the operator fails to respond to a
typewriter input request within a certain time interval.

End of medium indicates that the operator should insert a roll of paper tape,
a printer form, etc.

The status word can only be sensed if the device is available. If the device is
busy or disconnected, the command is rejected as described above. The sense
command can therefore be used in connection with the exception register to test
whether a device is busy.

8.8. Write
The write command causes an immediate transfer of the contents of a

working register to a device buffer, followed by an output operation to the
external data medium. The computer is released as soon as the output operation
has been initiated (or rejected). The device is busy until the write operation has
been completed.

8.9. CONTROL 39

8.9. Control
The control command causes an immediate transfer of the contents of a

working register to a device control unit, followed by a control operation of the
device. The data-word transferred is interpreted either as a selection address (of
an analog input terminal, or a track on a drum) or as a control code (specifying
rewinding of a magnetic tape, etc.). The computer proceeds to the next instruction
as soon as the control operation has been initiated (or rejected). The device is busy
until the control operation has been completed.

8.10. Summary of Low-speed Channel
The operation of the low-speed data channel can be summarized as follows.

The execution of an input/output instruction will always result in the exception
register being set to indicate whether the operation specified by the command
was initiated or rejected by the device. The computer will in any case
immediately proceed to the next instruction.

A successful input operation from a device is performed by two input/output
commands, as shown by the following simplified example:

AO: IO 5<6+ 2 ; read (device 5);

Al: IOWl 5<6+0 ; wait:
SX 2.01 w 1 := sense (device 5);
JL. Al. ; if busy then goto wait;

The first command (read) directs the device to start reading the next character
into its buffer register. As soon as this operation has been initiated, program
execution continues. The second command (sense) is used in connection with an
SX instruction to wait for the completion of the input. When the data value is
available in the buffer register, the sense command will immediately transfer it to
the working register specified.

An output operation is initiated by a write command, which transfers the
contents of a working register to an external buffer register and directs the
device to start writing it out. The computer is released immediately, and is not
concerned with the device in question until the operation has been completed.
The outcome of the output operation is tested by a sense command, which
transfers a status word to a working register.

40 8.10. SUMMARY OF LOW-SPEED CHANNEL

Finally, it should be mentioned that it is possible to connect a device to the
interrupt register so that the end of an input/output operation can be signalled

directly by the device as a program interruption.

Chapter 9

HIGH-SPEED DATA CHANNEL

Input/output devices such as disk files, drums, and magnetic tape stations,
which transmit large volumes of data at high speeds are connected to a single
high-speed data channel. This channel performs buffered input/output directly to
or from the internal store on a cycle-stealing basis. Program execution proceeds
simultaneously with input/output operations.

LOW-SPEED CHANNEL

EXCEPTION REGISTER

WORKING REGISTERS

HIGH-SPEED CHANNEL
INTERNAL STORE

Block transfers can take place on several devices at one time. A multiplexer
switches rapidly among the devices connecting them to the high-speed channel,
whenever they are ready to transfer a complete data-word to or from the store.

The capacity of the high-speed channel is only limited by the cycle time of
the internal store. With a cycle time of 1.5 usec the maximum channel speed is:

input: 2.0 usec/word or 500 000 words/sec
output: 1.5 usec/word or 667 000 words/sec

Storage protection keys are not changed by high-speed input/output.
The devices use the low-speed channel to transfer commands and addresses of

buffer areas in the store. This is done by means of the control command. The

sense command is used to transfer a status word at the end of an operation. All

42 9. HIGH-SPEED DA TA CHANNEL

input/output operations are thus handled by the standard input/output instruc
tion, and the high-speed devices are simply numbered in continuation of the
low-speed devices.

If one or more data words are lost during input/output due to overloading of
the data channel, the device in question delivers a status bit, data overrun, at the
end of the operation. The program can then repeat the operation.

For further details, the reader should consult the reference manuals for
specific peripheral devices.

Chapter 10

STANDARD PERIPHERAL DEVICES

10.1. Console Devices
The standard input/output equipment mounted on the console consists of a

paper tape reader, a paper tape punch and a typewriter operating on the
low-speed data channel.

The specifications of these are defined in the reference manuals for peripheral
devices.

10.2. Interval Tinter
The interval timer is connected to the low-speed data channel by means of a

buffer register of 24 bits.
The interval timer consists of a binary counter of 14 bits (denoted bits 10 to

23). The counter is increased by one in bit 23 every 100 microseconds. It counts
modulo 2**14. The frequency stability is 1 part in 10**6. The value of the
timer is random when the RC 4000 is started.

The value of the timer can be input to a working register by means of a sense
command. This operation does not change the value of the timer.

STATUS WORD: ZERO TIMER VALUE

0 9 10 23

The timer produces an interrupt with regular intervals. The value of the timer
is not changed by an interrupt.

The interrupt interval can be set manually to one of the following values:

1.6 msec
3.2
6.4 -

12.8
25.6
51.2

102.4
204.8 -
409.6
819.2 -

1638.4

Chapter 11

OPERATOR CONTROL PANEL

11.1. Indicators and Control Keys
Operator communication with the RC 4000 is performed mainly via type

writers. The operator control panel has therefore been minimized to contain only
3 control keys: reset, start and autoload. Two indicator lamps show whether the
machine is operating(CPU running) or stopped{ CPU error).

A keylock switch prevents unauthorized or accidental operation of any of the
console keys. When the control panel is locked, the keys have no effect.

11.2. t1achine Errors
The RC 4000 is controlled by a microprogram in a read-only store. The

control unit performs parity checking of each microinstruction fetched. Parity
checking is also performed during each read operation from the internal store.
Detection of a parity error will cause the microprogram to be stopped and the
CPU error lamp to be lit.

11.3. Reset Control
The reset key is a special interruption key, which is interrogated once in every

instruction cycle. Pressing the reset key has the following effect:

(1) The program in progress is interrupted with the return address stored in
storage word 10.

(2) The control unit is set in the monitor mode with the interrupt system
disabled

The computer remains in the reset state, until the operator presses either the
start key or the auto load key.

A power failure detected at the end of an instruction will automatically cause
a reset action. In this connection, it should be noted that while the internal store
is non-volatile on power shut-downs, the contents of all registers are lost.

Turning the power on also sets the computer in the reset state (without the
instruction counter being stored).

11.4. START CONTROL 45

11.4. Start Control
The start key is used in the reset state to start a monitor program. When this

key is pressed, the computer jumps to an address kept in storage word 14.

The start key has no effect, unless the machine is in the reset state.

1 l.S. Autoload Control
The autoload key is used in the reset state to initiate a bootstrapping routine

that loads a program into the internal store from device number O (normally the
paper tape reader). The autoload key has no effect, unless the machine is in the
reset state.

When the autoload key is pressed, the computer reads four 6-bit characters into
working register 0. Following this, it sets the protection key of the register to zero
and proceeds to execute its contents as an instruction.

The bootstrapping program continues the loading by means of a privileged
instruction, autoload word. This instruction reads four 6-bit characters from
device number O into the storage word designated by the effective address. The
loading is completed by setting the protection key of the word to zero.

The use of the autoload instruction is illustrated by the following example.
Let us assume that a program represented on binary paper tape must be loaded
into the store from location 16 onwards. The sequence of instructions on the
paper tape should be as follows:

AW 2
AW 4
JL 0
AW 16
First Program Instruction
AW 18
Second Program Instruction

JL 16

When the reset and autoload keys are pressed, the computer reads the first
autoload instruction (AW 2) into working register O and executes it. This
instruction in turn reads the second autoload instruction (AW 4) into working
register 1, and proceeds to execute it after the instruction counter has been
increased sequentially. This has the effect of placing a jump instruction {JL 0)
into working register 2.

46 11.6. LOCAL/REMOTE INDICATION

We have now established the following programming loop in the working
registers:

address: instruction:
0 AW 2

2 AW 4
4 JL 0

The return jump to working register O causes the third autoload instruction (AW
16) to be placed in working register 1. Its execution loads the first instruction of
the actual program into storage word 16. By repetition of this loop, the
following program instructions are loaded into words 18, 20, 22, etc. The loading
is terminated by reading a jump instruction (JL 16) into working register 1. Its
subsequent execution transfers control to the start of the program loaded.

The autoload instruction should be used only to load an initial program into
an empty store. Using it within a real-time monitor is indeed hazardous: if the
loading device is disconnected or if input exceptions, such as parity error are
detected, the autoload instruction will immediately set the computer in the reset
state, in which it is beyond program control. In the reset state, the autoloading
can be repeated by pressing the autoload key.

11.6. Local/Remote Indication
Each peripheral device is supplied with a local/remote switch, which can be

set manually. In the remote state, the device is program controlled. In the local
state, the operator can insert paper tapes, adjust printing sheets, and so on. In
this state, a device can accept an input/output command, but the actual
initiation of the operation is delayed until the operator sets the device remote
again.

The operator control panel shows the status of local/remote
switches.

Chapter 12

TECHNICAL CONTROL PANEL

12.1. Operating Modes
The technical control panel is intended mainly for manual control of the RC

4000 during maintenance periods. It will therefore only be considered briefly in
this manual.

A keylock switch turns the technical panel on (technical mode) and off
(normal mode).

In the normal mode, the operator is prevented from using the maintenance
panel, i.e. the control keys have no effect.

In the technical mode, the operator can perform the following control

functions:

(1) Start and stop the computer.

(2) Execute instructions step by step.

(3) Alter and display registers.

(4) Select, display, and execute single microinstructions.

The operator control panel is inoperative in the technical mode.

12.2. Instruction Step Keys
The single instruction key stops the program at the end of the instruction

cycle. If this key is pressed repeatedly, the computer steps through the program,
stopping after each instruction.

The single microinstruction key permits the operator to stop the computer
after each microinstruction.

The computer returns to continuous program execution, when the continue
key is pressed (or when the maintenance panel is set in the normal mode).

12.3. Register Setting and Display
When the computer is stopped, the registers of the central processor can be

displayed and set manually. The indicator lamps display a single register in binary
form. Each indicator has two push-buttons for setting the corresponding register

48 12.4. MICROINSTRUCTION SELECTION AND DISPLAY

bit to 0 and 1 respectively. Each register has a selection key that connects it to

the display when pressed.
The registers that can be displayed and set are: W0-W3, FR, IC, PR, SB

(including PK), SE, AR, AE, BR, BE, SC, and EX. IR and IM can only be
displayed. (The meaning of these register names is defined in Section 14.2).

12.4. f.1icroinstruction Selection and Display
A display is also provided for the microprogram store. This shows the address

and the format of the current microinstruction on binary form.
The microaddress register (MAR) can be set manually by means of push-but

tons. It is thus possible to start program execution from any address in the

microprogram.
The control key r.1AR manually controlled causes the computer to repeat the

present microinstruction continuously, when the continue key is pressed. Only in
this state can the microaddress register be set and the correponding microinstruc
tion be displayed.

A microinstruction consists of a micro command part and a jump selector
part.

The control key f.1AR computer controlled returns the microprogram to its
normal sequential execution.

12.5. Parity Control
In the technical mode, the parity control of the core store and the

microprogram store can be turned on or off by push buttons called core store
control and MPS control.

In the normal mode, the parity control is always on.

When a parity error is detected while the parity control is on the machine
goes into the reset state and one of the indicators core store error or MPS error
is lit.

Chapter 13

INSTRUCTION SET

Address Handling
AM Modify Next Address
AL Load Address
AC Load Address Complemented

Register Transfer
HL Load Half Register
HS Store Half Register

RL Load Register
RS Store Register
RX Exchange Register and Store

DL Load Double Register

DS Store Double Register

Integer Byte Arithmetic
BZ Load Byte with Zeroes

BL Load Integer Byte
BA Add Integer Byte
BS Subtract Integer Byte

Integer Word Arithmetic
WA Add integer Word

WS Subtract Integer Word
WM Multiply Integer Word
WD Divide Integer Word

Integer Double Word Arithmetic
AA Add Integer Double Word

SS Subtract Integer Double Word

Arithmetic Conversion
CI Convert Integer to Floating

CF Convert Floating to Integer

4

Floating-Point Arithmetic
FA Add Floating
FS Subtract Floating
FM Multiply Floating

FD Divide Floating

Logical Operations
LA Logical And

LO Logical Or
LX Logical Exclusive Or

Shift Operations
AS Shift Single Arithmetically

AD Shift Double Arithmetically

LS Shift Single Logically
LD Shift Double Logically
NS Normalize Single
ND Normalize Double

Sequencing
JL Jump with Register Link
SH Skip if Register High
SL Skip if Register Low
SE Skip if Register Equal
SN Skip if Register Not Equal
SO Skip if Register Bits One
SZ Skip if Register Bits Zero

SX Skip if No Exceptions
SP Skip if No Protection

so 13. INSTRUCTION SET

Monitor Control
JE Jump with Interrupt Enabled
JD Jump with Interrupt Disabled
IC Clear Interrupt Bits
IS Store Interrupts Register
ML Load Mask Register
MS Store Mask Register
XL Load Exception Register
XS Store Exception Register
PL Load Protection Register
PS Store Protection Register
KL Load Protection Key
KS Store Protection Key
IO Input/Output
AW Autoload Word

Chapter 14

DEFINITION OF INSTRUCTIONS

14.1. Algol Notation
This chapter gives a formal definition of the instruction logic. The basic

instruction cycle and all operations are described in the Algol 60 language,
extended with the following concepts:

Declarations. A register declaration consists of an identifier, followed by a
specification of the bit size in parentheses. As an example:

register SB(0:23)
is a declaration of a storage buffer register SB of 24 bits, numbered 0 to 23 from
the left. Similar declarations are introduced for register arrays and the internal
store:

register array W(0:3)(0:23)
storage array word(0:word limit)(0:23)

Algorithms. Reference to a sub-field within a register is defined in the
following way: Bit number i in the register SB is denoted SB(i). The register field
from bit i to bit j is described as SB(i~). Storage references to bytes, words, and
protection keys are denoted byte(SB), word(SB), and protection key(SB),
respectively.

14.2. Register Structure
The instruction logic is defined within the frame of the register structure

shown in the following figure. It corresponds very closely to the actual structure
of the central processor.

A data-word transferred to or from the store is held in the combined register
SB and PK.

When an instruction is fetched, the operation byte is assigned to the FR
register, while the displacement byte is placed in SB and extended to 24 bits.

SB and AR act as input registers to the adder. AR performs single-length shift
operations and, combined with BR, double-length shift operations.

4*

52

STORAGE BUS

-
-
~

-
-

- . - .

.

I
r

- I

I

/'

• I

I -

. -
10 BUS

14.2. REGISTER STRUCTURE

WO
W1
W2
W3

STORE

PK PR

FR

IC

BR

AR

ADDER

SB

SC

• I EX -

IR

IM

10 CONTROL

J~

1t'

DEVICE 0
DEVICE 1

ETC.

--
-
--

1-

1--
--
-I -

-
, ...
1~

,_

I

ADDER BUS

.

-
.
::..

.

-
.
.

-

.

.
-

-

-
-

.
-

WORKING REGISTERS

PROTECTION KEY

PROTECTION REGISTER

FUNCTION REGISTER

INSTRUCTION COUNTER

B REGISTER

A REGISTER

STORAGE BUFFER

SEQUENTIAL COUNTER

EXCEPTION REGISTER

INTERRUPT REGISTER

INTERRUPT MASK

DEVICE BUFFERS

14.2. REGISTER STRUCTURE 53

SE, AE, and BE denote extensions of the registers SB, AR, and BR used in
floating-point operations.

The sequential counter SC is used to determine the number of iterations in
arithmetic operations .

The functional units are declared as follows:

register PK(0:2), PR(0:7), FR(0:11), IC(0:23),

BR(0:23), AR(-1 :23), SB(0:23),
BE(24:35), AE(24:37), SE(24:37),
SC(11 :23), EX(21 :23), IR(0:23), IM(0 :23);

register array W(0:3)(0:23),
device buffer(0:device limit)(0:23);

storage array word(0:word limit) (0:23),
protection key(0:word limit) (0:2);

boolean monitor mode, interrupt disabled,
reset key, start key, autoload key;

In references to registers and the store, the following abbreviations are used:

Abbreviation: Used instead of:
W W(FR(6:7))
Wpre W(ifFR(6:7) = 0 then 3 else FR(6:7)-1)
Wfrac Wpre concat W(0:11)
Wexp W(12:23)
ARBR AR concat BR
BF BR concat BE
AF AR concat AE
SF SB concat SE
SBexp Various 12-bit registers holding the

exponent of a storage operand.
byte(SB) if SB(23) = 0 then word(SB)(0:11)

else word(SB)(12:23)
fraction(SB) word(if SB= 0 then 6 else SB-2) concat word(SB)(0:11)
exponent(SB) word(SB)(l 2 :23)

54 14.3. ELEMENTARY OPERATIONS

14.3.Elementary Operations
Instructions operating on registers and storage operands will be defined in

terms of the following elementary operations:
positive signed not + - shiftleft shiftright
The monadic operator positive extends an operand to the left with zeroes

until it has the same number of bits as the operand to which the result is
assigned.

The monadic operator signed extends the signbit of an operand to the left
until it has the same number of bits as the operand to which the result is
assigned.

The monadic operators shiftleft and shiftright shift an operand one position to
the left and right with zero extension.

The monadic operator not negates all bits of an operand, i.e. ones become
zeroes and zeroes become ones.

The dyadic operators + and - perform addition and subtraction of two
operands in the binary two's complement representation.

Consider four registers:
register R(0:j); A(0D, B(0:j), C(i:j)

where 0 < i < j. The operators can now be defined by the following statements:
Statement: Definition:

R: = positive C;

R:= signed C;

R:= shiftleft R;

R:= shiftright R;

R:= not R;

R:= A +B;

R:= A - B;

R(i:j):= C; R(0:i-1):= 0;

R(i:j):= C;
for bit:= 0 step 1 until i-1 do R(bit) := R(i);

R(0:j-1):= R(l:j); RG):= 0;

R(l :j):='R(0:j-1); R(0):= 0;

for bit:= 0 step 1 until j do
R(bit):= if R(bit) = 0 then 1 else 0;

next carry:= 0;
for bit:=j step - 1 until 0 do
begin carry:= next carry;
if A(bit)<>B(bit) then R(bit):= not carry
else begin R(bit):= carry; next carry:= A(bit) end;
end;

R:= A+ ((not B) + l);

14.4. CONTROL PANEL FUNCTIONS

14.4. Control Panel Functions

Reset System:
word(I0):= IC;

55

comment: the system is reset when the operator unlocks the control panel and
depresses the reset key, when the power is switched off; or when input errors

are detected during autoloading;

Power On:
monitor mode:= interrupt disabled:= true;
reset key:= start key:= autoload key:= false;
comment: these booleans are set to true, when the operator depresses the corre

sponding keys on the control panel;

After Reset:
if autoload key then
begin IC:= SB:= 0;

goto Autoload Word;
end;
if start key then
begin IC:= word(14); IC(23):= 0;

goto Fetch Instruction;
end;
goto After Reset;

14.5. Instruction Fetch Cycle

Next Instruction:
if interrupt disabled then goto Fetch Instruction;

Interruption Service:
for bit:= 0 step 1 until 23 do
begin if IR(bit) = 1 and IM(bit) = 1 then

begin IR(bit):= 0;
word(8):= shiftleft bit;
word(lO):= IC;
IC:= word(12); IC(23):= 0;
monitor mode:= interrupt disabled:= true;

goto Fetch Instruction;

end;
end;

Fetch Instruction:
AR:= positive IC; comment: save relative address;
if IC > word limit then goto Instruction Exception;

56 14.6. PROTECTION PROCEDURES

if reset key then goto Reset System;
FR:= byte(IC); SB:= signed byte(IC + 1);
PK:= protection key(IC);

Decode Instruction:
IC:= IC+ 2;
if not monitor mode and PR(PK) = 1
then goto Instruction Exception;
monitor mode:= PR(PK) = l;

if FR(8) <>0 then SB:= SB+ AR(0:23); comment: relative address;
if FR(l0:11) <> 0 then SB:= SB+ W(FR(l0:11)); comment: indexing;
if FR(9) <> 0 then
begin Test Address; SB:= word(SB); comment: indirect address;
end;
comment: SB contains the effective address and IC points to
the next instruction;
goto operation (FR(0:5));

14.6. Protection Procedures
Instruction Exception:

IR(0):= l; comment: IM(0) is always 1;

goto Interruption Service;

procedure Test Address;
begin if SB(0:22) > word limit then goto Instruction Exception,
end;

procedure Test Mode;
begin if not monitor mode then goto Instruction Exception;
end;

Procedure Test Protection;
begin PK:= protection key(SB);

if not monitor mode and PR(PK) = 1
then goto Instruction Exception;

end;

14.7. ARITHMETIC PROCEDURES

14. 7. Arithmetic Procedures
procedure Test Integer,
begin if AR(-1) < > AR(0) then lR(l) := EX(22):= 1;

EX(23):= carry;
end;

procedure Fetch Floating Operands;
comment: The procedure moves the register and storage operand to the
following registers:

AF register fraction
SF storage fraction
Wexp register exponent
SBexp storage exponent;

begin
AF(-1 :35):= signed Wfrac; AF(36:37):= 0;
SF(0:35):= fraction(SB); SF(36:37):= 0;
SBexp:= exponent(SB);

end;

procedure Test Precision Mode and Store;
comment: Depending on exception bit 21 the procedure leaves the fraction in
AF unchanged, or sets the last two bits of it equal to the last but two.
Finally, the fraction in AF and the exponent in SC are stored in double
working registers;
begin

if EX(21) = 1 then AF(35):= AF(34):= AF(33);

Wfrac:= AF(0:35); Wexp:= SC(12:23);
end;

procedure Normalize and Round Floating;

57

comment: The procedure normalizes the fraction in AF, rounds it, and re-normal
izes it if necessary. The exponent in SC is adjusted correspondingly. Finally, the
exponent is tested for overflow and underflow, i.e. the interrupt and exception
bits are set if the exponent exceeds 2047 or -2048;
begin

58 14.8. INSTRUCTION EXECUTION

Again: if AF(-1) < > AF(0) then
begin comment: Right shift;

AF(0:37):= AF(-1:36); SC:= SC+ 1;
end else

if AF = 0 then SC:= -2048 else
begin

for SC:= SC, SC - 1 while AF(0) = AF(I) do
AF:= shiftleft AF;
comment: Left shifts until normalized;

end;
if AF(36) = 1 then
begin comment: Rounding;

AF:= AF + 4; AF(36:37):= 0; goto Again;
end;
if SC(l 1) <> SC(I2) then EX(22):= IR(2):= 1;

end;

14.8. Instruction Execution
For each instruction the normal execution is defined. Also specified are the

setting of the exception register and the conditions that will cause a program
interruption. The algorithms follow the actual micro-program closely with the
omission of irrelevant intermediate steps.

Modify Next Address
Use the effective address as an increment to the displacement in the next
instruction. The operation changes only the effective address of the next
instruction whose D field remains unchanged.

comment: the modifier address is saved in AR, and the next
instruction is fetched and modified;
AR:= signed SB;
if IC > word limit then goto Instruction Exception;
FR:= byte(IC); SB:= signed byte(IC + 1);
PK:= protection key(IC);
SB:= SB + AR(0:23);
AR:= positive IC; comment: save relative address;
goto Decode Instruction;

Exception: unchanged.
Interruption: disabled until the next instruction has been executed.

14.8. INSTRUCTION EXECUTION

Load Address
Load the W register with the effective address.

W:= SB; goto Next Instruction;
Exception: unchanged.
Interruption: none.

59

Note: When the same register is specified by the W and X fields, the operation
increments the register by the value of the D field.

Load Address Complemented
Load the W register with the two's complement of the effective address.
Complementation of the maximum negative number -2**23 gives the result
-2**23 and produces an overflow.

EX(22:23):= 0;
AR:= 0 - signed SB;
W:= AR(0:23); Test Integer;
goto Next Instruction;

Exception: (22) overflow, (23) carry.
Interruption: (1) integer overflow.
Note: When the same register is specified by the W and X fields and the D field
is zero, the operation is a sign reversal of the register.

Load Half Register
Insert the storage byte addressed in the right-most 12 bits of the W register
without changing the left-most 12 bits. The storage byte remains unchanged.

Test Address; W(12:23):= byte(SB);
goto Next Instruction;

Exception: unchanged.
Interruption: (0) undefined address.
Note: When SB < 8, the operation moves 12 bits from the left or right side of
one register to the right side of another register.

Store Half Register
Store the right-most 12 bits of the W register in the storage byte addressed. The

register remains unchanged.
Test Address; Test Protection;
byte(SB) := W(12:23);
goto Next Instruction;

60 14.8. INSTRUCTION EXECUTION

Exception: unchanged.
Interruption: (0) undefined address or protection violation.
Note: When SB < 8, the operation moves 12 bits from the right side of one
register to the left or right side of another register.

Load Register
Load the W register with the storage word addressed. The storage word remains
unchanged.

Test Address; W:= word(SB);
goto Next Instruction;

Exception: unchanged.
Interruption: (0) undefined address.
Note: When SB< 8, the operation is a register to register transfer.

Store Register
Store the W register in the storage word addressed. The register remains
unchanged.

Test Address; Test Protection;
word(SB):= W;
goto Next Instruction;

Exception: unchanged.
Interruption: (0) undefined address or protection violation.
Note: When SB < 8, the operation is a register to register transfer.

Exchange Register and Store
The W register is stored in the storage word addressed and the previous contents
of the storage word is loaded into the register.

AR:= signed W;
Test Address; W:= word(SB);
Test Protection; word(SB):= AR(0:23);
goto Next Instruction;

Exception: unchanged.

Interruption: (0) undefined address or protection violation.
Note: When SB< 8, the operation exchanges the contents of two registers.

14.8. INSTRUCTION EXECUTION 61

Interruption: (0) undefined address or protection violation.
Note: When SB< 8, the operation exchanges the contents of two registers.

Load Double Register
Load the register pair Wpre and W with the storage double word addressed. The
storage word remains unchanged.

BR:= if SB = 0 then 6 else SB - 2;
Test Address;
W:= word(SB); Wpre:= word(BR);
goto Next Instruction;

Exception: unchanged.
Interruption: (0) undefined address.
Note: When SB < 8, the operation is a double register to double register transfer
except when the W register is also the first word of the storage operand.

Store Double Register
Store the register pair Wpre and W in the storage double word addressed. The
register pair remains unchanged.

Test Address; Test Protection; word(SB):= W;
SB:= if SB = 0 then 6 else SB - 2;
Test Protection; word(SB):= Wpre;
goto Next Instruction;

Exception: unchanged.
Interruption: (0) undefined address or protection violation.
Note: When SB < 8, the operation is a double register to double register transfer
except when the Wpre register is also the last word of the storage operand.

Load Byte with Zeroes
Insert the storage byte addressed in the right-most 12 bits of the W register and
extend it towards the extreme left with zeroes. The storage byte remains
unchanged.

Test Address; W:= positive byte(SB);
goto Next Instruction;

Exception: unchanged.
Interruption: (0) undefined address.
Note: When SB < 8, the operation moves 12 bits from the left or right side of
one register to the right side of another register, followed by a zero extension to
24 bits.

62 14.8. INSTRUCTION EXECUTION

Load Integer Byte
Insert the storage byte addressed in the right-most 12 bits of the W register and
extend the sign bit towards the extreme left. The storage byte remains
unchanged.

Test Address; W:= signed byte(SB);
goto Next Instruction;

Exception: unchanged.
Interruption: (0) undefined address.
Note: When SB < 8, the operation moves 12 bits from the left or right side of
one register to the right side of another register, followed by a sign extension to
24 bits.

Add Integer Byte, Subtract Integer Byte
The storage byte addressed is extended towards the left to 24 bits and added to
(or subtracted from) the W register, and the result is placed in the register. The
storage byte remains unchanged.

EX(22:23):= 0; Test Address;
if add then AR:= signed W + signed byte(SB)

else AR:= signed W - signed byte(SB);

W:= AR(0:23); Test Integer;
goto Next Instruction;

Exception: (22) overflow, (23) carry.
Interruption: (0) undefined address, (1) integer overflow.
Note: When SB< 8, the operations adds (or subtracts) 12 bits from the left or
right side of one register to (or from) 24 bits in another register.

Add Integer Word, Subtract Integer Word
The storage word addressed is added to (or subtracted from) the W register, and
the result is placed in the register. The storage word remains unchanged.

EX(22:23):= 0; Test Address;
if add then AR:= signed W + signed word(SB)

else AR:= signed W - signed word(SB);
W:= AR(0:23); Test Integer;
goto Next Instruction;

Exception: (22) overflow, (23) carry.
Interruption: (0) undefined address, (1) integer overflow.
Note: When SB< 8, the operation adds (or subtracts) one register to (or from)
another register.

14.8. INSTRUCTION EXECUTION 63

Multiply Integer Word
The W register is multiplied by the storage word addressed. The 48-bit signed
product is placed in the register pair Wpre and W. Overflow cannot occur.

comment: The multiplicand and the multiplier are placed in SB and
BR. SC determines the number of iterations. After multiplication,
ARBR contains the product;
Test Address; AR:= 0; BR:= W; SB:= word(SB);
for SC:= 22 step -1 until 0 do
begin if BR(23) = 1 then AR:= AR + signed SB;

ARBR(0:47):= ARBR(-1:46);
end;
if BR(23) = 1 then AR:= AR - signed SB;
ARBR(0:47):= ARBR(---::1:46);
Wpre:= AR(0:23); W:= BR;
goto Next Instruction;

Exception: unchanged.
Interruption: (0) undefined address.
Note: When SB < 8, the operation is a register by register multiplication.

Divide Integer Word
The register pair Wpre and W is divided by the storage word addressed. The
24-bit signed quotient is placed in the W register, while the 24-bit signed
remainder is placed in the preceeding register Wpre. The absolute value of the
remainder is less than the absolute value of the divisor, and a non-zero remainder
has the same sign as the dividend. An overflow is registered, if the divisor is zero
or if the quotient exceeds 24 bits. In this case the dividend remains unchanged in
the working registers.

EX(22:23):= 0; Test Address;
AR:= Wpre; BR:= W; SB:= word(SB);

comment: The dividend and the divisor are placed in ARBR and SB. After
division by the non-restoring method, AR(-1 :22) contains a remainder and

ARBR(23:47) contains a 25 bit quotient in which the left-most bit is
represented by its complemented value and the right-most bit by a one;

next digit:= if AR(-1) = SB(0) then I else 0;
for SC:= 23 step -1 until 0 do
begin ARBR:= shiftleft ARBR; ARBR(47):= next digit;

AR:= if next digit = 1 then AR - signed SB
else AR + signed SB;

next digit:= if AR(-1) = SB(0) then 1 else 0;

64 14.8. INSTRUCTION EXECUTION

end;
ARBR:= shiftleft ARBR; ARBR(47):= 1;

if AR(23) = BR(0) then
Quotient Overflow:

begin IR(l):= EX(22):= l; goto Next Instruction end;

comment: the following ensures that abs(remainder) <abs(divisor);
if abs(AR(-1 :22)) = abs(SB) then
begin if SB <0 then BR:= BR - 1 else

end;

begin BR:= BR + 1;
if AR(23) = BR(0) then goto Quotient Overflow;

end;
AR;=-0;

AR(0:23):= AR(-1 :22);

comment: the following ensures that sign(remainder) = sign(dividend)

for a non-zero remainder;
if AR<> 0 and AR(-1) <> Wpre(0) then
begin if AR(-1) = SB(0) then

begin AR:= AR - signed SB; BR:= BR+ 1 end
else

begin AR:= AR+ signed SB; BR:= BR - 1 end;,
end;
Wpre:= AR(0:23); W:= BR;
goto Next Instruction;

Exception: (22) overflow, (23) zero.
Interruption: (0) undefined address, (1) integer overflow.

Note: When SB < 8, the operation is a double register by register division.

Add Integer Double Word, Subtract Integer Double Word
The storage double word addressed is added to (or subtracted from) the register
pair Wpre and W, and the result is placed in the register pair. The storage double
word remains unchanged.

EX(22:23):= 0; Test Address;
if add then AR:= signed W + signed word(SB)

else AR:= signed W - signed word(SB);

W:= AR(0:23);

14.8. INSTRUCTION EXECUTION

SB:= if SB = 0 then 6 else SB - 2;
if add then

begin if carry then AR:= signed Wpre + signed word(SB) + 1

else AR:= signed Wpre + signed word(SB);
end else

begin if carry then AR:= signed Wpre - signed word(SB)

else AR:= signed Wpre - signed word(SB) - 1;
end;

Wpre:= AR(0:23); Test Integer;
Exception: (22) overflow, (23) carry.

Interruption: (0) undefined address, (1) integer overflow.

65

Note: When SB < 8, the operation adds or subtracts two register pairs except
when the W register is also the first word of the storage operand.

Convert Integer to Floating
Convert the W register, interpreted as an integer multiplied by 2**effective address,
to a floating-point number and place it in the register pair Wpre and W. An overflow
is registered if the exponent exceeds the 12 bit range.

EX(22:23):= 0;

AF(-1 :23):= signed W; AF(24:47):= 0;
if AF= 0 then

begin Wfrac:= 0; Wexp:= -2048;
goto Next Instruction;

end;

SC:= 23;

Normalize and Round Floating;
SC:= SC+ SB(l l :23);

if SC(l 1) < > SC(12) then EX(22):= IR(2):= 1;
Wfrac:= AF(0:35); Wexp:= SC(12:23);
goto Next Instruction;

Exception: (22) overflow, (23) zero.

Interruption: (2) floating-point overflow.

Convert Floating to Integer
Convert the register pair Wpre and W, interpreted as a floating-point number
multiplied by 2**effective address, to an integer and place it in the W register. Wpre

remains unchanged. An overflow is registered if the integer exceeds the 24 bit
range.

5

66 14.8. INSTRUCTION EXECUTION

EX(22:23):= 0;
AF(-1:35):"' signed Wfrac; AF(36:37):= 0;
SB:= 23 - SB - signed Wexp; SC:= SB(11 :23);
if SB <; 0 and AF < > 0 then goto Integer Overflow;

if SB >= 64 then AF:= 0;
if 0 < SB and SB< 64 then
for SC:= SC - 1 step -1 until Odo AF(0:37):= AF(-1:36);
if AF(24) = 1 then AR:= AR+ l; comment: Rounding;

ifAF(-1)<> AF(0)then
Integer Overflow: EX(22):= IR(l):= 1

else W:= AR(0:23);
goto Next Instruction~

Exception: (22) overflow, (23) zero.
Interruption: (1) integer overflow.

Add Floating, Subtract Floating
The storage double word addressed is added to (or subtracted from) the register
pair Wpre and W as a floating-point number, and the result is placed in the

register pair. The storage double word remains unchanged.
· EX(22:23):= 0; Test Address; Fetch Floating Operands;

SC:= signed Wexp - signed SBexp;

if SC >= 38 then
begin SC:= signed Wexp; Test Precision Mode and Store;

goto Next Instruction;

end else
if SC <= -38 then

begin if add then
begin AF:= signed SF; SC:= signed SBexp;

·"fest Precision and Store;
goto Next lnstructfon;

end;
Wexp:= SBexp; AF:= 0;

end else
if SC> 0 then
for SC:= SC -1 step -1 until Odo SF(l:37):= SF(0:36) else

if SC< 0 then
begin Wexp:= SBexp;

for SC:= SC+ 1 step 1 until Odo AF(0:37):= AF(-1:36);

14.8. INSTRUCTION EXECUTION

end;
if add then AF:= AF + signed SF

else AF:= AF - signed SF;
SC:= signed Wexp;
Normalize and Round Floating;
Test Precision Mode and Store;
goto Next Instruction;

Exception: (22) overflow, (23) zero.
Interruption: (0) undefined address, (2) floating-point overflow.

67

Note: When SB < 8, the operation is a floating-point addition or subtraction of
two register pairs.

Multiply Floating
The register pair Wpre and W is multiplied by the storage double word addressed
as a floating-point number, and the product is placed in the register pair. The
storage double word remains unchanged.

EX(22:23):= 0; Test Address; Fetch Floating Operands;
BF:= AF(0:35); AF:= 0;
for SC:= 34 step -1 until 0 do

begin if BF(35) = 1 then AF:= AF + signed SF;

AF(0:37):= AF(-1:36); BF:= shiftright BF;
end,
if BF(35) = 1 then AF:= AF - signed SF;
SC:= signed Wexp + signed SBexp;
Normalize and Round Floating;
Test Precision Mode and Store;
goto Next Instruction;

Exception: (22) overflow, (23) zero.
Interruption: (0) undefined address, (2) floating-point overflow.
Note: When SB < 8, the operation is a floating-point multiplication of two
register pairs.

Divide Floating
The register pair Wpre and W is divided by the storage double word addressed as
a floating-point number, and the quotient is placed in the register pair. The
storage double word remains unchanged.

EX(22:23):= 0; Test Address; Fetch Floating Operands;
SC:= signed Wexp - signed SBexp + 35;
if AR= 0 then

68 14.8. INSTRUCTION EXECUTION

begin comment: Zero result or overflow for 0/0;
if SB = 0 then EX(22):= IR(2):= 1

else Wexp:= -2048;
goto Next Instruction;

end else
if SB= 0 then
begin comment: Overflow for X/0;

EX(22):= IR(2):= 1;
goto Next Instruction;

end else
it AF(-1) = SF(0) then
begin comment: First quotient digit = 0;

BF:= 0; AF:= shiftleft (AF - signed SF);

end else
begin comment: First quotient digit = l;

BF:= -1; AF:= shiftleft (AF+ signed SF);
end;
next digit:= if AF(-1) =SF(0) then 1 else 0;
for SC:= SC, SC - 1 while BF(0) = BF(l) do
begin comment: The iteration proceeds until the quotient is

normalized. SC then contains the exponent;
BF:= shiftleft BF; BF(35):= next digit;
AF:= if next digit = 1 then AF - signed SF

else AF + signed SF;
next digit:= if AF(-1) =SF(0) then 1 else 0;

AF:= shiftleft AF;
end;
if AF(-1) =SF(0) then AF(36:37):= 2 else AF(36:37):= 0;

AF(-1:35):= signed BF;
Normalize and Round Floating;
Test Precision Mode and Store;
goto Next Instruction;

Exception: (22) overflow, (23) zero.
Interruption: (0) undefined address, (2) floating-point overflow.
Note: When SB < 8, the operation is a floating-point division of two register

pairs.

14.8. INSTRUCTION EXECUTION 69

Logical And
The W register is combined with the storage word addressed by a logical And
operation. The result is placed in the register. The storage word remains
unchanged.

Test Address; SB:= word(SB);
for bit:= 0 step 1 until 23 do
W(bit):= if W(bit) = 1 and SB(bit) = 1 then 1 else 0;
goto Next Instruction;

Exception: unchanged,
Interruption: (0) undefined address.
Note: When SB < 8, the operation is an And combination of two registers bit by
bit.

Logical Or
The W register is combined with the storage word addressed by a logical Or
operation. The result is placed in the register. The storage word remains
unchanged.

Test Address; SB:= word(SB);
for bit:= 0 step 1 until 23 do
W(bit):= if W(bit) = 1 or SB(bit) = 1 then 1 else 0;
goto Next Instruction;

Exception: unchanged.
Interruption: (0) undefined address.
Note: When SB < 8, the operation is an Or combination of two registers bit by
bit.

Logical Exclusive Or
The W register is combined with the storage word addressed by a logical
Exclusive Or operation. The result is placed in the register. The storage word
remains unchanged.

Test Address; SB:= word(SB);
for bit:= 0 step 1 until 23 do

W(bit):= if W(bit) <> SB(bit) then 1 else 0;
goto Next Instruction;

Exception: unchanged.
Interruption: (0) undefined address.
Note: When SB < 8, the operation is an Exclusive Or combination of two
registers bit by bit. When all bits in the word addressed are ones, the operation is
a logical Negation of the register, bit by bit.

70 14.8. INSTRUCTION EXECUTION

Shift Single Arithmetically
Shift the contents of the W register the number of places specified by the
effective address in SB. If SB is negative, then shift right with sign extension in
the upper bits, otherwise shift left with zero extension in the lower bits.

Overflow is tested for each single shift.
EX(22:23):= 0;
if SB = 0 then goto Next Instruction;
if abs(SB) >=64 then SB:= sign(SB)*48;
if SB< 0 then
begin for SC:= 1 step 1 until -SB do W(l :23):= W(0:22);

end else
begin for SC:= 1 step 1 until SB do

end;

begin if W(0) < > W(l) then EX(22):= IR(l):= l;
W := shiftleft W;

end;

goto Next Instruction;
Exception: (22) overflow, (23) zero.
Interruption: (1) integer overflow.

Shift Double Arithmetically
Same as Shift Single Arithmetically performed with the register pair Wpre and W.

Shift Single Logically
Shift the contents of the W register the number of places specified by the
effective address in SB. If SB is negative, then shift right with zero extension in
the upper bits, otherwise shift left with zero extension in the lower bits.

Overflow is not indicated.
if SB= 0 then goto Next Instruction;
if SB<= 64 then SB:= sign(SB)*48;
if SB< 0 then
begin for SC:= 1 step 1 until -SB do W:= rightshift W;
end else
begin for SC:= 1 step 1 until SB do W:= leftshift W;
end;
goto Next Instruction;

Exception: unchanged.
Interruption: none.

14.8. INSTRUCTION EXECUTION 71

Shift. Double Logically
Same as Shift Single Logically performed with the register pair Wpre and W.

Nonnalize Single
Shift the contents of the W register left with zero extension until bit 0 is
different from bit 1. The number of shifts performed is stored as a negative
integer in the storage byte addressed. If W = 0 the number of shifts is set to
-2048.

if W = 0 then SC:= -2048 else
for SC:= 0, SC-1 while W(0) = W(l) do W:= shiftleft W;
Test Address; Test Protection;
byte(SB):= SC(l2:23);
goto Next Instruction;

Exception: unchanged.
Interruption: (0) undefined address or protection violation.

Nonnalize Double
Same as Normalize Single performed with the register pair Wpre and W.

Jump with Register Link
If the W field < > 0, the instruction counter is stored in the W register.
Following this, a jump is made to the effective address.

Test Address; Test Protection;
if FR(6:7) < > 0 then W:= IC;
IC:= SB; IC(23):= 0;
goto Next Instruction;

Exception unchanged.
Interruption: (0) undefined address or protection violation.
Note: When the W field = 0 the operation is a simple unconditional jump that
leaves all registers unchanged. When the W field < > 0, the operation is a
subroutine jump that places the return address in the W register. A return jump
is performed as a simple jump, with the same register specified in the X field.

Skip if Register High
Compare the W register and the effective address as signed integers. If the register
is greater than the address, then skip the following instruction. The register
remains unchanged.

72 14.8. INSTRUCTION EXECUTION

AR:= signed W - signed SB;
if AR > 0 then IC:= IC + 2;
goto Next Instruction;

Exception: unchanged.
Interruption: none.

Skip if Register Low
Compare the W register and the effective address as signed integers. If the register
is less than the address, then skip the following instruction. The register remains
unchanged.

AR:= signed W - signed SB;
if AR< 0 then IC:= IC + 2;
goto Next Instruction;

Exception: unchanged.
Interruption: none.

Skip if Register Equal
Compare the W register and the effective address as signed integers. If the register
equals the address, then skip the following instruction. The register remains
unchanged.

AR:= signed W - signed SB;
if AR = 0 then IC:= IC + 2;
goto Next Instruction;

Exception: unchanged.
Interruption: none.

Skip if Register Not Equal
Compare the W register and the effective address as signed integers. If the register
is unequal to the address, then skip the following instruction. The register
remains unchanged.

AR:= signed W - signed SB;
if AR < > 0 then IC:= IC + 2;
goto Next Instruction;

Exception: unchanged.
Interruption: none.

Skip if Register Bits One
Use the effective address as a mask to test selected bits in the W register. If all
the selected bits are one, then skip the following instruction. The register remains
unchanged.

14.8. INSTRUCTION EXECUTION

for bit:= 0 step 1 until 23 do

AR(bit):= if SB(bit) = 1 then not W(bit) else O;
if AR(0:23) = 0 then IC:= IC + 2;
goto Next Instruction;

Exception: unchanged.
Interruption: none.

73

Note: When the effective address is zero, the operation skips the following
instruction unconditionally.

Skip if Register Bits Zero

Use the effective address as a mask to test selected bits in the w register. If all
the selected bits are zero, then skip the following instruction. The register
remains unchanged.

for bit:= 0 step 1 until 23 do

AR(bit):= if SB(bit) = 1 then W(bit) else O;
if AR(0:23) = 0 then IC:= IC + 2;
goto Next Instruction;

Exception: unchanged.
Interruption: none.

Note: When the effective address is zero, the operation skips the following
instruction unconditionally.

Skip if No Exceptions

Use the right-most three bits of the effective address as a mask to test selected
bits in the exception register. If all the selected bits are zero then skip the
following instructions. The exception register remains unchanged. '

AR:= positive EX;
for bit:= 0 step 1 until 23 do

AR(bit):= if SB(bit) = 1 then AR(bit) else O;
if AR(0:23) = 0 then IC:= IC + 2;
goto Next Instruction;

Exception: unchanged.
Interruption: none.

Note: When the effective address is zero, the operation skips the following
instruction unconditionally.

Skip if No Protection

Use the protection key of the storage word addressed as an index to select a bit
in the protection register. If the selected bit is zero, then skip the following
instruction.
6

74 14.8. INSTRUCTION EXECUTION

Test Address; PK:= protection key(SB);
if PR(PK) = 0 then IC:= IC + 2;
goto Next Instruction;

Exception: unchanged.
Interruption: (0) undefined address.

Jump with Interrupt Enabled
Same as Jump with Register Link, except that the interruption system is enabled
first. This is a privileged instruction.

Test Mode; Test Address; interrupt disabled:= false;
if FR(6:7) < > 0 then W:= IC;
IC:= SB; IC(23):= 0;
goto Next Instruction;

Exception: unchanged.
Interruption: (0) not monitor mode or undefined address.

Jump with Interrupt Disabled
Same as Jump with Register Link, except that the interruption system is disabled
first. This is a privileged instruction.

Test Mode; Test Address; interrupt disabled:= true;
if FR(6:7) < > 0 then W:= IC;
IC:= SB; IC(23):= 0;
goto Next Instruction;

Exception: unchanged.
Interruption: (0) not monitor mode or undefined address.

Oear Interrupt Bits
Use the effective address as a mask to clear selected interruption signals. This is a
privileged instruction.

Test Mode;
for bit:= 0 step 1 until 23 do
if SB(bit) = 1 then IR(bit):= 0;
goto Next Instruction;

Exception: unchanged.
Interruption: (0) not monitor mode.

14.8. INSTRUCTION EXECUTION 75

Store Interrupt Register

Store the interrupt register in the storage word addressed. The interrupt register
remains unchanged.

Test Address; Test Protection;
word(SB):= IR;
goto Next Instruction;

Exception: unchanged.

Interruption: (0) undefined address or protection violation.

Load Mask Register

Insert the storage word addressed in the interrupt mask register. Bit 0 of the
mask register is permanently equal to one. This is a privileged instruction.

Test Mode; Test Address;
IM:= word(SB); IM(0):= 1;
goto Next Instruction;

Exception: unchanged.

Interruption: (0) not monitor mode or undefined address.

Store i1ask Register

Store the interrupt mask register in the storage word addressed. The mask
register remains unchanged.

Test Address; Test Protection;
word(SB):= IM;
goto Next Instruction;

Exception: unchanged.

Interruption: (0) undefined address or protection violation.

Load Exception Register

Insert the right-most three bits of the storage byte addressed into the exception
register. The storage byte remains unchanged.

Test Address;

SB(12:23):= byte(SB); EX:= SB(21 :23);
goto Next Instruction;

Exception: set as defined above.
Interruption: (0) undefined address.

6*

76 14.8. INSTRUCTION EXECUTION

Store Exception Register
Extend the exception register towards the left with zeroes and store it in the
storage byte addressed. The exception register remains unchanged.

Test Address; Test Protection;
byte(SB):= positive EX;
goto Next Instruction;

Exception: unchanged.
Interruption: (0) undefined address or protection violation.

Load Protection Register
Insert the right-most seven bits of the storage byte addressed into the protection
register. Bit 0 of the protection register is permanently equal to one. The storage
byte remains unchanged. This is a privileged instruction.

Test Mode; Test Address;
SB(12:23):= byte(SB); PR:= SB(16:23); PR(0):= 1;
goto Next Instruction;

Exception: unchanged.
Interruption: (0) not monitor mode or undefined address.

Store Protection Register
Store the protection register in the right-most eight bits of the storage byte
addressed. The left-most four bits of the storage byte are set to zero. The
protection register remains unchanged.

Test Address; Test Protection;
AR:= positive PR; byte(SB):= AR(12:23);
goto Next Instruction;

Exception: unchanged.
Interruption: (0) undefined address or protection violation.

Load Protection Key
Load the right-most three bits of the W register with the protection key of the
storage word addressed. The left-most twenty-one bits of the W register are set to
zero. The protection key of the storage word remains unchanged.

Test Address;
W:= positive protection key(SB);
goto Next Instruction;

Exception: unchanged.
Interruption: (0) undefined address.

14.8. INSTRUCTION EXECUTION 77

Store Protection Key

Store the right-most three bits of the W register into the protection key of the
storage word addressed. The register remains unchanged. This is a privileged
instruction.

Test Mode; Test Address;
protection key(SB):= W(21 :23);
goto Next Instruction;

Exception: unchanged.

Interruption: (0) not monitor mode or undefined address.

Input/Output

An input/output operation is initiated, if the selected device is available. If the
device is busy or disconnected, the operation is rejected. This is indicated in the
exception register. The detailed execution of the four basic commands: read,
write, sense, and control is defined in Chapter 8.

Test Mode;
device:= SB(0:17);

EX(22):= if disconnected (device) then 1 else 0;
EX(23):= if busy(device) then 1 else 0;
if EX(22:23) < > 0 then goto Next Instruction;
if SB(22:23) = 0 then W:= device buffer(device);
comment: sense command;
if SB(23) = 1 then device buffer(device):= W;
comment: write or control command;
goto Next Instruction;

Exception: (22) disconnected, (23) busy.
Interruption: none.

Autoload Word

Four 6-bit characters with odd parity from device number 0 are loaded into the
storage word addressed, and the protection key of the storage word is set to
zero. This is a privileged instruction. It repeats input, if the status bit 0 (end of
buffer) is set. The computer is, however, set in the reset state, if the loading
device is disconnected or if any other status bits are set during input.

Test Mode;

comment: save the load address in SF and BF and read 4 characters
into AR from device 0;
SF(24:35):= SB(0:11); BF(24:35):= SB(12:23);
AR:= 0;

78 14.8. INSTRUCTION EXECUTION

for SC:= 1 step 1 until 4 do
begin
Start Input:

SB:= 2; comment: read command to device O;
if disconnected(O) then goto Reset System;
if busy(O) then goto Start Input;

EX(22:23):= O;
Wait Input:

end;

SB:= O; comment: sense command to device O;
if disconnected(O) then goto Reset System;
if busy(O) then goto Wait Input;

EX(22:23):= O;
SB:= device buffer(O);
if SB(O) = 1 then goto Start Input;
comment: end of buffer status;
AR(0:17):= AR(6:23); AR(18:23):= O;
for bit:= 0 step 1 until 23 do
AR(bit):= if AR(bit) = 1 or SB(bit) = 1

then 1 else O:
if SB(0:11) <> 0 then goto Reset System;
comment: other status bits;

SB(0:11):= SF(24:35); SB(12:23):= BF(24:35);
Test Address;
word(SB):= AR(0:23); protection key(SB):= O;
goto Next Instruction;

Exception: (22) zero, (23) zero.
Interruption: none.

A.l. Reserved Storage Locations

Storage Location:

0
2

4
6

8
10

12
14

APPENDIX

Use:

working register 0
working register 1
working register 2
working register 3
interrupt number
address of interrupted program
address of interrupt response program
address of start key program

79

80 81

A.2. Numeric Instruction Codes A.3. Instruction Execution Times

Numeric Code: Mnemonic Code: Numeric Code: Mnemonic Code: The execution times listed apply to direct addressing. For address
modification, add the following:

0 AW 32 CI relative addressing: 0.5 usec
1 IO 33 AC indexing: 0.5 usec
2 BL 34 NS relative addressing and indexing: 1.5 usec
3 HL 35 ND indirect addressing (codes 0-31, 48-63): 1.5 usec
4 LA 36 AS (codes 32-47): 1.0 usec
5 LO 37 AD
6 LX 38 LS
7 WA 39 LD AM 2.0 CI 4.0 + 0.5 *shifts so 3.5
8 ws 40 SH AL 1.5 CF 5 .0 + 0.5 *shifts sz 3.0
9 AM 41 SL AC 2.5 SX 3.0

10 WM 42 SE FA 11.0 SP 3.0
11 AL 43 SN HL 3.0 FS 11.0
12 ML 44 so HS 4.0 FM 26.0 JE 2.5 or 3.0 (with link)
13 JL 45 sz RL 3.0 FD 27.0 JD 2.5 or 3.0 (with link)
14 JD 46 sx RS 4.0 IC 2.5
15 JE 47 IC RX 4.5 LA 3.0 IS 4.0
16 XL 48 FA DL 5.0 LO 3.0 ML 3.0
17 BS 49 FS DS 7.0 LX 4.0 MS 4.0
18 BA 50 FM XL 3.0
19 BZ 51 KS BZ 3.0 AS 3.0 + 0.5*shifts XS 4.0
20 RL 52 FD BL 3.0 AD 3.5 + 0.5 *shifts PL 3.0
21 SP 53 CF BA 3.5 LS 3.0 + 0.5 *shifts PS 4.0
22 KL 54 DL BS 3.5 LD 3.5 + 0.5*shifts KL 3.0
23 RS 55 DS NS 5.0 + 0.5*shifts KS 4.0
24 WD 56 AA WA 3.0 ND 5.5 + 0.5*shifts IO 4.0 (rejected)
25 RX 57 ss ws 3.0 5.0 (read)
26 HS 58 (not used) WM 15.5 JL 2.5 or 3.0 (with link) 7.0 (sense)
27 XS 59 (not used) WD 17.0 SH 3.0 6.5 (write)
28 PL 60 (not used) SL 3.0 6.5 (control)
29 PS 61 (not used) AA 5.0 SE 3.0
30 MS 62 (not used) ss 5.0 SN 3.0
31 IS 63 (not used)

add floating
add integer byte
add integer double word ..

INDEX

66
62
64

add integer word 62
addition 19,23,27,54
addressing of device 36
addressing of storage 15ff
addressing of register 16
address modify instruction . 18
AE register 53
AF register
ARBR register
AR register
autoload key
autoload word

BE register
BF register
BR register
busy device
byte addressing
byte arithmetic

carry
clear interrupt bits
continue key
control command
control panel
convert floating to integer
convert integer to floating
core store control
core store error
CPU error
CPU running

data channel

53
53

51ff
45,55
45,77

53
53

51ff
36
15
19

21
74
47

39,41
44ff,55

65
65
48
44
44
44

35ff

data formats
data overrun
device buffer

15
42
35

device command 36ff
device number 36
disabling of interrupts 33
disconnected device 36
displacement 17
display of registers 47ff
divide floating 67
divide integer word 63
division 20,23,27
double-length registers 16
double word 15

effective address 17,56
enabling of interrupts 33
exact arithmetic 26ff
exception register 21,25 ,37
exchange register and store . 60
execution times 81
exponent 22
EX register 52ff
external interruption

floating-point arithmetic ..
fraction
FR register
full precision

high-speed data channel ...

IC register
IM register
index registers
indirect addressing

34,40

22ff
22

5 lff
24ff

41ff

52ff
52ff
16ff

17

84 INDEX

input/output 35ff,77
instruction exception 33
instruction execution 58ff
instruction execution times 81
instruction fetch cycle 55
instruction format 17
instruction set 49
interruption 32ff,55
interrupt number 32
interrupt register
inteival timer
IR register

jump selector
jump with interrupt disabled
jump with interrupt enabled .
jump with register link

load address
load address complemented
load byte with zeroes

load double register

load exception register
load half register
load integer byte
load mask register
load protection key
load protection register
load register
local/remote control
logical and
logical exclusive or
logical or
low precision
low-speed data channel

machine error
MAR computer controlled
MAR manually controlled ..

32
43

52ff

48
74
74
71

59
59
61
61
75
59
62
75
76
76
60
46
69
69
69

24ff
35ff

44
48
48

mask register
microcommand
microprogram store
mnemonic operation codes ..
modify next address
monitor control
monitor mode
MPS control
MPS error

32
48
48

49ff
58

28ff
29ff

48
48

multiplication 20,23,27
multiply floating 67
multiply integer word 63

normalize double
normalized number
normalize single
normal mode
not operator
number conversion
number representation
numeric operation codes

operation byte

71
22ff

71
47
54
26

19,22
80

17
operation codes 80
overflow 21,25,33

parity error
precision modes
PK register

positive operator
power on
privileged instructions
program interruption
protection
protection key
protection register

PR register

quotient

44
24ff
51ff

54
44,55

28ff
32ff

28ff,56
28,41

28
52ff

20,23

INDEX

range of numbers 19 ,21,22 store half register
relative addressing 17 store interrupt register
register structure 5 lff store mask register
read command 37 store protection key
remainder 20,23 store protection register .. .
reset key 44,55 store register
result register 16ff subtract floating
rounding 23ff,57 subtract integer byte

subtract integer double word

85

59
75
75
77
76
60
66
62
64

SBexp register 53 subtract integer word 62
SB register
SC register
SE register
SF register
sense command
shift double arithmetically ..
shift double logically
shiftleft operator
shiftright operator
shift single arithmetically .. .
shift single logically
signed operator
sign of numbers
single instruction key
single microinstruction key
skip if no exceptions
skip if no protection
skip if register bits one
skip if register bits zero
skip if register equal
skip if register high
skip if register low
skip if register not equal .. .
start key
status bits
storage addressing
storage protection

store double register
store exception register

51ff subtraction 19,23,27,54
52ff

53
53

37,41
70
71
54
54
70
70
54

19ff,22
47
47
73
73

72
73
72
71
72
72

45,55
38

15ff
28ff

61
76

task mode
technical mode

unassigned operation codes
undefined address
underflow

Wexp register
Wfrac register
Wpre register
W register
word
working registers
write command

zero representation

29ff
47

33,80
33

25,33

53
53
53

52ff
15

16ff
38

22

C~REGNECENTRALEN
SCANDINAVIAN INFORMATION PROCESSING SYSTEMS

HEADQUARTERS: FALKONER ALLI\ 1 . DK-2000 COPENHAGEN F • DENMARK
PHONE: (01) 10 53 66 · TELEX: 6282 RCHQ DK. CABLES: REGNECENTRALEN

AUSTRIA

BENELUX

DENMARK

GERMANY

NORWAY

SWEDEN

